УДК: 669.712.001

DOI: dx.doi.org/10.17073/0021-3438-2016-6-21-28

СИНТЕЗ ГИДРОКАРБОАЛЮМИНАТОВ ЩЕЛОЧНО-ЗЕМЕЛЬНЫХ МЕТАЛЛОВ ИЗ ПРИРОДНОГО МАГНИЙСОДЕРЖАЩЕГО СЫРЬЯ В УСЛОВИЯХ ГЛИНОЗЕМНОГО ПРОИЗВОДСТВА

© 2016 г. В.М. Сизяков, Е.В. Тихонова, Е.В. Сизякова, М.В. Черкасова

Санкт-Петербургский горный университет (СПбГУ)

Статья поступила в редакцию 22.09.15 г., доработана 09.11.15 г., подписана в печать 20.11.15 г.

Представлены результаты исследований кинетики синтеза гидрокарбоалюминатов магния, определена ключевая роль предшествующей температурной активации магниевой составляющей сырья и температуры в скорости процесса. Рассмотрены механизм и условия совместной кристаллизации гидрокарбоалюминатов кальция и магния из предварительно активированного природного Mg-содержащего сырья. Установлена высокая регенерационная способность гексагональных структур синтезированных веществ. Предложена аппаратурно-технологическая схема процесса синтеза гидрокарбоалюминатов щелочно-земельных металлов в условиях глиноземного производства.

Ключевые слова: алюминатный раствор, синтез, температурная активация, очистка от примесей, гидрокарбоалюминат, щелочно-земельные металлы.

Сизяков В.М. – докт. техн. наук, профессор кафедры металлургии СПбГУ

(199106, г. Санкт-Петербург, Васильевский остров, 21-я линия, 2). E-mail: kafmetall@mail.ru.

Сизякова Е.В. — канд. техн. наук, доцент той же кафедры.

Черкасова М.В. — аспирант той же кафедры. E-mail: tallyla@mail.ru.

Тихонова Е.В. — канд. техн. наук, инженер-исследователь ЗАО «Пикалевская сода»

(197198, г. Санкт-Петербург, пр. Добролюбова, 11). E-mail: tev-13@mail.ru.

Для цитирования: Сизяков В.М., Тихонова Е.В., Сизякова Е.В., Черкасова М.В. Синтез гидрокарбоалюминатов щелочно-земельных металлов из природного магнийсодержащего сырья в условиях глиноземного производства // Изв. вузов. Цвет. металлургия. 2016. No. 6. C. 21–28. DOI: dx.doi.org/10.17073/0021-3438-2016-6-21-28.

Sizyakov V.M., Tikhonova E.V., Sizyakova E.V., Cherkasova M.V. Synthesis of hydrated carboaluminates of alkali-earth metals from natural Mg-containing raw material in alumina production

The article presents the results of studying the synthesis kinetics of hydrated magnesium carboaluminates and determines the key role of preceding thermal activation of a raw magnesium component and temperature in the process rate. The study covers the mechanism and conditions of co-crystallization of hydrated calcium and magnesium carboaluminates from the pre-activated natural Mg-containing raw material. It is found that the hexagonal structures of synthesized substances exhibit high regenerative ability. The paper offers a process and instrumentation diagram for synthesizing hydrated carboaluminates of alkali-earth metals in alumina production.

Keywords: aluminate liquor, synthesis, thermal activation, decontamination, hydrated carboaluminate, alkali-earth metals.

- Sizyakov V.M. Dr. Sci. (Tech.), Professor of Metallurgy Department, Saint Petersburg Mining University
- (199106, Russia, St.-Petersburg, Vasil'evskii ostrov, 21 line, 2). E-mail: kafmetall@mail.ru.

Sizyakova E.V. - Cand. Sci. (Tech.), Associate Professor of Metallurgy Department.

Cherkasova M.V. – Post-graduate Student of Metallurgy Department. E-mail: tallyla@mail.ru.

Tikhonova E.V. - Cand. Sci. (Tech.), Research Engineer, JSC «Pikalevo Sodium»

(197198, Russia, St.-Petersburg, pr. Dobrolyubova, 11). E-mail: tev-13@mail.ru.

Citation: *Sizyakov V.M., Tikhonova E.V., Sizyakova E.V., Cherkasova M.V.* Sintez gidrokarboalyuminatov shchelochno-zemel'nykh metallov iz prirodnogo magniisoderzhashchego syr'ya v usloviyakh glinozemnogo proizvodstva. *Izv. vuzov. Tsvet. metallurgiya.* 2016. No. 6. P. 21–28. DOI: dx.doi.org/10.17073/0021-3438-2016-6-21-28.

Введение

Гидрокарбоалюминаты щелочно-земельных металлов проявляют активные ионообменные и сорбционные свойства в отношении примесных

компонентов алюминатных растворов глиноземного производства [1—8]. В этой связи актуальными становятся вопросы разработки эффективной технологии синтеза этих соединений, исследования их регенерационного потенциала и возможности вовлечения в переработку дешевого и доступного природного сырья.

Так как технология синтеза гидрокарбоалюмината кальция (ГКАК) давно освоена на отечественных предприятиях глиноземного производства, а физико-химические основы этого процесса широко освещены в литературе [9—13], то в качестве объекта исследования были выбраны гидрокарбоалюминат магния (ГКАМ) и совместная система MgO—CaO—Na₂O—Al₂O₃—CO₂—H₂O.

Методика проведения эксперимента

Измельченное природное Mg-содержащее сырье (доломит, магнезит, магнезиальный известняк и т.д.) активировали путем температурной обработки материала при $t = 500 \div 700$ °C в течение 15—240 мин в условиях интенсивного тепломассообмена и охлаждали в естественных условиях. Полученный материал добавляли в нагретый до температуры процесса (60—90 °C) щелочной алюминатный раствор (из расчета 30—250 г на 1 л раствора. При этом использовали искусственные системы и производственные алюминатные растворы переработки как гиббситовых бокситов, так и нефелинов.

Синтез вели в термостате при интенсивном перемешивании в течение 5—240 мин до полного завершения формирования гидрокарбоалюмината магния и необходимой степени превращения карбоната кальция в гидрокарбоалюминат. Непрореагировавший остаток отделяли декантацией. Пульпу, представляющую собой смесь гидрокарбоалюминатов щелочно-земельных металлов, фильтровали, промывали и сушили.

Полученный продукт исследовали количественным, рентгенофазовым (XRD-6000, «Shimadzu», Япония), термогравиметрическим (термоанализатор SDT Q600) методами анализа, а также с помощью растровой электронной микроскопии (JEOL JXA 8600S).

Результаты и их обсуждение

В ходе исследования обнаружено существенное влияние фактора активации природного Mg-содержащего сырья на кинетику синтеза ГКАМ. Активации магнезиальной части удалось достичь путем его первичной термической обработки при $t = 500 \div 700$ °C в условиях интенсивного тепломассообмена в течение 15—240 мин. В этих условиях образуется переходный активированный комплекс Mg—O, обуславливающий высокую химическую активность магния при последующем взаимодействии сырья с алюминатным раствором.

Химическую активность термообработанного сырья проверяли с использованием методики по ГОСТ 22688-77. Из рис. 1 видно, что активность оксида магния уменьшается с увеличением температуры прокалки в интервале 500—1100 °С. Установлено также, что она снижается с ростом температуры обжига при одинаковой продолжительности процесса и с повышением продолжительности при постоянной температуре. Максимальную активность имели образцы, полученные обжигом Mg-содержащего сырья при t = 500 °C в течение 2 ч (см. рис. 1). Поэтому дальнейшее исследование процесса синтеза ГКАМ проводили с использованием активированного таким образом материала.

Результаты исследования кинетики образования гидроалюминатов и гидрокарбоалюминатов кальция при $t = 60 \div 90$ °C в алюминатных растворах, содержащих 94,4 г/л Al₂O₃, при $\alpha_k = 1,5$ и диапазоне изменения концентрации Na₂O_{кб} от 2 (системы без ввода карбонат-иона) до 25,6 г/л приведены в табл. 1. Оксид магния вводили с учетом мольного соотношения MgO : Al₂O₃ = 3 : 1.

Таким образом, определяющую роль в кинетике синтеза ГКАМ играют степень активации магниевого сырья и температура процесса. При комбинации предварительной обработки реагента при $t = 500 \div 700$ °C в течение 15—120 мин и температуре синтеза 80 °C образование ГКАМ заканчивается через 5—30 мин (рис. 2).

Рис. 1. Влияние температуры и продолжительности прокалки сырья на активность MgO

t, °C	Na ₂ O _{кб} , г/л	τ, мин	Данные РФА		Данные гравиметрического анализа	
			Фаза	Кол-во	ГКАМ	Кол-во, %
80	12,5	5	ГКАМ Mg(OH) ₂ MgO	Основа Немного Немного	6MgO·Al ₂ O ₃ ·CO ₂ ·12H ₂ O Mg(OH) ₂ MgO	86 8,3 5,7
		15	ГКАМ Основа 6MgO·Al ₂ O ₃ ·CO ₂ ·12H ₂ O Mg(OH) ₂ Немного Mg(OH) ₂ MgO Мало MgO		89 7,9 3,1	
		30	ГКАМ Mg(OH) ₂ MgO	Основа Мало Мало	6MgO·Al ₂ O ₃ ·1,1CO ₂ ·12H ₂ O Mg(OH) ₂ MgO	95 4,1 0,9
		60	ГКАМ Mg(OH) ₂ MgO	Основа Мало Следы	6MgO·Al ₂ O ₃ ·1,19CO ₂ ·12H ₂ O Mg(OH) ₂ MgO	96 3,3 0,7
		120	ГКАМ Mg(OH) ₂ MgO	Основа Следы Следы	6MgO·Al ₂ O ₃ ·1,4CO ₂ ·12H ₂ O	98
		180	ГКАМ Mg(OH) ₂ MgO	Основа Следы Следы	6MgO·Al ₂ O ₃ ·1,6CO ₂ ·12H ₂ O	98
		240	ГКАМ Mg(OH) ₂ MgO	Основа Следы Следы	6MgO·Al ₂ O ₃ ·1,67CO ₂ ·12H ₂ O	98,2
80	2,0	5	ГКАМ Mg(OH) ₂ MgO	Основа Немного Немного	6MgO·Al ₂ O ₃ ·0,2CO ₂ ·12H ₂ O Mg(OH) ₂ MgO	82 9,1 8,9
		15	ГКАМ Mg(OH) ₂ MgO	Основа Немного Мало	6MgO·Al ₂ O ₃ ·0,2CO ₂ ·12H ₂ O Mg(OH) ₂ MgO	91 4,8 4,2
		30	ГКАМ Mg(OH) ₂ MgO	Основа Мало Мало	6MgO·Al ₂ O ₃ ·0,2CO ₂ ·12H ₂ O Mg(OH) ₂ MgO	96 1,7 2,3
		60	ГКАМ Mg(OH) ₂ MgO	Основа Мало Следы	6MgO·Al ₂ O ₃ ·0,8CO ₂ ·12H ₂ O Mg(OH) ₂ MgO	97 1,7 1,3
		120	ГКАМ Mg(OH) ₂ MgO	Основа Мало Следы	6MgO·Al ₂ O ₃ ·0,9CO ₂ ·12H ₂ O Mg(OH) ₂ MgO	97 2,5 0,5
		180	ГКАМ Mg(OH) ₂ MgO	Основа Следы Следы	6MgO·Al ₂ O ₃ ·CO ₂ ·12H ₂ O	97
80	25,6	5	ГКАМ Mg(OH) ₂ MgO	Основа Немного Немного	6MgO·Al ₂ O ₃ ·CO ₂ ·12H ₂ O Mg(OH) ₂ MgO	85 7,9 7,1
		15	ГКАМ Mg(OH) ₂ MgO	Основа Немного Мало	6MgO·Al ₂ O ₃ ·1,1CO ₂ ·12H ₂ O Mg(OH) ₂ MgO	90 5,5 4,5
		30	ГКАМ Mg(OH) ₂ MgO	Основа Мало Мало	6MgO·Al ₂ O ₃ ·1,1CO ₂ ·12H ₂ O Mg(OH) ₂ MgO	92 5 3
		60	ГКАМ Mg(OH) ₂ MgO	Основа Мало Следы	6MgO·Al ₂ O ₃ ·1,2CO ₂ ·12H ₂ O Mg(OH) ₂ MgO	95 4,1 0,9
		120	ГКАМ Mg(OH) ₂ MgO	Основа Следы Следы	6MgO·Al ₂ O ₃ ·1,6CO ₂ ·12H ₂ O Mg(OH) ₂ MgO	96 3,7 0,3
		180	ГКАМ Mg(OH) ₂ MgO	Основа Следы Следы	6MgO·Al ₂ O ₃ ·1,7CO ₂ ·12H ₂ O	98

Таблица 1 Кинетика образования гидрокарбоалюминатов магния

Рис. 2. Изотермы кинетики синтеза гидрокарбоалюминатов магния

Полученные результаты обусловили некоторые особенности химических превращений магния, которые позволяют предполагать эффективность совместной кристаллизации гидрокарбоалюминатов щелочно-земельных металлов, если в составе исходного сырья будут содержаться активированный MgO_{акт} и карбонат кальция CaCO₃. Такую смесь исходных реагентов легко обеспечить, учитывая различия в термической устойчивости карбонатов/гидроксидов магния и кальция (основных компонентов дешевого природного магниево-кальциевого сырья). Как показано выше, наиболее активные препараты MgO_{акт} были получены температурной активацией при 500-700 °С в течение 15-120 мин, тогда как карбонат кальция разлагается при $t = 900 \div 1000$ °C и в указанных условиях (500-700 °C) не претерпевает структурных изменений, оставаясь в виде СаСО₃.

При термической обработке магниево-кальциевого сырья при t < 500 °C в конечном продукте будет содержаться значительное количество малоактивных магниевых фаз — в основном гидроксид и карбонат магния. При t > 700 °C образуются менее активные формы оксида магния (см. рис. 1). Температурный интервал 500—700 °C был выбран таким образом, чтобы перевести магниевую составляющую в ее самую активную форму, а соединения кальция при этом не претерпевали бы каких-либо структурных изменений. Таким образом, формирование гидрокарбоалюминатных фаз кальция и магния представляется по следующей схеме:

$$6MgO + 2NaAlO_2 + Na_2CO_3 + 14H_2O \rightarrow$$

$$\rightarrow 6MgO:Al_2O_3:CO_2:12H_2O + 4NaOH, \quad (1)$$

$$4\text{CaCO}_3 + 2\text{NaAlO}_2 + 5\text{NaOH} + 8,5\text{H}_2\text{O} \rightarrow$$

$$\rightarrow 4\text{CaO}\cdot\text{Al}_2\text{O}_3\cdot0,5\text{CO}_2\cdot11\text{H}_2\text{O} + 3,5\text{Na}_2\text{CO}_3. \quad (2)$$

Высокая скорость реакции формирования ГКАМ позволяет «поймать» кальций на стадии образования гидрокарбоалюмината, ограничив его переход в устойчивую малоактивную форму 6-водного 3-кальциевого алюмината. Степень трансформации кальцита, переход которого в гидрокарбоалюминат кальция происходит существенно медленнее, можно регулировать продолжительностью взаимодействия предварительно активированного сырья с нагретым до 80 °С алюминатным раствором в интервале 5—60 мин.

Как следует из реакции (2), превращение

$$CaCO_3 \rightarrow 4CaO \cdot Al_2O_3 \cdot 0,5CO_2 \cdot 11H_2O \qquad (3)$$

сопряжено также с переходом дорогостоящей каустической щелочи в карбонатную, что является крайне нежелательным в контексте металлургического производства. Избежать дополнительного накапливания карбонат-иона CO_3^{2-} в алюминатном растворе, как следует из реакции (2) с учетом каустифицирующего потенциала реакции (1), можно, ограничив степень превращения карбоната кальция значением 20 %.

Пример. В качестве магнийсодержащего сырья был взят доломит, состав (%) которого представлен ниже:

CaO28	,47	TiO ₂ 0,03
MgO20	,43	Na ₂ O 0,11
Al ₂ O ₃ 0	,69	K ₂ O0,30
Fe ₂ O ₃ 0	,42	P ₂ O ₅ 0,03
H ₂ O0	,33	MnO0,02
SO ₃ 0),14	SiO ₂
		п.п.п 45,23

Для активации магнезиальной части доломит в количестве 100 г подвергали отжигу при t = 550 °C в течение 60 мин и давали остыть естественным путем. Затем 75 г активированного доломита добавляли к 200 мл упаренного алюминатного раствора переработки гиббситовых бокситов, содержащего, г/л: 90 Al₂O₃, 260 Na₂O₀₆; $\alpha_k = 4,2$. Смесь нагревали до 80 °C и перемешивали со скоростью 180 об/мин в течение 15 мин. Непрореагировавший остаток карбоната кальция отделяли декантацией, так как скорость его осаждения приблизительно в 3 раза выше, чем у гидрокарбоалюминатов. Затем пульпу ГКАМ фильтровали, кек промывали и вы-

	<i>т</i> _{исх} , г	Масса в осадке*		Теоретический расчет смеси				
Фаза		Г	%	Γ	%			
MgO	19	18,7	30,7	19	32,7			
CaO	26	6,4	10,5	4,4	7,6			
Al ₂ O ₃	18	9,9	16,2	10	17,2			
CO ₂	20	5,41	8,9	3,88	6,7			
Всего	—	61	100	58	100			
* По данным химического анализа.								

Таблица 2 Состав синтезированного препарата

сушивали при температуре 105 °С на протяжении 12 ч. Полученный образец белого цвета весил 61 г, содержание основного вещества было 94 %. Масса остатка, представленного в основном карбонатом кальция CaCO₃, после сушки составила 42 г.

Образование фаз подтверждалось данными рентгенофазового и химического анализов (табл. 2).

Синтезированные гидрокарбоалюминаты щелочно-земельных металлов имеют пластинчатую морфологию. Гранулометрический состав частиц зависит главным образом от условий синтеза и варьируется от сотен нанометров до нескольких микрометров в горизонтальной плоскости. Электронно-микроскопические исследования показали, что препарат состоит из тонких гексагональных пластинок. Кристаллы в виде пластинок накладываются одна на другую, некоторые из них имеют правильную шестигранную форму (рис. 3).

Таким образом, показана возможность получения смеси гидрокарбоалюминатов щелочно-земельных металлов из природного сырья доломита или смеси магнезит—кальцит в одном технологи-

20kU

Рис. 3. Микрофотография синтезированного образца ГКАМ (×2500)

ческом акте. Данные вещества, обладая активными ионообменными свойствами и развитой удельной поверхностью, могут быть использованы как по отдельности, так и в смеси для очистки алюминатных растворов от примесей различной природы, в том числе от органических веществ, накапливающихся в технологических алюминатных растворах переработки гиббситовых бокситов, что подробно раскрыто в наших предшествующих работах, например в [1].

С целью определения возможности регенерации ГКАМ после сорбции органических соединений и удаления последних термической активацией отработанных сорбентов было выполнено термогравиметрическое исследование синтезированных образцов. Полученные результаты приведены на рис. 4. Наблюдаемые тепловые эффекты имеют следующую природу: интервал 120—270 °С соответствует удалению кристаллогидратной и гидроксильной воды, а эффект при 420 °С обусловлен несколькими факторами, в том числе удалением CO_2 .

Рис. 4. Совмещенная DSC—TGA-кривая синтезированного образца

Рис. 5. Рентгенограммы гидрокарбоалюминатов магния

1 — синтезированный из искусственных систем

2 -кальцинированный при t = 500 °C

3 — регенерированный взаимодействием обр. 2 с алюминатным раствором

Температурная обработка образца в интервале до 400 °С не приводит к качественным изменениям структуры, сохраняется базальный рефлекс, соответствующий межплоскостному расстоянию 7,64 Å и присущий слоистым гидроалюминатам магния.

Выдержка при t > 420 °С способствует разложению ГКАМ с выделением CO₂ (см. рис. 4). Дальнейшее повышение температуры приводит к полному распаду структуры и формированию химически не связанной смеси оксидов MgO·Al₂O₃ (кр. 2 на рис. 5). Интерес представляет тот факт, что, попадая в алюминатный раствор, смесь оксидов тут же образует ГКАМ с полным восстановлением физико-химических свойств (кр. 3 на рис. 5). Этот эффект был отмечен также авторами [14, 15] и назван «эффектом структурной памяти». Изложенные в указанных работах данные согласуются с полученными нами результатами по регенерации гидроталькитной структуры.

Полученные результаты примечательны тем, что характеризуют высокую регенерационную способность гексагональных структур на основе магния. Данное обстоятельство применительно к интересующему нас вопросу подтверждает возможность многократного использования однажды синтезированных гидроалюминатов, что является необходимым условием для создания экономичной и энергетически эффективной технологии очистки алюминатных растворов от примесей.

На основании проведенных исследований предложена схема процесса синтеза гидрокарбоалюминатов щелочно-земельных металлов и сорбционной очистки оборотных алюминатных растворов (рис. 6). Доломит или другое магниево-кальциевое сырье подается транспортером в роторную дробилку l, которая обеспечивает измельчение материала до крупности 8—13 мм. Далее сырье транспортируется в обжиговую печь 2, где происходят нагревание материала, разложение карбоната магния и активация магнезиальной части MgCO₃ \rightarrow \rightarrow MgO_{акт}.

Активированное сырье после охлаждения в батарее теплообменников подается на доизмельчение в шаровую мельницу *3*, куда также добавляется оборот-

ный щелочной раствор в соотношении \mathcal{X} : T = 3 : 1. Из мельницы пульпа насосом перекачивается в реактор с мешалкой 5, где разбавляется оборотным алюминатным раствором и нагревается до 80 °C. Синтез гидрокарбоалюминатов ведется при интенсивном перемешивании. По завершении процесса пульпа перекачивается насосом 7 в классификатор 8, в котором непрореагировавшая часть природного сырья (в основном, CaCO₃) отделяется и откачивается на участок производства извести.

Пульпа из гидрокарбоалюминатов и алюминатного раствора перекачивается насосом 9 на барабанный вакуум-фильтр 10 с ножевым срезом кека. Кек, представляющий собой смесь гидрокарбоалюминатов кальция и магния с сорбированными примесями, транспортируется в печь обжига 11, где происходят выгорание органических примесей и регенерация сорбционных свойств. Затем сорбент охлаждается в серии теплообменников 12, а тепло обожженного материала используется для внутрицеховых нужд.

После процедуры регенерации сорбент дисковым питателем 13 подается в реактор 14 для сорбционной очистки вновь поступившего оборотного алюминатного раствора. Процедуры отделения и регенерации сорбента повторяются.

Выводы

1. Установлена определяющая роль в кинетике синтеза гидрокарбоалюминатов магния температуры процесса и степени активации магниевого сырья. При активации MgCO₃/Mg(OH)₂ в условиях интенсивного тепломассообмена при температуре 500—700 °C в течение 15—120 мин последующий

Рис. 6. Аппаратурно-технологическая схема процесса синтеза гидрокарбоалюминатов щелочно-земельных металлов и сорбционной очистки оборотных алюминатных растворов 1 — дробилка; 2 — обжиговая печь; 3 — шаровая мельница; 5, 14 — реакторы с мешалкой; 4, 6, 7, 9, 15, 16, 18 — насосы; 8, 17 — классификаторы; 10 — барабанный вакуум-фильтр; 11 — сушильный шкаф; 12 — теплообменник; 13 — дисковый питатель

синтез ГКАМ при t = 80 °С заканчивается через 5—60 мин.

2. Совместная кристаллизация гидрокарбоалюминатов магния и кальция возможна при осуществлении механизмов MgO \rightarrow ГКАМ и CaCO₃ \rightarrow \rightarrow ГКАК при *t* = 80 °C в течение 5—60 мин. После отделения непрореагировавшего осадка получаемый препарат содержит до 20 % ГКАК (остальное — ГКАМ).

3. Восстановить сорбционные свойства синтезированных и использованных сорбентов можно температурной обработкой в диапазоне 380— 420 °С и последующей распульповкой в алюминатном растворе с полным восстановлением их физико-химических свойств.

4. Предложена аппаратурная схема процесса синтеза гидрокарбоалюминатов щелочно-земельных металлов и сорбционной очистки оборотных алюминатных растворов.

Работа проводилась при финансовой поддержке Министерства образования и науки РФ в рамках выполнения государственного задания в сфере научной деятельности на 2016 г. №10.1392.2014/к.

Литература

- Сизяков В.М., Тихонова Е.В., Черкасова М.В. Эффективность оксидных соединений магния в очистке растворов глиноземного производства от органических примесей // Цвет. металлы. 2012. No. 9. C. 48—51.
- Сизяков В.М., Кононенко Е.С., Макаров С.Н. Технология сверхглубокого обескремнивания с дробной дозировкой гидрокарбоалюмината кальция // Записки Горного института. 2012. Т. 202. С. 31—34.
- 3. *Perotta A.J., Williams F.* Hydrocalumite formation in Bayer liquor and its promotional effect on oxalate precipitation // Light metals. 1995. Vol. 5. P. 77–87.
- 4. *Myong Jun Kim*. Overview of the behavior of sodium oxalate in Bayer liquor and its effect on the process // Light metals. 2003. Vol. 3. P. 19–24.
- Silvia Franca, Paulo F.A. Braga, Jorge Aldi. Some aspects of tricalcium aluminate hexahydrate formation on the Bayer process // Light metals. 2010. Vol. 1. P. 63–66.
- Gerald I.D. Roach The equilibrium approach to causticisation for optimizing liquor causticisity // Light metals. 2001. Vol. 5. P. 19–25.

- Raki L., Beaudoin J., Mitchell L. Layered double hydroxidelike materials: Nanocomposites for use in concrete // Cement Concr. Res. 2004. Vol. 11. P. 1717–1724.
- Seftel E.M., Dvininov E., Lutic D., Popovici E., Ciocoiu C. Synthesis of hydrotalcite-type anionic clays containing biomolecules // J. Optoelectron. Adv. Mater. 2005. Vol. 7. P. 2869–2874.
- Исаков Е.А., Костин И.М., Бадальянц Х.А., Сизяков В.М. Способ получения ненасыщенного твердого раствора ангидрида серной и/или угольной кислоты в четырехкальциевом гидроалюминате: Пат. 1556525 (РФ). 1993.
- Сизяков В.М., Тихонова Е.В. Физико-химические превращения кальция в алюминатных растворах глиноземного производства // ЖПХ. 2012. Т. 85. No. 11. С. 1746—1750.
- Xu B-A., Giles D.E., Rithie I.M. Reactions of lime with aluminate-containing solutions // Hydrometallurgy. 1997. Vol. 3. P. 231–244.
- Gabrovsek R., Vuk T., Kaucic V. The preparation and thermal behavior of calcium monocarboaluminate // Acta Chim. Slov. 2008. No. 55. P. 942–950.
- Mohapatra M. Tricalcium aluminate (TCA). Synthesis and characterization// Light metals. 2010. Vol. 5. P. 119– 124.
- Misra C., Perrotta A.J. Composition and properties of synthetic hydrotalcites // Clay and Clay Miner. 1992. Vol. 40. No. 2. P. 142–150.
- Rosenberg S.P., Armstrong L. Layered double hydroxides in the Bayer process: past, present, future // Light metals. 2005. Vol. 3. P. 157–161.

References

- Sizyakov V.M., Tikhonova E.V., Cherkasova M.V. Effektivnost' oksidnykh soedinenii magniya v ochitke rastvorov glinozemnogo proizvodstva ot organicheskikh primesei [The effectiveness of magnesium-containing compounds for purification aluminate liquors with organic contaminants]. *Tsvet. metally.* 2012. No. 9. P. 48–51.
- Sizyakov V.M., Kononenko E.S., Makarov S.N. Tekhnologiya sverkhglubokogo obeskremnivaniya s drobnoi dozirovkoi gidrokarboalyuminata kal'tsiya [The superdesiliconization technology with intermittent administration of calcium hydrocarboaluminates]. Zapiski Gornogo instituta. 2012. Vol. 202. P. 31–34.

- Perotta A.J., Williams F. Hydrocalumite formation in Bayer liquor and its promotional effect on oxalate precipitation. Light metals. 1995. Vol. 5. P. 77–87.
- 4. *Myong Jun Kim.* Overview of the behavior of sodium oxalate in Bayer liquor and its effect on the process. *Light metals.* 2003. Vol. 3. P. 19–24.
- 5. *Silvia Franca, Paulo F.A. Braga, Jorge Aldi.* Some aspects of tricalcium aluminate hexahydrate formation on the Bayer process. *Light metals.* 2010. Vol. 1. P. 63–66.
- Gerald I.D. Roach The equilibrium approach to causticisation for optimizing liquor causticisity. *Light metals*. 2001. Vol. 5. P. 19–25.
- Raki L., Beaudoin J., Mitchell L. Layered double hydroxidelike materials: Nanocomposites for use in concrete. Cement Concr. Res. 2004. Vol. 11. P. 1717–1724.
- Seftel E.M., Dvininov E., Lutic D., Popovici E., Ciocoiu C. Synthesis of hydrotalcite-type anionic clays containing biomolecules. J. Optoelectron. Adv. Mater. 2005. Vol. 7. P. 2869–2874.
- Isakov E.A., Kostin I.M., Badal'yants Kh.A., Sizyakov V.M. Sposob polucheniya nenasyshchennogo tverdogo rastvora angidrida sernoi i/ili ugol'noi kisloty v chetyrekhkal'tsievom gidroalyuminate [Method for manufacturing of unsaturated solution sulfuric and/or carbon acid anhydride in four-calcium hydroaluminate]: Pat. 1556525 (RF). 1993.
- Sizyakov V.M., Tikhonova E.V. Fiziko-khimicheskie prevrashcheniya kal'tsiya v alyuminatnykh rastvorakh glinozemnogo proizvodstva [Phisycal and chemical transformations of calcium in aluminate liquors]. *Zhurnal prikladnoi khimii*. 2012. Vol. 85. No. 11. P. 1746–1750.
- Xu B-A., Giles D.E., Rithie I.M. Reactions of lime with aluminate-containing solutions. Hydrometallurgy. 1997. Vol. 3. P. 231–244.
- Gabrovsek R., Vuk T., Kaucic V. The preparation and thermal behavior of calcium monocarboaluminate. Acta. Chim. Slov. 2008. No. 55. P. 942–950.
- 13. *Mohapatra M.* Tricalcium Aluminate (TCA). Synthesis and characterization. *Light metals.* 2010. Vol. 5. P. 119–124.
- Misra C., Perrotta A.J. Composition and properties of synthetic hydrotalcites. *Clay and Clay Miner*. 1992. Vol. 40. No. 2. P. 142–150.
- Rosenberg S.P., Armstrong L. Layered double hydroxides in the Bayer process: past, present, future. *Light metals*. 2005. Vol. 3. P. 157–161.