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10
11 ABSTRACT
12
13 American eels (Anguilla rostrata) are infected by the non-native parasitic nematode 
14 Anguillicoloides crassus, which can cause severe swimbladder damage. We investigated 
15 epidemiology of A. crassus to better understand its population-level effects on American eels. 
16 Nematode prevalence, abundance, and intensity, and swimbladder damage were quantified in 
17 glass eels, elvers, and yellow eels from the lower Chesapeake Bay and related to season of 
18 capture, river system, and total length. Age-variant force-of-infection and disease-associated 
19 mortality were estimated using a three-state irreversible disease model, which assumes recovery 
20 is not possible. Results showed glass eels have very low infection prevalence and severity 
21 compared to elvers and yellow eels. Nematode abundance varied by season, river, and eel length, 
22 whereas swimbladder damage varied by season and eel length. Nematode abundance and 
23 swimbladder damage were weakly positively correlated. Force-of-infection, based on 
24 swimbladder damage, peaked at age 2 and disease positive eels had an estimated lower annual 
25 survival probability of 0.76 compared to disease negative eels. Full understanding of American 
26 eel population dynamics will require broader knowledge of cryptic disease-associated mortality 
27 throughout North America.
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40 INTRODUCTION

41

42 The American eel (Anguilla rostrata) is an economically and ecologically important, yet 

43 relatively data-poor, species distributed along the Atlantic coast of North America and 

44 throughout the Gulf of Mexico (ASMFC 2012). The American eel population has been declining 

45 for the past several decades and is currently considered depleted and at a historically low level of 

46 abundance according to the most recent stock assessment update by the Atlantic States Marine 

47 Fisheries Commission (ASMFC 2017). Several hypotheses have been proposed to explain the 

48 species’ decline such as overfishing, pollution, changing climate, altered habitats and food webs, 

49 parasites, and emergent disease (Castonguay et al. 1994; Haro et al. 2000). One such proposed 

50 hypothesis is the impact of the introduced parasitic nematode, Anguillicoloides crassus, which 

51 can cause severe damage to the swimbladders of American eels. 

52 Infection by Anguillicoloides crassus is endemic in the Japanese eel (Anguilla japonica) 

53 in Asia, but significant pathology or notable negative population level impacts have not been 

54 observed (Sokolowski and Dove 2006). In contrast, the emergence, rapid spread, high 

55 prevalence, and pathogenicity of A. crassus have been linked to declines in wild European eel 

56 (Anguilla anguilla) populations and in European eel aquaculture facilities in Asia (Barse et al. 

57 2001; Ooi et al. 1996). Within the American eel population, the parasite was first discovered in 

58 1995 in a Texas aquaculture facility and was first observed in wild animals in South Carolina 

59 that same year (Fries et al. 1996). Since its discovery, the distribution of A. crassus has expanded 

60 rapidly and now occurs in eels in the Gulf of Mexico northward to Nova Scotia (Rockwell et al. 

61 2009). In the Chesapeake Bay, where approximately 60% of the annual U.S. catch of eels is 

62 landed (ASMFC 2017), A. crassus was first detected in 1997 (Barse and Secor 1999) and 
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63 currently can be found in all major tributaries with prevalences as high as 80% (Barse et al. 

64 2001; Fenske et al. 2010).

65 Eels become infected by consuming intermediate hosts such as copepods and ostrocods 

66 or by ingesting paratenic hosts (i.e., intermediate hosts in which parasite development does not 

67 occur) such as fishes, amphibians, snails, or insect larvae (Thomas and Ollevier 1992; Moravec 

68 1996; Moravec and Skorikova 1998). Once inside the eel, the parasite moves from the alimentary 

69 tract through the body cavity, eventually taking up residence in the swimbladder where it 

70 matures, sexually reproduces, and then dies and decays or is forced out through the pneumatic 

71 duct (Haenen et al. 1989; De Charleroy et al. 1990). Damage to the eel occurs as a result of 

72 larval nematode migration through the swimbladder wall, feeding on blood by adults, and 

73 inflammation and degradation of dead adults within the swimbladder lumen (Sokolowski and 

74 Dove 2006). Damage clinically manifests as increased opacity, thickening, and pigmentation of 

75 the swimbladder wall (Lefevbre et al. 2011). Tissue damage by A. crassus can be so severe that it 

76 results in complete degradation and loss of swimbladder function (Molnar et al. 1995; Wurtz et 

77 al. 1996; Kobyashi et al. 1990). However, the adverse health impacts of this infection and its 

78 impacts on eel population dynamics are not well understood, in part due to a complex 

79 relationship between parasite abundance and degree of swimbladder damage, suggesting that 

80 severe damage may prevent subsequent infections (Lefevbre et al. 2013). 

81 Previous studies addressing the impacts of A. crassus have mainly focused on infection 

82 prevalence and mean intensity (Fenske et al. 2010; Aieta and Oliveria 2009; Hein et al. 2014), 

83 but these metrics may provide an inaccurate or incomplete characterization of the multifaceted 

84 epidemiology. Potential discrepancies in the relationship between parasite abundance and 

85 swimbladder damage may be caused by intermediate and paratentic host dynamics, A. crassus 
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86 dying within the swimbladder and decaying or being cleared, and the possibility that a highly 

87 damaged swimbladder may not serve as a suitable habitat for A. crassus (De Charleroy et al. 

88 1990; van Banning and Haenen 1990). Additionally, previous analyses have focused mainly on 

89 yellow eels and have not included younger life stages, despite potential susceptibility of those 

90 stages to infection (Hein et al. 2015; De Charelory et al. 1990). Finally, it is not known if A. 

91 crassus causes infection-associated mortality (Lefebvre et al. 2013), which greatly limits 

92 understanding of the population level impacts of this parasite in American eels.  

93 The objectives of our study were to (1) quantify prevalence, abundance, and intensity of 

94 Anguillicoloides crassus infections in glass, elver, and yellow stage American eels in the 

95 Chesapeake Bay; (2) clarify the relationships between parasite abundance and swimbladder 

96 damage and the impacts of capture location, eel size, and season on the infection; and (3) model 

97 A. crassus force of infection in Chesapeake Bay, including exploration of spatiotemporal 

98 covariate effects, and  evaluate disease-associated morality. Collectively, our results support 

99 ongoing American eel management efforts by addressing key questions related to patterns in 

100 disease prevalence and population impacts of A. crassus.

101

102 METHODS

103

104 Field collections

105 Glass and elver stage American eels were collected from six sites within the lower 

106 Chesapeake Bay from March through June 2015 using Irish eel ramps (Figure 1).  Traps were 

107 placed in areas of freshwater runoff and a dam that impeded the eels’ upstream movements. The 

108 six sites were on the James River (Wareham’s Pond), York River (Bracken’s Pond and Wormley 
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109 Pond), Rappahannock River (Kamp’s Millpond), and Potomac River (Clark’s Millpond and 

110 Gardy’s Millpond). Sampling was conducted according to protocols established by the ASMFC 

111 for monitoring young-of-year glass eels (ASMFC 2012). Traps were checked a minimum of two 

112 days per week, with increasing frequency depending on the strength of glass eel ingress. On the 

113 first sampling day of each week, a maximum of 30 glass eels and 20 elvers were collected if 

114 possible, followed by up to 10 glass eels and 5 elvers each subsequent sampling day depending 

115 on their availability. This sampling technique was designed to optimize collecting enough eels to 

116 detect the nematode at low prevalence and reducing potential sampling biases such as 

117 autocorrelation within a catch (i.e., pseudoreplication associated with cluster sampling). 

118 Differentiation between glass eels and elvers was based on pigmentation stage (Haro and Kruger 

119 1988), with fully pigmented eels considered elvers, and the incompletely pigmented eels 

120 considered glass eels.

121 Yellow stage American eels were collected from 2013 to 2015 by the VIMS Seine 

122 Survey and Juvenile Fish Trawl Survey (Tuckey and Fabrizio 2013) and opportunistically from 

123 the Virginia Department of Game and Inland Fisheries Electrofishing Survey. The Trawl and 

124 Seine Surveys sampled eels in primarily brackish and tidal fresh water, whereas the 

125 Electrofishing Survey sampled eels in mainly freshwater locations. Yellow eels were collected 

126 within the James, York, and Rappahannock River watersheds from all three surveys, whereas 

127 yellow eels in the Potomac River watershed were collected exclusively by electrofishing.  

128

129 Laboratory processing

130 Weights (nearest 0.001 g) and lengths (nearest 0.01 mm total length) were obtained from  

131 glass eels and elvers that were euthanized using clove oil, measured, and then frozen (-18°C) for 
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132 storage. Yellow eels were euthanized using an ice slurry, frozen immediately, and weighed 

133 (nearest 0.1 g) and measured (nearest 1 mm) following thawing just prior to dissection. For all 

134 eels, the swimbladder was removed after thawing and opened to enumerate adult A. crassus. 

135 Counts of larval A. crassus in the swimbladder wall were quantified for glass eels under a 

136 dissecting microscope, after placing the swimbladder between two glass slides. Only adult A. 

137 crassus parasites were recorded for elvers and yellow eels.  Swimbladder condition was 

138 quantified using the Swimbladder Degenerative Index (SDI; Lefevbre et al. 2002). This index 

139 quantifies three swimbladder attributes—bladder wall opacity, thickness, and pigmentation and 

140 exudate (e.g. dead worms, erythrocytes, decaying swimbladder tissue, eggs, and L2 stage of A. 

141 crassus; Lefebvre et al. 2002) with each of these ranked from 0 (healthy, normal condition) to 2 

142 (severe condition). The three attribute scores were added together to generate a total SDI ranging 

143 from 0 to 6. Due to the difficulty of detecting eggs and L2 stage A. crassus in swimbladders, 

144 these two types of exudate were not used to determine the presence of exudate in elvers and 

145 yellow eels, but were used in glass eel analyses.

146 Sagittal otoliths were extracted from elvers and yellow eels and processed for age 

147 determination (Michaud et al. 1988; Cieri and McCleave 2000; Morrison and Secor 2003). 

148 Otoliths were mounted on a glass slide with CrystalBondTM and sanded down in the frontal plane 

149 until the core was visible. The otolith was then flipped and the opposite end was sanded down 

150 until the otolith was transparent and annuli were clearly visible. Annuli were quantified using a 

151 compound microscope. Each otolith was read independently by two readers and those specimens 

152 with annulus counts that differed were read again. Final age assignments were based on 

153 consensus between readers. Because eels have been in the Atlantic Ocean for about one year 

154 prior to metamorphosing into glass eels and the first annulus may not be laid down until after a 
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155 full year in coastal waters (ASMFC 2017), one year was added to all ages.  Protocols for 

156 sampling and euthanizing eels were approved by the College of William & Mary’s Institutional 

157 Animal Care and Use Committee.

158

159 Statistical analyses

160 Infection prevalence (proportion of eels infected with nematodes), mean abundance 

161 (average number of nematodes across all eels surveyed, infected and uninfected), and mean 

162 infection intensity (average number of nematodes per infected eel) were calculated from all eel 

163 stages and river systems using adult A. crassus counts (Bush et al. 1997). Glass eel analysis 

164 included both the adult and larval stages of the parasite. For all following analyses, a plausible 

165 set of candidate model parameterizations was defined based on hypotheses regarding potential 

166 effects of covariates (i.e., the covariates included in models have been shown to be important in 

167 other studies or represent plausible hypotheses unique to this study). Final models were selected 

168 using a combination of goodness of fit measures and Akaike’s Information Criterion value (AIC; 

169 Burnham and Anderson 2002).

170

171 Parasite abundance

172 For glass eels, the probability of infection by A. crassus larval and adult stages combined 

173 in relation to glass eel total length (TL) was investigated using a binomial generalized linear 

174 model with a logit link function. The inflection point, or the TL at which the probability of being 

175 infected is 0.5, of the binomial model was calculated and its standard error was estimated using 

176 the delta-method (Seber 1982). Glass eels were excluded from subsequent analyses due to low 

177 prevalence and infection intensity.

Page 7 of 39

https://mc06.manuscriptcentral.com/cjfas-pubs

Canadian Journal of Fisheries and Aquatic Sciences



Draft

178 For elvers and yellow eels, preliminary analyses comparing AIC values of the fully 

179 statured model (all covariates in both count and zero model components) to the fully saturated 

180 count model that includes only the intercept in the zero component indicated that parasite count 

181 data were zero-inflated (i.e., an excess frequency of zeros in the dataset; ΔAIC = 74.6). 

182 Therefore zero-inflated negative binomial models were used to explore the effects of covariates 

183 on parasite abundance and the probability of a false zero, or the absence of parasites due to 

184 design, survey, or observation error (Zuur et al. 2012). The covariates included river system 

185 (James, York, Rappahannock, Potomac), season (created by assigning the date of capture into the 

186 four seasons based on the solstices and equinoxes of that year), SDI, and TL. Multiple model 

187 parameterizations were considered that reflected different combinations of covariates for the 

188 count and false zero model components. The dispersion parameter ( , which 𝑑 = ∑ 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙2

𝑑𝑓(𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙))

189 indicates overdispersion when , and the Pearson residual versus fitted value plots were used 𝑑 > 1

190 to evaluate goodness of fit of the models. Partial predictions from the most empirically supported 

191 model were generated using marginal means (Searle et al. 1980). 

192

193 SDI

194 The swim bladder degenerative index (SDI) is an ordered categorical response variable, 

195 requiring a specific regression framework to capture the sequential nature of the data. The 

196 ordinal logistic regression (or cumulative logit model) meets this requirement by modelling the 

197 probability of an eel having a certain level of swimbladder damage (i.e., SDI score) or lower 

198 against all higher levels (Agresti 2010; Hedeker 2003; McCullagh 1980) such that:

199                                        (1)𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌𝑖𝑗 ≤ 𝑐)) = 𝜃𝑐 ― (𝒙𝑡
𝑖𝑗𝜷 + 𝒖𝑡

𝑖𝑗𝜶𝑐 +𝑣𝑖)
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200 The cumulative  represents the cumulative probability of the th eel from the th 𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌𝑖𝑗 ≤ 𝑐)) 𝑗 𝑖

201 catch having a th level of swimbladder damage. The parameter  represents strictly increasing 𝑐 𝜃𝑐

202 model thresholds . The covariate vector , which includes the intercept, follows (1, …, 𝐶 ― 1) 𝒙𝑖𝑗

203 the proportional odds assumption such that there is only one vector of regression parameters  𝜷

204 for each covariate. Covariate vector  follows partial proportional odds such that there is a 𝒖𝑖𝑗

205 different vector of regression parameters  for every level of  for each covariate (Agresti 2010; 𝜶𝑐 𝑐

206 Hedeker 2003; McCullagh 1980). The parameter  is the random effect for catch  distributed 𝑣𝑖 𝑖

207 . Odds ratios  are obtained through , and indicate the odds ratio of a 𝑁(0,𝜎2
𝑣) (𝑌 ≥ 𝑗) exp (𝜷)

208 swimbladder having a damage level  or higher for a given level of a covariate (Agresti 2010; 𝑐

209 Hedeker 2003; McCullagh 1980). 

210 The proportional odds assumption (or parallel regression assumption), states that the odds 

211 ratios of the different levels of a covariate are equal across all thresholds of swimbladder damage 

212 levels, necessitating only one  coefficient. For example, for a given covariate (e.g. season), the 𝜷

213 ratio of the odds of having a certain swimbladder damage level in one season (e.g. spring) to the 

214 odds of having the same swimbladder condition in another season (e.g. winter) are equal across 

215 all thresholds of swimbladder damage levels. This does not mean that the odds of swimbladder 

216 damage within one level of a covariate are equal, but instead that the odds ratios of two levels of 

217 a covariate are equal (i.e. proportional odds). This assumption can be relaxed by utilizing partial 

218 proportional odds, which allows coefficient to vary with thresholds of SDI scores and 𝜶𝑐 

219 therefore not have equal odds ratios between levels of a covariate. 

220 This approach was used to explore the effects of covariates river system, TL, season, 

221 parasite abundance, and catch ID (random effect) on the odds of having attained greater than or 

222 equal to the  level of swimbladder damage. Due to low sample size of higher parasite 𝑐𝑡ℎ
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223 intensities, a plus group was defined such that intensities ranged from zero to 10+. To aid 

224 convergence and model interpretation, SDI scores were condensed into three ordered levels (low: 

225 0-1, moderate: 2-3, severe: 4-6, such that  = 0, 1, 2). The proportional odds assumption was 𝑐

226 evaluated by fitting multiple models with and without covariates as partial proportional odds, and 

227 AIC was used for model selection. Overall goodness of fit was evaluated using the condition 

228 number of the Hessian, for which values larger than 106 indicate that the model may be ill 

229 defined (Christensen 2015). Partial predictions from the model with the most empirical support 

230 were generated using marginal means (Searle et al. 1980). 

231

232 Epidemiology

233 To estimate the probability that an uninfected eel becomes infected, termed force-of-

234 infection (FOI), and evaluate the potential presence of infection-associated mortality, we applied 

235 a three-state irreversible disease model (see Heisey et al. 2006 for full details). The model is 

236 designed to provide estimates of key epidemiological parameters from cross-sectional (i.e. data 

237 representing multiples ages or cohorts) from binary prevalence-at-age data (i.e. either disease 

238 positive or disease negative at a given age).  The model assumes no vertical transmission (i.e., 

239 transmission from mother to offspring) or recovery to a state of full health. Force-of-infection 

240 can be either age-invariant or age-dependent, and the Weibull, Pareto, Gompertz, and log-logistic 

241 hazard functions were evaluated to identify the appropriate functional shape of the FOI curve 

242 (Heisey et al. 2006). The model also allows for estimation of an additive disease-associated 

243 mortality parameter that represents the additional mortality rate experienced by disease-positive 

244 individuals relative to the background mortality rate of disease-negative individuals. 
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245 The effects of covariates month, season, and river system (all categorical) on force-of-

246 infection were investigated using log-linear models such that: 

247                                                                                                               (2)λ(𝑡) = 𝜆0(𝑡)𝑒𝑋𝛽. 

248 The age-dependent FOI, denoted , is modeled as the baseline FOI,  adjusted by the effects λ(𝑡) 𝜆0

249 of covariates included in the design matrix X and the associated vector of parameters β (Heisey et 

250 al. 2006). The covariate month was redefined to represent two-month time periods (six levels) 

251 starting with January/February. Due to low sample size of older eels, a plus group was defined so 

252 that ages ranged from 1 to 12+. Disease-positive eels were those that had a swimbladder with an 

253 SDI score > 3. Because A. crassus can die within the swimbladder and degrade or be expelled 

254 through the pneumatic duct, prevalence does not meet the no-recovery assumption of the force of 

255 infection model (i.e., damage to the swimbladder has occurred, but an absence of parasites does 

256 not accurately capture the damage). As such, force-of-infection modelling was not conducted on 

257 infection prevalence data. 

258 All statistical analyses were performed using the R software package (R Core Team 

259 2014). The ‘pscl’ package was used for fitting zero-inflated GLMs (Zeileis et al. 2008) and the 

260 ‘ordinal’ package (Christensen 2015) was used for fitting ordinal logistic regression models. 

261 Results are presented as the mean or estimate ± standard error.

262

263

264 RESULTS

265 Anguillicoloides crassus infection and disease in glass eels

266 A total of 1480 glass eels were collected from all six sites ranging in total length from 47.3 to 

267 77.5 mm (mean: 57.6 mm ± 0.103). Adult and larval nematode counts in glass eels were 
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268 combined and yielded an overall infection prevalence of 3.2%, mean nematode abundance per 

269 eel of 0.047 ± 0.009 (range: 0-10), and mean infection intensity of 1.46 ± 0.195. Only glass eels 

270 collected in the Potomac and Rappahannock rivers were infected (Table 1). Glass eels had higher 

271 infection levels of the larval stage of A. crassus (prevalence: 2.5%, mean abundance: 0.039 ± 

272 0.009, mean intensity: 1.57 ± 0.25, range: 0-10) compared to the adult stage (prevalence: 0.8%, 

273 mean abundance: 0.008 ± 0.002, mean intensity: 1 ± 0, range: 0-1). The probability of infection 

274 by larval and adult nematodes combined increased with the length of glass eels (Figure 2). The 

275 TL with a 0.5 probability of being infected was 78.3 ± 2.8 mm. Furthermore, only the more 

276 advanced pigment stages of glass eels were found to be infected with larval and adult A. crassus, 

277 and only the highest pigment stages of 5 and 6 showed any swimbladder damage. Overall, 

278 minimal swimbladder damage was found with only seven glass eels having scores greater than 0 

279 (mean SDI: 1.14 ± 0.143). 

280

281 A. crassus infection and disease in elver and yellow eels

282 Across all six sampling sites, a total of 814 elvers were collected and total length ranged 

283 from 49.0 to 238.0 mm (mean: 113.8 mm ± 1.02). Adult nematode prevalence was 59.2%, mean 

284 abundance per eel was 1.51 ± 0.061, mean intensity per infected eel was 2.44 ± 0.072, and 

285 average SDI was 1.62 ± 0.055. When summarized by river system, James River elvers showed 

286 the highest prevalence (66.7%), average abundance (1.83 ± 0.13), mean intensity (2.73 ± 0.13), 

287 and average SDI (1.82 ± 0.11); however the difference in mean infection and disease levels 

288 between sites was small (Table 1). There was substantial variation between individual elvers 

289 such that infection intensity ranged from 0 to 10 nematodes and the full range of SDI scores (0-

290 6) was observed.
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291 A total of 973 yellow eels were collected across all four river systems and all three 

292 surveys. Total length of these individuals ranged from 60.0 to 700.0 mm (mean: 285.9 mm ± 

293 3.71). Adult nematode prevalence was 46.2%, mean abundance per eel was 1.35 ± 0.079, mean 

294 intensity per infected eel was 2.92 ± 0.136, and average SDI was 2.44 ± 0.055. Yellow eels from 

295 the Potomac River showed the highest prevalence (55.2%), whereas those from the 

296 Rappahannock River exhibited the highest mean abundance (1.53 ± 0.13) and mean intensity 

297 (3.09 ± 0.22).  Those from the James River displayed the highest average SDI (2.3 ± 0.08), 

298 although mean differences between sites was again small (Table 1). As with elvers, there was 

299 substantial variation among individuals in infection intensity and disease, such that infection 

300 intensity in yellow eels ranged from 0 to 28 nematodes and the full range of SDI scores (0-6) was 

301 observed. 

302

303 Parasite abundance 

304 The full zero-inflated negative binomial with river system, season, TL, and SDI as 

305 covariates for both the zero-inflated and count components of the model received the most 

306 empirical support (i.e., lowest AIC score; Table S1), had a dispersion parameter value close to 

307 one (1.16), and the Pearson residual versus fitted value plot showed this model fit the data well. 

308 This model was closely followed (ΔAIC <2, dispersion = 1.15) by a model without SDI in the 

309 zero-inflated component. Due to the importance of SDI in the analysis and the lower AIC, the 

310 full model was selected for inference. 

311 When comparing parasite abundance (Table 2) using the count model, the estimated 

312 effect for the Potomac River indicated lower mean parasite abundance relative to the James 

313 River (-0.452 ± 0.112), whereas the estimated effects of the Rappahannock and York Rivers also 
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314 indicated lower mean parasite, though much smaller in magnitude (-0.135 ± 0.103 and -0.015 ± 

315 0.103 respectively, Figure 3). Regarding season, the estimated effects of spring and summer 

316 indicated similar higher mean parasite abundances relative to fall (0.294 ± 0.130 and 0.224 ± 

317 0.138 respectively), whereas winter showed a lower mean parasite abundance (-0.149 ± 0.316, 

318 Figure 3). The estimated effect of TL indicated a positive relationship to parasite abundance 

319 (1.37x10-3 ± 4.42x10-4). However, due to zero-inflation, the relationship between TL and 

320 predicted parasite count was dome-shaped; the exception being both the Potomac River across 

321 all seasons and winter across all river systems where the relationship was continuously 

322 increasing due to very low zero-inflation (Figure 3). For SDI, parasite abundance was higher for 

323 all scores compared to the baseline (SDI 1: 0.279 ± 0.124, SDI 2: 0.512 ±0.116, SDI 3: 0.295 ± 

324 0.131, SDI 4: 0.502 ± 0.156, SDI 5: 0.387 ± 0.194, SDI 6: 0.500 ± 0.238, Figure 3).  

325

326 Swimbladder condition

327 The ordinal logistic regression model with the most empirical support included TL as a 

328 proportional odds covariate, season and parasite abundance as partial proportional odds 

329 covariates, and catch ID as a random effect (Tables 3 and S2). Inclusion of the random factor 

330 resulted in a significant drop in AIC (ΔAIC = 128.7), despite only a few eel catches appearing to 

331 drive the effect (Figure S1), and therefore it was selected for inference. The condition number of 

332 the Hessian for the selected model was 1.3 x 107, which is slightly above the recommended value 

333 of 106. Dropping season from the model resulted in a lower Hessian value of 6.5 x 106, but raised 

334 the AIC (ΔAIC = 8). The results for the other covariates were unchanged between the two 

335 models, so season was ultimately included in the final model. 
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336 This model indicated that increasing TL was associated with an increase in the odds of 

337 having a more damaged swimbladder (0.004 ± 0.001, Figure 4). As such, the longer an eel, the 

338 more likely it has a more damaged swimbladder. Also, the overall trend between parasite 

339 abundance and swimbladder damage was a positive relationship. The parasite abundance 

340 coefficients were negative (low versus moderate/severe condition: -0.2 ± 0.04 and low/moderate 

341 versus severe condition: -0.12 ± 0.04) yet, when added to the positive model intercepts (low 

342 versus moderate/severe condition: 0.39 ± 0.29 and low/moderate versus severe condition: 3.15 ± 

343 0.31), the sum of the log odds was still a positive value. Therefore, increasing parasite abundance 

344 resulted in an increased probability of swimbladder damage, but this increased probability was 

345 reduced by the underlying negative relationship (Figure 4). The effect of season was minimal, 

346 with only the estimated effect of having a severely damaged swimbladder in the summer relative 

347 to fall indicating a decreased odds (-0.8 ± 0.29, Figure 4).. The odds among the three 

348 swimbladder conditions were not found to differ between the other seasons and fall (i.e. 

349 estimates ± standard error overlapped zero, Figure 4). Overall, eels had a higher predicted 

350 probability of having a moderately damaged swimbladder (0.566 ± 0.063) compared to a low 

351 (0.310 ± 0.042) or severely (0.124 ± 0.051) damaged swimbladder. 

352

353 Force of infection and disease associated mortality

354 Sixty-four elvers and 661 yellow eels were included in the force of infection analysis, 

355 ranging in age from 1 to 16 years (age range of 1 to 12+ used in analysis due to small sample 

356 size of older individuals). Observed prevalence of swimbladder damage increased steeply from 

357 age 1 to 2 and then slowed to a slight increase with age, whereas observed prevalence of A. 
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358 crassus infection was highest in the younger and older eels but lower in the middle ages (Figure 

359 5). 

360 Age-dependent force-of-infection models received more support than age-invariant 

361 models when fitted to prevalence of swimbladder damage data (Table 4). The model with the 

362 most empirical support was the log-logistic with month pairs and the mortality term, though 

363 several other models were within three AIC units (Table 4). Across hazard models parameterized 

364 with the same set of covariates, inclusion of the mortality term lowered the AIC for all except for 

365 the Gompertz models (Table 4). Additionally, the combination of month pairs and the morality 

366 term resulted in the lowest AIC value within each set of hazard models, excluding the Gompertz 

367 hazard models (Table 4). The unit hazard ratios (i.e., proportional difference in force of 

368 infection) for month pairs relative to the baseline of November/December were 

369 January/February: 0.026, March/April: -0.793, May/June: -0.294, July/August: -0.430, and 

370 September/October: -0.486. Force of infection peaked at age 2 and then decreased with 

371 subsequent ages (Figure 6). The disease-associated mortality term was estimated as 0.277 (95% 

372 CI: 0.0845-0.507) and the annual survival ratio of a diseased eel relative to a non-diseased eel is 

373 e-(-0.277) (Heisey et al. 2006) or 0.76 (95% CI: 0.602-0.919). 

374 Other cutoffs of swimbladder damage level considered indicative of infection (i.e. SDI > 

375 1, 2, 4, 5, or 6) were explored. Similar results were found in these analyses such that the 

376 mortality term was included in either the model with the most empirical support or in models 

377 within 2 AIC units of the selected model. Additionally, month was usually (4 out of 6 cases) a 

378 covariate in the model with the most empirical support. Likewise, force of infection peaked at 

379 age 2 in almost all cases (Figure S3).

380
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381

382 DISCUSSION

383 Our study indicates that A. crassus infection and resultant swimbladder pathology vary 

384 across host developmental stages and are influenced by environmental factors experienced by 

385 American eels, which may ultimately result in disease-associated mortality. Infection 

386 prevalences of over 50% were found in elvers and yellow eels, compared to only 2.5% in glass 

387 eels. In general, similar patterns were observed in several previous studies of A. crassus in the 

388 Chesapeake Bay region (Barse and Secor 1999; Barse et al. 2001; Fenske et al. 2010). Low 

389 infection prevalence in glass eels, also observed by Hein et al. (2015) in South Carolina, are 

390 potentially due to less time in the estuary and therefore less exposure to A. crassus, given that 

391 eels first come in contact with the parasite in coastal waters (Van Banning and Haenen 1990). 

392 This conclusion is also supported by finding mostly larval stage nematodes in glass eels in our 

393 study, although Hein et al. (2015) found only adult nematodes. This difference could be due to 

394 sampling location—glass eels in our study were caught in more brackish downstream sites (with 

395 the exception of our Potomac sites) where they were most likely first exposed to A. crassus, and 

396 eels collected in the South Carolina study were caught further up-river allowing more time for 

397 infection by larval A. crassus and develop into adults (Hein et al. 2015). Our analyses also 

398 indicated that season, size, and age differences in susceptibility, transmission, and mortality 

399 could be drivers of observed in variation of infection and disease for elver and yellow eels.  

400 Season appeared to be a minor source of variation in parasite abundance and 

401 swimbladder damage for elver and yellow eels in our study. Parasite abundance was higher in 

402 spring and lower during winter, whereas severe swimbladder damage had the highest probability 

403 in summer and lowest in winter, though this effect was weak. These seasonal dynamics may be 
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404 driven by eel behavior and the abundance of A. crassus in the environment. For example, eels are 

405 believed to be dormant in the cooler winter months (Kennedy and Fitch 1990), but as the water 

406 warms in spring, they become active and commence feeding, which likely increases their 

407 exposure to A. crassus through consumption of intermediate and paratenic hosts. Additionally, at 

408 lower temperatures, the reproductive cycle of the parasite slows (Kim et al. 1989; Nagasawa et 

409 al. 1994; Knopf et al. 1998), which may reduce parasite abundance and swimbladder damage in 

410 the colder months. Seasonal differences could therefore indicate the existence of a lag between 

411 acquiring parasites in the spring and accumulating damage from these parasites in the summer, 

412 although future research is needed to explore the timing of infection and how this relates to 

413 swimbladder damage.  

414 For both parasite abundance and swimbladder damage, TL had a positive relationship. By 

415 including zero-inflation in our analysis of parasite abundance, we were able to reveal that the 

416 highest parasite abundances occur around 300 mm TL relatively consistently across seasons, 

417 river systems, and swimbladder conditions. The mechanisms behind this relationship are 

418 unknown, but it is likely that as eels get larger, they consume more prey and are more exposed to 

419 A. crassus. Larger eels also have bigger swimbladders, which may provide more habitat for the 

420 parasite. It is then possible that after eels reach a certain size, various aspects of parasite and 

421 swimbladder damage accumulation drive prevalence downwards, possibly through disease 

422 associated mortality as shown in the force of infection model. Evidence of such confounding 

423 effects was supported by our finding that swimbladder damage was positively correlated with eel 

424 length, but weakly correlated with parasite abundance.   

425 River system was also found to be a potential source of variation in parasite abundance, 

426 but not swimbladder damage. In particular, the Potomac River had overall lower parasite 
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427 abundance compared to the other river systems. These variations in infection, transmission, and 

428 disease by season, size, and site observed in our study could be explained by a variety of 

429 environmental and ecological factors (Hein et al. 2014; Moser et al. 2001; Fenske et al. 2010; 

430 Hein et al. 2015; Morrison and Secor 2003; Machut and Limburg 2008; Aieta and Oliveira 

431 2009). For example, higher salinity has been shown to have a negative effect on A. crassus 

432 infection (Kirk et al. 2000; Lefebvre and Crivelli 2012), but we could not investigate this 

433 covariate because we did not measure salinity in this study. Additionally, different locations and 

434 seasons could have different availabilities of A. crassus or intermediate hosts and could vary 

435 with other factors such as temperature, which could impact A. crassus transmission and infection 

436 levels in eels (De Charleroy et al. 1989; Kennedy and Fitch 1990; Molnar et al. 1991; Molnar 

437 1993). These and other environmental parameters warrant further investigation.

438 Parasite abundance and swimbladder damage are two metrics useful in characterizing A. 

439 crassus infection, although we found that they are weakly correlated; a higher parasite 

440 abundance may not directly correlate to more swimbladder damage. Although the estimated 

441 mean parasite abundance was highest for the highest SDI score of 6 and lowest for the lowest 

442 SDI score of 0, intermediate values of the metrics did not increase directly linearly. Additionally, 

443 at higher parasite abundances, the probabilities of having a severely damaged swimbladder 

444 versus a mildly damaged swimbladder were almost indistinguishable. Yet moderate damage had 

445 an overall higher probability across the range of parasite abundances. A nonlinear relationship 

446 was also found by several studies on European eels (Lefebvre et al. 2002; Lefebvre et al. 2013), 

447 but is not well documented for American eels. 

448 The nonlinear relationship between parasite count and swimbladder damage may be 

449 caused by various aspects of the complex relationship between A. crassus and American eels. 
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450 Nematodes can die within the swimbladder and degrade or be cleared out, but leave behind 

451 damaged tissue. Also, there may be a lag between nematode presence and damage accumulation 

452 such that multiple infections may occur before damage accrues (Van Banning and Haenen 1990; 

453 Molnar et al 1993; Wurtz and Tarachewski 2000). Additionally, density dependence among A. 

454 crassus exists such that more adult nematodes within the lumen can arrest further movement of 

455 larval nematodes into the lumen (Ashworth and Kennedy 1999). Furthermore, as a swimbladder 

456 becomes more damaged, it becomes a less suitable habitat for nematodes (Van Banning and 

457 Haenen 1990; Molnar et al. 1993). Therefore, a swimbladder can be in poor condition but it may 

458 have no nematodes within it or it can appear healthy and harbor many parasites. Lefevbre et al. 

459 (2002, 2013) suggested that the health state of the swimbladder may be a better long-term 

460 indicator of overall infection history than number of living nematodes present at a given time. 

461 Nematode count represents parasite pressure at a single point in time, whereas swimbladder 

462 damage shows past and present damage, thereby potentially giving a more comprehensive 

463 indication of infection severity.

464 The complexities in the dynamics of disease also likely play a role in the transmission, or 

465 force of infection, of the parasite. The peak of FOI at age-2 indicated that most eels first become 

466 infected shortly after entering the estuary. However, it is important to note that in this study FOI 

467 was modeled using swimbladder damage rather than prevalence of the nematode, and how long 

468 it takes infection to result in detectable disease is unknown. If, as our previous analyses indicate, 

469 there is a lag between infection and swimbladder damage, our FOI results could also suggest that 

470 eels acquire the majority of nematodes in the spring, which then results in peak visible 

471 swimbladder damage in the summer months. This is consistent with our findings that parasite 

472 abundance is highest in the spring and severe swimbladder damage is highest in the summer.  
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473 Eels likely do not accumulate more damage in the spring because they are not becoming re-

474 infected in the winter due to dormancy and lack of feeding (Kennedy and Fitch 1990) as 

475 indicated by the lower FOI in March/April. 

476 Importantly, the FOI model indicated that there is lower annual survival of eels with 

477 moderate to severe swimbladder damage compared to those with very low or no damage. This 

478 finding is supported by the overall low probability of eels having a severely damaged 

479 swimbladder; if severe damage increases the likelihood of mortality, then there would a lower 

480 chance of catching eels with such badly damaged swimbladders. Previous studies have shown 

481 that higher A. crassus infection prevalence and intensity affect the ability of eels to swim, 

482 tolerate hypoxic conditions or high temperatures, avoid hydraulic dams, and avoid predators and 

483 fishing pressure (Molnar et al. 1991; Molnar 1993; Gollock et al. 2005; Lefebvre and Crivelli 

484 2007), creating potential sources of elevated mortality. Because the FOI model is not able to 

485 differentiate between mortality and recovery, more research is needed to determine if recovery 

486 could also be occurring. The ability of the swimbladder to recover from infection is speculated 

487 but not definitely shown to occur (Molnàr et al. 1994; Szèkely et al. 2005; Lefebvre et al. 2012). 

488 It is possible that due to the widespread availability of A. crassus intermediate and paratenic 

489 hosts and the lack of acquired immunity (Knopf 2006), eels may be constantly exposed to the 

490 nematode and never have the opportunity or ability to fully recover, although partial healing of 

491 the swimbladder could be possible. Clearance of individual nematodes from the swimbladder 

492 through either decay or forced exit through the pneumatic duct would result in fewer nematodes 

493 within the swimbladder and would represent recovery by the definition of the FOI model if 

494 disease prevalence is defined as nematode prevalence. Yet, the relationship between parasite load 

495 and swimbladder damage is complex and fewer parasites does not necessarily mean a less 
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496 damaged organ. For these reasons, A. crassus infection prevalence was determined to not be a 

497 suitable parameter for the FOI model.

498 In conclusion, parasite load and swimbladder damage, although related, illustrate 

499 different components of this complex host parasite relationship. Parasite abundance shows 

500 parasite pressure at a given point in time, whereas swimbladder damage is integrative and likely 

501 represents the accumulation of disease and its negative impacts over time. Additionally, we have 

502 shown that A. crassus infection may contribute to American eel mortality and therefore may 

503 require consideration in future American eel stock assessments. A better understanding of the 

504 timeline of the lifecycle of A. crassus would make it possible to determine if fluctuations in 

505 parasite abundance and swimbladder damage are due to parasite availability or mortality. These 

506 fluctuations could also be better informed with information regarding the lag between nematode 

507 infection and swimbladder damage, in addition to the ability for eels to recover from infection. 

508
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840 TABLES
841
842 Table 1. Prevalence (%), mean abundance (SE; range), and mean intensity (SE) of 
843 Anguillicoloides crassus, and swimbladder degenerative index (SDI; SE) in American eels by 
844 river system and eel stage. 
845

Location Stage N Prevalence 
(%) Abundance Intensity SDI

Glass 116 5.2 0.05 
(0.02; 0-1)

1 
(0)

0.02 
(0.01)

Elver 269 59.6 1.26 
(0.09; 0-10)

2.11 
(0.11)

1.81 
(0.1)

Yellow 29 55.2 1.21 
(0.24; 0-4)

2.19 
(0.23)

1.97 
(0.38)

Potomac

Total 414 44 0.91 
(0.07; 0-10)

2.08 
(0.1)

1.28 
(0.08)

Glass 249 2.4 0.02 
(0.01; 0-1)

1 
(0)

0.01 
(0.01)

Elver 114 53.3 1.13 
(0.15; 0-9)

2.13 
(0.2)

1.1 
(0.17)

Yellow 379 49.7 1.53 
(0.13; 0-21)

3.09 
(0.22)

1.03 
(0.15)

Rappahannock

Total 742 34.2 0.96 
(0.08; 0-21)

2.82 
(0.17)

1.43 
(0.06)

Glass 744 0 0 
(0)

0
 (0)

0.002 
(0.002)

Elver 230 64.8 1.72 
(0.13; 0-10)

2.66 
(0.15)

1.52 
(0.1)

Yellow 153 45.1 1.23 
(0.23; 0-28)

2.77 
(0.45)

2.85 
(0.15)

York

Total 1127 18.6 0.5 
(0.05; 0-28)

2.7 
(0.18)

0.67 
(0.04)

Glass 371 0 0 
(0)

0 
(0)

0.01 
(0.003)

Elver 201 66.7 1.83 
(0.13; 0-7)

2.73 
(0.13)

1.82 
(0.11)

Yellow 412 43 1.24 
(0.11; 0-18)

2.88 
(0.19)

2.3 
(0.08)

James

Total 984 50.6 1.43 
(0.08; 0-18)

2.82 
(0.12)

1.32 
(0.05)
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846
847 Table 2. Model components and estimates from the most empirically supported model describing 
848 the effects of covariates on count of Anguillicoloides crassus in American eels. 
849

Model 
Component Parameter Level Estimate Standard Error

James Baseline N/A
Potomac -16.8 0.002
Rappahannock -0.423  0.295

River system

York -0.357  0.288

Fall Baseline N/A
Winter -12.5  225
Spring 0.724  0.358

Season

Summer 0.746  0.375

Total length 0.0064  0.001

0 Baseline N/A
1 -1.36 0.470
2 -0.656  0.620
3 -0.758  0.359
4 -1.19   0.503
5 -0.402  0.464

Zero-inflated

SDI

6 -1.48  1.11

James Baseline N/A
Potomac -0.452  0.112
Rappahannock -0.135  0.103

River system

York -0.015  0.103

Fall Baseline N/A
Winter -0.149  0.316
Spring 0.294  0.130

Season

Summer 0.224  0.138

Total length 0.0014 4 x 10-4

0 Baseline N/A
1 0.279  0.124
2 0.512  0.116
3 0.295  0.131
4 0.502  0.156
5 0.387  0.194

Count (negative 
binomial)

SDI

6 0.500  0.238
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850
851 Table 3. Model components and estimates from the most empirically supported model describing 
852 the effects of covariates on swimbladder damage (low = 0, moderate = 1, severe = 2) from 
853 Anguillicoloides crassus in American eels. The “|” symbol in SDI Threshold indicates the 
854 threshold between swimbladder damage levels of the swimbladder degenerative index (SDI) for 
855 which the estimate of partial proportional odds applies for a given parameter. For example, 0|1 
856 indicates the probability an eel has an SDI of 0 versus all higher scores. Random effect estimate 
857 is the variance ± standard deviation. 
858

Parameter type Parameter SDI 
Threshold Estimate Standard 

Error
Intercepts 0|1 0.387 0.288

1|2 3.15  0.310

Proportional odds Total Length 0.0042 0.001

Partial proportional odds Season 0|1 fall Baseline N/A
1|2 fall Baseline N/A
0|1 winter -0.425 0.911
1|2 winter 0.641 0.971
0|1 spring 0.204 0.251
1|2 spring -0.049  0.267
0|1 summer 0.091 0.282
1|2 summer -0.800 0.294

Parasite count 0|1 -0.201 0.036
1|2 -0.117 0.036

Random effect Catch ID 1.423  1.197
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
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876
877 Table 4. Assessment of force-of-infection model fits for presence of swimbladder damage (SDI > 
878 2) in American eels based on Akaike’s information criterion. Months were grouped in to pairs 
879 starting with January/February (i.e. month pairs). Catch sites were grouped by river system 
880 (Potomac, Rappahannock, York, James Rivers). μ is the disease associated mortality term.
881

ΔAIC

Infection hazard 
model Null μ Season Season, 

μ System System, 
μ

constant 40.6 7 35.1 11 40.3 6.5

Weibull 13.8 9 18.6 12.8 12 8.4

Pareto 9.2 7.5 13.9 11.8 8.5 7.9

Gompertz 5.3 7 10.4 11.6 5.5 7.5

log-logistic 11.2 3 15.7 6.4 10.4 5.5

882
ΔAIC

Infection hazard 
model

Season, 
System

Season, 
System, μ

Month 
pairs

Month 
pairs,  μ

Month pairs, 
System

Month pairs, 
System, μ

constant 35.1 10.8 27.8 3.4 31.8 6.3

Weibull 17 12.5 10.2 5.3 11.9 8.2

Pareto 13.4 12.4 6.1 4.7 8.5 7.9

Gompertz 12.5 10.7 3.1 4.7 5.9 7.9

log-logistic 15.2 9.4 6.3 0 9.3 4.8

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
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898
899 FIGURES

900

901

902 Figure 1. Map of collection sites for glass and elver American eels from lower Chesapeake Bay, 

903 USA. Potomac River: (1) Gardy’s Millpond, (2) Clark’s Millpond; Rappahannock River: (3) 

904 Kamp’s Millpond; York River: (4) Bracken’s Pond, (5) Wormley Pond; James River: (6) 

905 Wareham’s Pond. Map data from Arcinfo produced by Environmental Systems Research 

906 Institute (ESRI, 1987).

907
908
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909
910 Figure 2. Probability of infection with larval and adult Anguillicoloides crassus by total length 
911 (mm) for glass eels. Black line represents binomial model results with 95% CI (grey shaded 
912 area). Tick marks are individual eel observations of infected (top of plot) or uninfected (bottom 
913 of plot).
914
915
916
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917
918 Figure 3. Predicted Anguillicoloides crassus parasite count for elver and yellow American eels 
919 for season of capture, system, total length (mm), and swimbladder degenerative index (SDI) total 
920 score. Results are from a zero-inflated negative binomial model. Individual lines represent SDI 
921 scores: 0 =                   , 1 =                     , 2 =                   , 3 =                     , 4 =                  , 5 = 
922                  , 6 =                   .
923
924
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928
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932
933 Figure 4. Predicted probability of elver and yellow eels being in a swimbladder condition 
934 category (low = SDI 0-1,                   ; moderate = SDI 2-3,                   ; severe = SDI 4-6,     
935                ) by season of capture, total length (left panel), and A. crassus parasite count (right 
936 panel). Total length is held constant at its mean in right panel and parasite count is held 
937 constant at its mean in the left panel. Results are from the ordinal logistic regression with 
938 catch ID as a random effect.
939
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943
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946
947
948 Figure 5. Prevalence of swimbladder damage (SDI>3; open circles with solid line) and A. 
949 crassus (closed circle with dashed line) prevalence by age of elver and yellow American eels 
950 with confidence intervals. Numbers above x-axis indicate sample size in each age group. 
951 Points are slightly offset for clarity.
952
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967

968 Figure 6. Force-of-infection of swimbladder damage by age for elver and yellow American eels 
969 by month pairs from best fitting force-of-infection model (log-logistic, month pair, mortality). 

970
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