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On the Bauer harmonic space with certain conditions in the axiomatic potential theory,
we construct an integral kernel £(x, #) and investigate properties of 4(x, #). Furthermore we
show an example of Z(x, 0) on one-dimentional Euclidean space &1 in the last paragraph.

1. Introduction and preliminaries.

Recently in the abstract potential theory there are some results about integral kernel functions
which give Cauchy-type integral representations of solutions of the Dirichlet problem (see Bear-
Gleason [6] ). In our previous paper [12] we tried to prove the existings of such kernels, which
was reduced from reproducing kernel of a certain functional family on a harmonic space (X, 9)
with respect to Bauer’s axioms [5]. The object of the present article is to investigate properties
of integral kernel functions which are reduced in the paper [12], and an example in the Bauer har-
monic space under some conditions. The results of this paper are based on a study of a kernel
function with existings of a certain measure.

Let X be a connected, locally compact, non-compact Hausdorff space with countable basis,
and H(X) be a family of real-valued continuous functions (so-called harmonic functions) with open
domains in X such that the class of harmonic functions on an open set forms a real linear space.
The pair (X, (X)) will be a harmonic space which satisfies the axioms I, II, IIT and IV of
Bauer [5], and supposes the following one more axiom: The constant 1 is a superharmonic func-
tion. For any relatively compact open subset {/ of X we denote by H(U) the set of all real con-
tinuous functions f on ¢/, which are harmonic on . Let u,Y be a harmonic measure with respect
to a relatively compact open set {/ and a point x of U, that is, a balayaged measure on the com-
plement C{ of U of a Dirac measure at x. ILet v be a positive measure on a dense subset U’
of U whose support sv belongs to the closure &/ of &/. In fact, as X is a locally compact open set
U with a countable base, there is surely such a measure. Then we define a following measure
on the boundary 0/ of U: o(e):ﬁj/uxl’(e)du(x), where e 1s an arbitrary Borel subset of d {/, whose
existing is reduced by the constant 1 being superharmonic. Let us denote by Z2(o) the family

of all real-valued o-measurable functions which are defined on 9/ and /9 ; f2do are finite. We

define now following functionals on Z2(¢): a bilinear functional

f, g)a:/;ufga’o for any f,g& L3(o)

and a non-negative functional
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1Fle=( [, f2do)* for any SEL@).

Then (f, g). satisfies conditions of a scalar product and || /|| is a norm under the condition that
Jfis equal to g (denote by f=g) if and only if || /- g[l,=0. It is well known that Z2(¢) has the

structure of a Hilbert space relative to the scalar product ( f, g). and the norm || f|l,.

2. Reproducing kernel and integral kernel.

For a relatively compact open set ¢/ of X, let us denote by Z2(u,Y) a family of real-valued
functions defined on dU being u,U-quadratic integrable. Then we have the following.
Theorem 1. Let U be a relatively compact open set of X and o be a positive measure on the

boundary OU of U mentioned in the introduction and p.v be a harmonic measure with respect to
U and a point x of U. Then it holds

L2(0) T 0O L2(p7).
xEU
Proof. For any function f & Z2(g), we have

[ ®rdo®)= [ [ | FOFduL O du(x)<+oo,

and thus, in the dense subset U of U,

NS ORY(0)< oo,

Therefore, according to Bauer [5] Satz 1.1.8, we obtain

S\ fO R @) <+o0

for all x € U. This completes the proof.
Next we define following functional spaces.

Definition. Let o be a positive measure mentioned in the first paragraph then
RZ(U):z{Hlef(x)z/fdpxU for all f& Lz(a)};

RY(U) ;:{Hg | H(5)= [ g for all gELl(a)},
where Z#(o), (p=1, 2), denotes the family of all real-valued o-measurable functions / on dU/

- 1 . U
with the relation: /; U[ Sledpl<<Aoo.
Then let us recall that £2({) and R(U) are subspaces of (), and that Z2(s) and R2(U)

are isomorphism (see Ogawa and Murazawa [12]).

On R2(U) we define a scalar product (# s, H,) and a norm ||H || as follows:
(Hy, Hp)=(f, &)o for A5 H,cR2(U);
I ll=I11/1ls for H ;e R(U).

Then R2(U) is a Hilbert space with respect to the scalar product (4 s, A,) and the norm ||# /||.
We can obtain the following analogous thorem, concerning R2(l/), to Bauer [5] Satz 1.4.4.
Theorem 2. LZet U be a relatively compact open subset of X, v and o be positive measures

mentioned in the paragraph 1 and F be any compact subset in U. Then there exists a non-

negative constant y depending on F and o such that

sup [w(F)| =yllull  for all uc R2(U).
(14)
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Proof. See C)gawa and Murazawa [12] Theorem 2.2.
Then we have the following theorem.
Theorem 3. 7/e Hilbert space R U) constructed above have a reproducing kernel K(x,y):

w(y)=(u(x), K(x, y)) Sor all uc R2(U).

Proof. By Theorem 2, we get that there exists a constant y depending on the compact set

£ and o such that for all points v& /&

le( v)| <suplu(F )| Zyllul| for all we R2(U).

Thus the Aronszajn’s condition [1] for existing of a reproducing kernel is satisfied. The proof
completes.

Furthermore, from above Theorem 3 and also a fact that R2({) and Z2(o) are isomor-
phism, we obtain immediately the following theorem.

Theorem 4. LZLet U be a relatively compact open set of X, and o be the positive measure
defined in the introduction. Let K(x, y) be a reproducing kernel of R2(U). Then there exists
a function k(x, 0) on UXOU such that

K (@, )= [, kx, Odu,"O),

which salisfies followings:
a) for every x< U, k(x, 0) belongs to L%(o);

b) for every xS U, k(x, 0) is non-negative almost everywhere (o) with a relation:

pl @)= [ b, 0)do()
Sfor any Borel subset e of dU.

3. Properties of the integral kernel.

We shall now define the sweeping system on X in the method of Constantinescu and Cornea
[7]. Let a pair (X, ) has the harmonic structure mentioned in the first paragraph. Let U
be an open set of X; a family M:=(u,").cv of measures on 3¢ will be called a sweeping on U.
The sweeping M is called an H-sweeping if:

a) U is relatively compact;

b) for any f € C(8U) the function p,Y(f), for any p,Y €M, is an H-function;

¢) for any $-function % defined on an open neighbourhood of U we have u,Y(%)=/(x) on
U for any p, YeM.

A sweeping system on X is a family Q:=((u.Y?).ev;)ier such that {U;|7 €7} is a base
for X of relatively compact open sets and that for any /&7 M;:=(u.V$)rev; 1s a sweeping on
U;. The sweeping system £ is called an $-sweeping system if for any /&7 M, is an -
sweeping.

Throughout this section, assume that there exists an $-sweeping system Q:=( (u.").ev;)ier
on X such that for any a € X there exists 7, C /7 with the following properties: a) {U;|7& 7.}
is a fundamental system of neighbourhoods of x; b) for any ;& 7, oW; is contained in the
carries of u,Yi, where W, denotes the component of {/; containing x. Then, if $ satisfies

Bauer’s convergence axiom [5], £ possesses Brelot’s convergence axiom [8] (see Constantinescu

(15)



Al6 T. MURAZAWA

and Cornea [7], and Bauer [5]). Moreover it is well known that : if there exists an §-sweeping
system on X, then $(X) is complete with respect to the topology of compact convergence.
In the sense of the Bauer harmonic space assuming that there exists an §-sweeping system,
let us prove first the following lemma, which is proved essentially according to R.-M. Hervé [9].
Lemma 5. LZet U be a relatively compact open set of X and{u,V}be a family of harmonic
measures defined on U with respect to U and points x of U, such thatl there exists a function
k(x, ) of L%(a) for each x& U with the following relation: du.’(n)=+rk(x, n)do(n), where o is
the non-negative measure with supporting on 0U which is defined in the first parvagraph. Then,
Sfor any point 03U —E suck that o(E)=0, there exists a decreasing sequence {F,°}, of compact
subsets of U which coverges to (0}, such that has following properties: o(F,7)>0 for every n
and, for every point x< U there exists li?o wl (F0)[ao(F,0), whick defines the density function

of w.l with respect to a, that is, k(x, O)=lim p, V(%) |a(£.7).

Proof. Since £.(7n):=4(x, n) is a density function of u,? with respect to ¢, which is o-
measurable, we have, according to the Lusin’s theorem, that for all natural numbers » there

exist compact sets K,’CdU such that
c(@U—K,)<1/n
and a restriction of £,(n) on X, is defined and continuous. We can now take the above sequence

as a monotonically increasing sequence, and thus obtain that a set £=0U— U X, is o-negligeble
n

if the support of the restriction of ¢ on &, is denoted by X,,. Hence, being 6 £, there exists
at least one natural number #y such that 6 K,,. Then, for a decreasing sequence {a,’} of
compact sets which is a fundamental system of neighbourhoods of 8, we may define the set
a,’N K4 and denote it by £,’, which is a decreasing sequence of compact sets of converging to
{0}. The every set %,7 is of the positive measure with respect to a restriction of ¢ on &X,,’, a
fortiori, of o-measure>0.

Finely we have

a(F,7) ﬁ 0da(77)

as # increasing to oo, because of 4(x, ) being continuous for every n&/£,’. This completes
the proof of this lemma.

We get the following theorem.

Theorem 6. Lez U be a relatively compact open subset of X, and o be the positive measure
defined in the first paragraph. Then there exists a non-negative integral kernel function k(x, 0)
on UXOU such that

a) for every xE U, k(x, 0) belongs to L%(o);

b) for every 00U, k(x, 0) 7s harmonic in U,

C) a function u belongs to the class RWU) if and only if

u(@)= [ f (A, nydo(n)

on U for some fc L(o).
Proof. The existing of a non-negative kernel function 4(x, ) with the first property a)
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is obvious by proceding Theorem 4. Next consider that £(x, 6) satisfies the property b). Let
us now recall that §(X') is complete with respect to the topology of compact convergence if there
exists an §-sweeping system on X. Then according above Lemma 5, we have that there exists
a sequence {£,’} of compact sets containing 6, which converges to {#}, and thus we may select
a sequence {7’} so that u,V(F,%)[a(F,") converges to du,?(0)/da(0), i.e. A(x, 0), along the topo-
logy of compact convergence. Therefore, since the function x—> Y (#,%)/c(£,?) is harmonic
in U for every 63U, we obtain that the function x— £(x, 6) is harmonic in .

The last property c) follows immediately from the relation b) of Theorem 4 and the defini-
tion of R1({). This completes the proof.

Example.

We will now consider the following example.

Let &! be one-dimentional Euclidean space, and X be an open interval (0, ) of £1. l.ct

us denote by $H(X) the family of solutions of the following equation:
' —u=0 on X,
that is,
D(X):={x—>aexp(x) +Bexp(—x), a, BER! and x& X}.
Then an open inteval U=(a, 4) of (0, ) is a regular set. For ¢/ and any point x< /, a harmonic

measure follows:

_ exp(b—x) _exp(x—a)
’U"‘U“exﬁ(?}—a) 1% +exp(b—a) 1%

where ¢, (resp. ¢;) is a unit point mass at « (resp. 4).
Thus a pair (X, (X)) satisfies all conditions of the harmonic space in the sense of the

paragraph 3. We now construct a positive measure ¢ as following: for any Borel subset ¢ of

U,
o(e): = /, *uV(e)dx

_exp(b—a)—1 exp(b—a)—1
_exp(é—a)+1X‘(")+exp(5—'a)+‘1xe( ),

where y, is a characteristic function of the set e. And so, according to Theorem 6, the integral

kernel function A(x, ) is implied:

— i B2 (€7)
klx, )= ilglc (e

where e,’ is any Borel subset of d{/, which contains an arbitrarilv given point 0 of d{/ for all »

and converges to {f} as »z increasing to oo, that is,

I

e (0_ Lot Hmau

Hence we have
(1) A(x, )= lim exP (6—x).Xent(@) +-€XP(X —a).Xen?(6)

mros {eXP (B—a)—1) xot(@)+ (eXP(B—2)—1} xurt(B)
Then, we obtain particularly that in the case 8=a
) @)= XpG—a)
A &= b—a)—1
(17 )
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and in the case =4

Az, &)=é}f§(%(f ;)‘_’11
Moreover the function
ey EXP(6—2X)"X,4?(@) +-€XP(X —2)"X,4?()
{exp(6—a) —1} xen?(a) + {exp(6—a) —1} xcn?(0)
is harmonic and the sequence in (1) is locally equicontinuous in /. Therefore, we have that
the function 4(x, 6) is harmonic in U for each 8 € dU and is a Radon-Nikodym derivative du,Y(6)/
da(0) on U=[a, 4].
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