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In potential theory we consider &,-kernels @,, constructed by locally fun-
n—1 2 m
damental solutions E,, of a differential equation &m u =0, Fm = <§i‘v — 2'8%,7>
n i=1 1

(m=1), in the n-dimensional Euclidean space R”. We shall show such a kernel to
be an S-kernel, and investgate its properties, so called Fn-potentials with respect
to Fm-kernels and the relationship between $,,-potentials and non-negative mass-
distributions on the relatively compact open set 2 of R».

1. Introduction.

Generalized potential theory, originating from the classical mechanics of Newton, has
hitherto been studied seriously in the field of mathemtics in relation to the Dirichlet problem
for extended harmonic functions. Recently it is well known that there exist many results
about kernels of being constructed by the locally fundamental solution of the heat-transfer
equation and its potential (in Bauer (4), Anger [(1],(3) and Iwasaki (10)), that is, calling
function defined by

-1
’ 1 n-1 ( leiz)
ECx) = [(m) PN, for 2u>>0
0 for x,<<0
, 3 7\ : .
the fundamental solution of Fu=0 %—57—25;{> in R*, and the integration of the
n i=1 ]
kernel @(x, y)=E(x-y) an {F-potential.
In this paper we extend this family of fundamental solutions to one of fundamental

n—1 2
9 >m> We shall study proper-

solutions of a differential equation Fmu=0 <%m=<w—~~- iy
axn iml axi

ties of Fm—kernels @, constructed by these fundamental solutins and so called {m-potentials.

We are indebted to Professor Dr. G. Anger for drawing our attention to this problem

and for sending many references and his recent papers.

2. Definitions and preliminary facts.

Let 2 be a relatively compact open set of the n-dimensional Euclidean space R», with a

distance

x=31 = (3 (xi=907)"

=1
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A2 T. Murazawa

for points x and y of R*, R=R! and
R= {x]| —cogx <+ o0}
By C(2) denote a family of all continuous functions defined on 2 and R(R*) a family of
all continuous functions with compact supports on R*.
Let us denote by E(x) a (locally) fundamental solution of the differential equation of a
parabolic type:

_ _ a _u—l 82

Fu=0 ( T 0xn 1'21 E)xsz)-

Then we define the generalized potential kernel (called $-kernel) @: 2X2— R as follow
O(x, y)=E(x-y) X*Y,

and
O(x, x)=FEC0).

Set

O*=(x, y)=sup(P(x, y), 0

and

O =(x, y)=—inf(@®(x, y), 0).
Asume that @* and @~ are universaly measurable, that is, ®* and @ are measurable
with respect to every positive mass-distribution on the product space 2X£2. We consider
a positive mass-distribution p supported on 2.

Further we define a potential as follow

£
AT x——-#g % (x, y)dp(y),
where

S*@*(x, »dp(y) <+ oe.
Similarly define
O p:x—> S*@‘(x, »duly),
where
("0 (x, )dp() <+oe.
Here we denote by * an upper integral in the sense of Bourbaki (5].
Let us define a so-called §-potential ®u by
Qu:x—> 0 u(x)—0 pu(x).
For a signed measure pg=pu*—p" on £, define
Du: x—> Opt(x) —Op (x)
where p*(B) (resp. ¢ (B)) is the positive variation (resp. negative variation) of u(B) for
any Borel set B in R». While potentials @x* and @y~ are define, an F-potential @y is always
defined.
Definition. The F-kernel @ : 2 X2 —> R is called an S-%kernel when the following con-

ditions are satisfied : there exists at least one positive measure 2 with its compact support
S2 on £ such that its potential @*1 and @-1 are continuous on £.
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An Example of S-Kernel and its Properties in Potential Theory A3

Let us define following families of measures on 2:

F*(@)={212=0, compact support SACQ ; ®*4, @2 are continuous},
F(D)={A|2=2,—2; ; A, L,EF*(®)}.

De finition. An S-kernel @ : 2X 2 —> R is called to be a C-kernel if and only if, for any
AsF*(@) with 2(B)=0 for a Borel set BCR, there exists a positive measure i,&F*(®) such
that SA,CB and 2,(B)=0.

Then we have the following

Proposition 1. (Anger (1), Satz 1). Let @=0*— @~ be an S-kernel on QX2 such that O*
and @~ are lower semi-continuous, then @ is a C-kernel.

3. Tmkernel and Fm—potential.
We shall consider an operator of an m-multiple heat-transfer equation

o "=l Gram
—(_9 _ o e
T <3x,, ,.21 ax;2> , m=1, n=>2

Then it is known that a differential equation Fmu=0 in R» has the following (locally)
fundamental solution

xn™ ! 1 \n! ( '_E:xiz)
Em<x>=l<m—1)"!‘<2\/a:> exp | 30 for xx>>0

0 for x, <0,
that is,
s—~1
2m—n—1 [ S for x>0
Clm, n)(xn)" 2 exp (_ L
Em(x)= 4xn for 2, <0,
0
1 1 e e .
where the constant C(m, #n)= ——=< >0, whose positivity is independent with

respect to m and n. The fundamental solution has properties such that in R» is continuous
for 2m—n—1=0 and lower semi-continuous for 2m—n—1<0.

In the case m=1, as it is known, the fundamental solution is of the heat-transfer equation
ou = 0%u

0xn =4 0xi° =0:
n—1 .
Ei(x)= [(2\/n;> XD\ =4 for x4>0
0 for x,<<0.

The Tm-kernel on 2x2, which is constructed from a fundamental solution of the

differential equation Fmu=0, is following Om(x, ¥)=Em(x—y):

n—1
2m=n-1 > (xi—yi)?
Oz, )= ‘C(m, n) - (xn—ya) 2 exp _'—Z‘(-x—:ryfjf for xn>ya,
0 for xn <ya,

where Om(x, ) =Emn(0).
Since an Fm-kernel Om(x, ¥) on 2X 2 is continuous for 2m—n—1=>0 and is lower semi-
continuous for 2m—n—1<0, ®m* and Om", of being Om=Pm*—D,,~, are universally measurable
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A4 T. Murazawa

on 2X£. Now we define the potentials @m*y and @m p for a positive measure y on 2;
Ontp s x—> [ Ou*(z, 1 dp(y),
where
[ Om* (2, dp() <+oo,
and similarly
Oyt 22— (T Ou~(x, 9)dp(),
where

["0m (2, »dp() <+oo.

Then an Fm-potential Pmpy of Pm is given the following
Pmp : x> Py p(x) — P (),
where it is assumed that
Om*p<l+oo and Om pu< 4+ oo.
Lemma 2. The ¥m-kernel @, have the following properties : in the case 2m—n—1>0,
any positive measure p with its compact support Sy belongs to F(Dm).
Proof. In the case 2m—n—1>0, since the Fm—kernel Om(x, y) is continuous on X2,
for Om=0m*—®m potentials Om*y and Pm p with respect to the given positive measure p
are continuous potentials in 2. Therefore it belong to F*(®s), which completes the proof
of this lemma.
Let p be a bounded integrable function on £ with the compact support Spcf2. Now
we define the following measure

if—> Snf(y)m(y) dy for any feR(R™).

Then it is well-known that such a measure 2, belongs to F(®) for @ being logarithmic-,
Newtonian-kernels and kernels of the heat-transfer equation (m=1), for example, in Anger
(1) Hilfssatz 3 and Bemerkung 3. Through this section we assume the existing of above
defined measure.

Lemma 3. .Let @, be the Fm-kernel. Then it constructs a continuous potential Pml, for
the measure 2, being given above, and AWEF (Dm).

About this proof, by Lemma 2, it is sufficient to consider only in the case 2m—n—1<0,
which may be proved in the essentially analogous method has been made for m=1 in Anger
(3) Bemerkung 3.

Therefore we have following results by two above lemmas:

Theorem 4. The JFm-kernel Om is an S-kernel.

Corollary 5. The Fm—kernel @m is a C-kernel.

Proof. When we decompose the Fm-kernel @, as Om=0m* —Op~, Om* and O, are lower
semi-continuous on 2X 2. Therefore, by Proposition and Theorem 4, we obtain that @,, is
a C-kernel on 2x Q. Its proof completes.

In the case m=1, we have, as a special case, the following results of Anger (1) and (2):

Corollary 6. In the case m=1, the kernel ®,(x, y) of a heat-transfer equation and its
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An Example of S-Kernel and its Properties in Potential Theory A5

conjugate kernel @,(x, y) are both an S—kernel and also a C-kernel.

Let us consider the following functional family with a norm:
Co(RM) ={feC(R") | f(x) —> 0 as |x| —> =0},
L1l =sup [f(x)| for any feCy(R»).

x€eR?

De finition. An S-kernel @ is said to be an S,~kernel if and only if for any 1€ F*(®) its
potentials @*2 and @2 belongs to C,(R"). Moreover when the kernel @ is both the C-kernel
and the Sy-kernel, it is called a C,-kernel.

Then we have

Theorem 7. The Fm-kernel Om is a Cy-kernel for 2m—n—1<0.

Proof. The proof is essentially according to Anger’s idea given in (3). Let us now
take following points in 2 of R»:

2= (%1, Xy, +rrereeer ) Xn-i, Xn),

2= (2y, Xy wrereeees , Xny, 0)
and

2 =(0, 0, -errreers , 0, xn)
Set

-1l 3
121=(Sx) (=r>0),
and consider a (#’, xn)-coordinate system. Then let us denote by »
|x| = (&% + 2" |DF
and by 6 angles between the xx—coordinate and a point x=(»’, x»). Thus we have
|| =]x]| sin @ and [%a]l =]x]| cos@.

We can change given fundamental solutions into the following forms:

2m—n-—~1 o i .2
T-(lx|cosf) 2  exp (-%%2—0> for 0g0<~725
Em(x)=G(0) = i
0 for -2~§0<n,

1—»

where 7:,15,;2“: constant. Let us differentiate this function G(8) with respect to . Thus

we obtain, for 0<—%<a<l2i), C’ ()=

sinﬂ-[ lxl(1+coszﬁ)+ 2m+n+1cosﬁ]exp< lxlﬁﬂ.%)

2 4 cosé
—2m+u+1 - ' —2m+n+1 _1~v" T
ori(ie 2] T (cos ) )

Then, if two following cases should happen, that is,

(a) sin#=0
or

(b) lxl -(1+cos? )+ Zm'zi'n—'{_l—cos =0,
we have

G’ (6)=0.

C5)



A6 T. Murazawa

Therefore if we take a point x such that |x| is sufficiently large, the above given equation
(a) and (b) may not become at same to be zero. Hence we have that there exists a number
r, such that for |x|>r, this fundamental solution takes its maximum at =0 or x'=(0, O,
--------- , 0, xn). Then we obtain that

2m—-n—1

GO=r-1xl =,
GO)=G0) for [x|>7,

and
2m—n-—1

Em(x)<T-{x] 2 .

It implies that
2m—-n—1

En(x—y) <V |lx—y| = for|x—y|>7,.

We now consider an Fm-potential of @,, with respect to A& F*(®@») and |x—y|>r,, that is,

Omd(x) = |Em(x—3)dA(3)

2m—n~1
<7-{lx=y|" 2 da»).
Then, since the support S2 of 1 is compact and it is 2m—n—1=<0, hence @,i(x) —> 0 as
|x] —> +oo. Therefore we have that the Fm-kernel @m is a C.,—kernel for 2m—n—1=<0,
which completes the proof of this theorem.
Remark 1. On the above theorem, it is not satishied generally for 2m—n—1>0. In fact
we can obtain the following example. Let us now take following points in R=:

2=y, Xy, eereeeee ) Xnog, Xn),

2= (g, Xy, eererees , Xn_y, 0)
and

2 =100, 0, ---eeeeer , 0, xn).

Then we shall look up what behavior the Fm-potential

— —5 ai—y0?
"eXD\ A e —yn) di(y),

where 7 is a positive constant, takes as |x| increases to the infinite. Specially let us set

Puid(x) =T g | %n— V|

x=2x'"", hus |x| —> oo is equal to |x’’| —> oo. Therefore, by being 2m—n-—1>0, we have
that @mi(x) —> oo.
Remark 2. Let us define following functional families:
D*(Pm)={g| g=0Pmi, AEF*(Dm)},
D(Om)={g|g=81—82 &iED*"(Pm)i=1, 2}.
Since the above theorem is satisfied for A=4,—2,, 4, ,=F*(®m), we have the next
relation :
D(Dm) CCo(R™) for 2m—n—1<0.

4. Fm—kernel @» and positive measure.
Next we shall consider some connections between the Fm-kernel @, and non-negative

6



An Example of S Kernel and its Properties in Potential Theory AT

mass-distributions gz on 2.

Let us say that an S-kernel @ satisfies Condition (A) if and only if for any g, and p,=G*(9)

(02dp, = (@2dp, for all i F*(®)

implies that
.111:#2,
where for an S—Kkernel @

* *
G+(¢>)={y|pgo,g O adp< 400, [ 0 Mdp< 4 oo, sz+(¢)].

Then it is well-known the following result in Ager (3] Hilfssatz 10 and Helms (9)
Theorem 6. 11.

Lemma 8. If an S-kernel @ satisfies Condition (A), there exists an one-to-one corresponce
between a measure 2 of F(®) and its potential Oic D(D).

Let us denote by H a iinear subspace of R(R#*) of all continuous functions with compact
supports defined in R*. For f=H, the ciosure of {x|f(x)=0} is called the compact support
of f.

Definition. A subset HCR(R») is called total in R(R») 1if for each fER(R"), =0, with
its compact support Sf, any neightborhood W of Sf, and any ¢>0 there corresponds a finite

k

linear combindtion g= _Elc,-g,- of elements of H, with ¢;>0, gj=H, g;=0 and g; having its
=

support in U for each j, such that

|| f—gll= sup |flx)—g(x)]|<e.
xXER"
We consider the following domains in R*
-1 3
K<a>={x|x,.—a,.>(gl(x,-—a.-y) J.

which is an open convex cone with its vertex at any fixed point a=(a,, a;, -++++--- , an), and
for a positive number R>0
KR<a>={xleK<a>; an<xn<an+R, R>O}

R,

CF Grrpaypapupapup. S

Similarly we define an open convex cone Kgs(a’) for R’(R'<<R) and a point ¢’ Kz(a)
such that Kg/(a’)C Kg(a). Here for any point x&= Kz(a) take a point ¢’ Kg(a) such that
Kgpt(a’')Dx and xi=a'i (i=1, 2, -+ , n—1). Then it is well-known in Bauer {4) and
Anger (1) that there exists a positive measure uszz with its support Suzz on a boundary
0Kx: g of Kz and similarly pxrs with Spxrr on 0Kx gr, that is, uz g is a balayaged measure

c7



A8 T. MURAZAWA

\

N—rmmmm e ————-\-—-——a-—n

on 0K« g of a Dirac measure at x and uz r» on 0Kz g Tespectively.
Set
gz Rr R'=¢m,ux R'—¢mﬂz Ry

and define the following family
]
H( D)= [g|g= g}lc;g,-, ¢;j=0, gi=gxrr* for any xER”}.

Then we have the following result.

Lemma 9. The family H(®m) with respect to Om is a positive linear total subspace of
R(R").

Proof. For any point x& R=», let us consider convex cones Kg(e2) and Kg/(a’), R'<R,
such that Kgr(a’)>x and Kg(a)DKge(a'), where the point « is fixed with ai=x:(z=1, 2, .-
------ , n—1). By p:zr denote a measure supporting on 0Kz(e) and by pu:rr a measure
supporting on dKgr(a’) respectively. Thus we define

g‘xRR'——‘@mﬂxR'—@m/JxR,
which is a §Fm-potential with respect to a measure pzz’—pxr. Then we have
=0 in 2—Kg(a)
=0 in Kg(a)
and gz g r>=0 in 2 by the definition of g« zx and a minimum principle for a superharmonic
function (see Anger (1) and Helms (9)). Therefore it is clear that

ngR'{

k
H(®p) = {g|g= ZIng'j, ci=0, gi=g=rrr for any xER"}
i=

is a positive linear subspace of R(R»), and moreover is total in R(R*). In fact, by Cartan
(7) p.87, Theorem: Let H be a class of functions in R(R") with the following properties;
(1) if feH (f>0), then every translate of f belongs to H provided it belongs to R(R*»),
(i1) if x€2 and Ry>0, then there is a f&H which vanishes outside the domain KRO(a)
but does not vanish identically. Then H is a total subset of R(R7*). Our family H(®.) satisfies
clearly conditions (i) and (i1). This proof completes.
Remark. This analogous theorem is satisfied for the family H(®s) with respect to a
conjugate §’m-kernel @m of the Fm-kernel @, that is, F'm-kernel Om(x, ¥)= Lm(x—») on

, : 9 "l g \m
2% 02 where Em(x) is a locally fundamental solution of §F mu=0, (%’m-:(—a-x—+ .¥1W> )
Lemma 11. Let a kernel @ be an S-kernel and H(®D) be a positive linear total subspace
of R(R*) such that is contained in a family of all TF-potentials with respect to @. Then

this kernel @ satisfies Condition (A).
8D



An Example of S-Kernel and its Properties in Potential Theory A9

Proof. See Anger (1) Hilfssatz 7.

Therefore by above lemmas we have the following

Theorem 12. For the Fm-kernel On there exists an one-to-one correspondence between a
measure A of F(@®m) and a potential ®md with respect to A.

Otherhand since we have already that @, is the S,-kernel for 2m—n-—1<0 by Theorem
7, we obtain the following result by using a relation

R(R™) = Cy(R™)
in Bourbaki (6) S. 60.
Theorem 13. For the Tm—kernel @m there exists a relationship
D(®m) = Cy(R™) for 2m—n—1>0.
Proof. In the special case m=1 Anger (1) has proved
D(®,) = Cy(R»).
In the case m>=2 we can show in the analogous method with his idea, and there we shall

describe the outline of this proof.
We have already proved that

D(®m)C Cy(R)
in Remark 2 of Theorem 9, and moreover from the definition of H(®m)
H@m)CTD(Dn) and H(@m) CTR(R™).
Hence we have, by Bourbaki (6] S. 60,
R(R™) = Cy(R™),

that is, for any f& Cy(R*) and any positive number ¢ there exists g&R(R”?) such that
3
[1f gll<§-

Thus for fe Cy(R*) and ¢ there exists an element 4 of H(@m)
[f=rli=lIf—gli+llg*=h"|+]1g = ]1<¢

since
ht=sup (A, 0)E H(Dm),
h =—inf (h, 0O)= H(Ow)
and
e =mil<g,  llg=ml <3
Hence

H(@m) = Cy(R).
Therefore, since

H(@m)CTD(Dm),
we obtain

D(@m)=Cy(R™),

which completes this proof.

9>
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