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Original Paper

Task demands dissociate the effects
of muscarinic M1 receptor blockade
and protein kinase C inhibition
on attentional performance in rats

Andrea M Robinson, David F Mangini and Joshua A Burk

Abstract
The cholinergic system is known to be necessary for normal attentional processing. However, the receptors and mechanisms mediating the effects of

acetylcholine on attention remain unclear. Previous work in our laboratory suggested that cholinergic muscarinic receptors are critical for maintaining

performance in an attention-demanding task in rats. We examined the role of the muscarinic M1 receptor and protein kinase C (PKC), which is activated

by the M1 receptor, in attention task performance. Rats were trained in an attention-demanding task requiring discrimination of brief (500, 100, 25 ms)

visual signals from trials with no signal presentation. The effects of muscarinic M1 receptor blockade were assessed by administering dicyclomine

(0–5.0 mg/kg). The effects of PKC inhibition were assessed by administering chelerythrine chloride (0–2.0 mg/kg). Dicyclomine decreased the accuracy

of detecting longer signals in this attention task, including when attentional demands were increased by flashing a houselight throughout the session.

Chelerythrine chloride decreased the accuracy of signal detection in the standard version of the task but not when the houselight was flashed

throughout the session. The present findings indicate that muscarinic M1 receptors are critical for maintaining performance when attentional demands

are increased, and that PKC activity may contribute to some aspects of attentional performance.
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Introduction

The cholinergic system is known to play a critical role in
attentional processing (Everitt and Robbins, 1997; Sarter

et al., 2005). Many experiments have examined, in tasks
designed to assess attention, the effects of drugs that act at
nicotinic receptors (Mirza and Stolerman, 1998; Rezvani et al.,
2002; Turchi et al., 1995), and several experiments have begun

to investigate the critical nicotinic receptor subtypes for main-
taining normal attention (Blondel et al., 2000; Grottick et al.,
2003; Hahn et al., 2003; Howe et al., 2010). Drugs that block

muscarinic receptors also disrupt attentional performance
(Mirza and Stolerman, 2000; Ruotsalainen et al., 2000) as
well as performance in other procedures that are thought to

be sensitive to changes in attentional processing, such as latent
inhibition (Barak and Weiner, 2007, 2009). In a two-lever sus-
tained attention task requiring discrimination of signals from
trials with no signal presentation, blockade of muscarinic

receptors with scopolamine has been shown to decrease accu-
racy, although whether the effects have been selective
decreases in accuracy of signal detection (Johnson and Burk,

2006; McQuail and Burk, 2006), selective decreases in accu-
racy on trials with no signal presentation (Rezvani et al., 2009)
or decreases in accuracy on both of these trial types (Bushnell

et al., 1997) has varied across experiments.

The effects of blocking muscarinic receptor subtypes on
measures of sustained attention have not been tested. The
effects of drugs selective for specific muscarinic receptor sub-

types have been tested on measures of memory, with the
muscarinic M1 and M2 receptors being most thoroughly exam-
ined. Muscarinic M1 receptors are predominantly located
post-synaptically (Levey et al., 1991), and blockade of these

receptors generally disrupts performance in measures of learn-
ing and memory (Aura et al., 1997; Bymaster et al., 1993;
Ferreira et al., 2003; Hagan et al., 1987). Moreover, intra-

striatal infusions of a selective muscarinic M1 receptor toxin
impair task switching (McCool et al., 2008). Finally, M1 recep-
tor knockout mice show impaired responding to a previously

rewarded visual cue (Gulledge et al., 2009). Muscarinic M2

receptors are primarily located presynaptically, acting as auto-
receptors to negatively modulate acetylcholine release
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(Levey et al., 1991). Muscarinic M2 receptor antagonists have
typically been associated with cognition enhancement
(Gulledge et al., 2009; Quirion et al., 1995). Thus, previously

observed attentional deficits induced by muscarinic receptor
antagonists (references above) are most likely associated with
muscarinic M1 receptors.

Recent experiments have begun to examine the contribu-

tions of second messenger pathways in attention. For exam-
ple, intra-prefrontal cortical infusions of a cAMP-dependent
protein kinase inhibitor disrupt accuracy in a five-choice serial

reaction time task (Paine et al., 2009). Muscarinic M1 receptors
act via the second messengers inositol triphosphate and diacyl-
glycerol, leading to activation of protein kinase C (PKC)

(Caulfield, 1993; Haas and Dokas, 1999). Chelerythrine chlo-
ride inhibits the translocation of cytosolic PKC to the mem-
brane and therefore can be used to study the effects of

decreasing PKC activity (Chao et al., 1998; Siomboing et al.,
2001). Chelerythrine chloride has been shown to impair learn-
ing acquisition and memory formation (Sacchetti and
Bielavska, 1998; Serrano et al., 1995) and to reverse memory

impairments associated with PKC overactivity, either induced
by a phorbol ester administration (Birnbaum et al., 2004) or
in aged rats (Brennan et al., 2009). There are no available

experiments in the literature that report the effects of manipu-
lating PKC activity on attentional performance. These exper-
iments are important for beginning to determine whether

alterations in attention contribute to memory-related effects
of PKC modulation.

The present experiments tested the effects of muscarinic M1

receptor blockade, induced by dicyclomine administration,

and PKC inhibition, induced by chelerythrine chloride admin-
istration, on attention task performance. Rats were trained in a
two-lever attention task that required discrimination of visual

signals from trials with no signal presentation. We hypothe-
sized that dicyclomine would decrease the accuracy of signal
detection without affecting accuracy on trials with no signal

presentation, similar to the effects reported following musca-
rinic receptor blockade with scopolamine that were previously
observed using similar conditions in our laboratory (Johnson

and Burk, 2006; McQuail and Burk, 2006). Animals were
tested in a ‘standard’ version of the task and with greater back-
ground noise to increase attentional demands. The experiment
examining the effects of chelerythrine chloride on attention

was more exploratory. Our goal was to test whether chelerythr-
ine chloride produced a selective deficit in task performance,
such as a decrease in signal detection, or whether there were

less specific patterns of impairment (for example, decreased
accuracy on all trial types).

Methods and materials

Subjects

Subjects included a total of 18 male Long-Evans rats (Charles
River Laboratories Inc., Wilmington, MA, USA), weighing
151–175 g when arriving at the laboratory. Animals were

housed individually in hanging wire cages in a vivarium
with a 14/10 h light/dark cycle (lights on 0600–2000). All
behavioral testing occurred between 0900 and 1200, for five

or six days each week. Rats were given ad libitum access to

standard rat chow, but were water restricted on testing days,
receiving water during task performance and for 30min
following testing sessions. Rats were given overnight water

access prior to days they were not trained, to maintain the
animals’ health throughout the experiment. The experimental
protocol was approved by the Institutional Animal Care and
Use Committee at the College of William and Mary.

Apparatus

Rats were trained in one of 12 chambers (Med Associates,
Inc., Georgia, VT). Each chamber was enclosed within a
sound-attenuating box. One side of the chamber contained

two retractable levers, a water port with a dipper to deliver
water (0.01mL) situated between the two levers, and a central
panel light located above the water port. A houselight was

located in the back of the chamber. Illumination levels for
these chambers have been previously reported (Burk, 2004).
The behavioral testing programs and data collection were
managed by a personal computer utilizing Med-PC version

IV software.

Behavioral training

Rats were trained in a sustained attention task developed by
Bushnell et al. (1994) and validated by McGaughy and Sarter

(1995). The houselight remained illuminated throughout all
training sessions. In the first stage of training, the levers were
extended throughout the session and the dipper was raised
following each lever press. To attempt to prevent a lever

bias, following five consecutive presses on a single lever, the
other lever had to be pressed to receive water access. After
reaching a criterion of 120 lever presses per session for three

sessions, rats were trained to discriminate between signals (1 s
illumination of the panel light) and nonsignals (no illumina-
tion of the panel light). After a signal or nonsignal, the levers

were extended into the chamber. For half the animals, follow-
ing a signal, a press on the left lever was considered a hit and
the dipper was raised to allow water access, while a press

on the right lever was considered incorrect, scored as a miss
and the rat received no water. After a nonsignal, a press on
the right lever was considered correct, scored as a correct
rejection and water access was given, while pressing the left

lever was scored as a false alarm and the dipper was not
raised. After a lever press or a failure to press a lever within
3 s after the levers were extended (scored as an omission) the

levers were retracted. The rules were reversed for the other
half of the rats (a right lever press was considered correct after
a signal and a left lever press was considered correct after a

nonsignal). The inter-trial interval (ITI) varied (12 6 3 s)
during training to prevent the rats from anticipating the
onset of the next trial. Incorrect responses were followed by
a correction trial that was identical to the previous trial. Three

consecutive incorrect responses triggered a forced trial where
only the correct lever was extended until the lever was pressed
or 90 s elapsed. When the three consecutive errors occurred

on signal trials, the panel light remained illuminated while the
lever was extended. Animals were trained in this task until
they reached a criterion of 70% hits and 70% correct rejec-

tions for three consecutive sessions. In the next level of
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training the signal duration was reduced and varied within
each session (500, 100, or 25ms). A session consisted of 162
trials with an ITI of 9 6 3 s. The signal duration and ITI were

decreased to place higher demands on attentional processing
(McGaughy and Sarter, 1995; Parasuraman et al., 1987).
Animals were trained in this version of the task to a criterion
of 70% hits following the 500ms signal and 70% correct

rejections for three consecutive sessions in order to move to
the drug administration phase of the experiment.

Preparation of dicyclomine and behavioral testing

Dicyclomine hydrochloride was dissolved in saline and

injected into the intraperitoneal cavity in a volume of
1.0mL/kg. The doses used were 0.0, 0.625, 1.25, 2.50 and
5.0mg/kg of dicyclomine. Typical dose ranges for dicyclo-

mine are at least 8.0mg/kg in experiments examining the
effects of this drug on learning and memory (Fornari et al.,
2000; Soares et al., 2006). We chose a lower dose range
because, in pilot studies, we observed that 10.0mg/kg resulted

in an almost complete failure to press a lever in the task. The
dicyclomine solution was heated for approximately 5min
until the solution was visibly dissolved.

Rats (n ¼ 10) received five sessions with two different task
conditions: the same task the animals had trained prior to
drug administration (the standard task) and the same task

with the houselight flashed as a distracter throughout the
session (1 s on/off). The order of the task manipulations and
drug administration was randomized for each rat. Rats
received each drug dose prior to the two task conditions,

for a total of 10 injections. Animals were tested in the atten-
tion task 15min after each injection. Between drug adminis-
tration days, rats returned to the standard task and were

required to meet a criterion of 70% hits at the 500ms signal
and 70% correct rejections before proceeding to the next drug
administration day.

Preparation of chelerythrine chloride and

behavioral testing

Chelerythrine chloride was administered (0.0, 1.0, and 2.0mg/
kg; ip) once the rats (n ¼ 8) had reached criterion for training

in the two-lever attention task. These doses are in the range
used during chronic administration studies assessing the ability
of PKC inhibition to attenuate stress-induced memory deficits

(Hains et al., 2009). Moreover, a higher dose of chelerythrine
chloride (4.0mg/kg) substantially increased the number of
omissions during pilot studies with this attention task.

Chelerythrine chloride was suspended in a saline solution
and placed on a vortex prior to injection. Each rat was
given an injection 10min prior to performing the two-lever
attention task. Rats were trained in the attention task for at

least 1 day between injection sessions. The order of drug
administration was randomized and animals received cheler-
ythrine chloride prior to the standard task and the same task

with the houselight flashing (1.0 s on/off) throughout the ses-
sion. Between these drug administration sessions, rats were
required to reach criterion (70% hits at the 500ms signal

and 70% correct rejections) in the standard attention task.

Behavioral measures and statistical analyses

The number of hits (h), misses (m), correct rejections (cr),
false alarms (fa), and omissions were recorded for each testing
session. The measures of accuracy for signal trials were the

relative hits (h/(hþm)) and for nonsignal trials were the rela-
tive correct rejections (cr/(crþfa)). The relative hits were ana-
lyzed using a repeated-measures analysis of variance

(ANOVA) with the factors of task (standard and flashing
houselight), signal duration and drug dose. The relative cor-
rect rejections were analyzed using a repeated-measures
ANOVA that included task and dose as factors. Omissions

were analyzed separately from measures of accuracy. All p-
values were corrected with the Huynh–Feldt procedure.
Significant ANOVAs were further assessed by comparing

vehicle administration sessions with performance following
each drug dose, using t-tests that were corrected with the
Bonferroni procedure. A level of a ¼ 0.05 was used to deter-

mine statistical significance.

Results

Effects of dicyclomine on attention task performance

One animal did not maintain stable performance and was not

included in any data analyses. Overall, dicyclomine adminis-
tration decreased accuracy on trials with the 500- and 100-ms
signals (Figure 1). This observation was tested with a task 3

dose 3 signal duration ANOVA for the relative hits. This

analysis yielded a main effect of signal duration, reflecting
higher levels of accuracy following longer signal durations
(F(2,16) ¼ 169.6, p< 0.05). More importantly, there was

also a significant main effect of dose (F(4,32) ¼ 3.095,
p< 0.05) and a significant dose 3 signal duration interaction
(F(8,64) ¼ 2.936, p< 0.05). The task 3 dose 3 signal dura-

tion interaction was not significant, thus the data were
combined from the standard and distracter sessions for sub-
sequent analyses of the significant dose 3 signal duration

interaction. The basis for the dose 3 signal duration interac-
tion was assessed by conducting one-way ANOVAs that
included the factor dose for each signal duration. These
ANOVAs yielded a main effect of dose for the 500-ms

(F(4,32) ¼ 3.456, p< 0.05) and 100-ms (F(4,32) ¼ 4.648,
p< 0.05) signals, but not for the 25-ms signal. For the 500-
ms signal, the 0.625mg/kg, 2.5mg/kg and 5.0mg/kg dicyclo-

mine doses all differed significantly compared with the vehicle
condition (all p< 0.05). For the 100-ms signal, the 2.5mg/kg
dicyclomine dose was significantly different compared with

vehicle (t(8) ¼ 3.096, p< 0.05), and the difference between
vehicle and 5.0mg/kg dicyclomine approached significance
but was not significant after the Bonferroni correction was
applied.

For correct rejections, there was a main effect of task,
reflecting a decrease in accuracy on nonsignal trials when
the distracter was presented (Standard task: 0.858 6 0.015;

Distracter task: 0.790 6 0.019). However, there was no effect
of dose nor was there a task 3 dose interaction for correct
rejections. For omissions, a task 3 dose ANOVA did

not yield any significant effects (Figure 1).

Robinson et al. 1145



Effects of chelerythrine chloride on attention

task performance

The data fromone rat were not included in any analyses because

that animal did not maintain consistent performance levels
throughout the experiment. Chelerythrine chloride administra-
tion decreased signal detection in the standard task but did not

affect performance when background noise was increased. A
task 3 dose 3 signal duration ANOVA yielded a significant
three-way task 3 dose 3 signal duration interaction (F(4,24)
¼ 3.90, p< 0.05). To examine the basis of this interaction, we

conducted separate dose 3 signal duration ANOVAs for the
standard and distracter testing sessions. For the standard task,
the dose 3 signal duration ANOVA yielded a main effect of

signal duration (F(2,14) ¼ 94.6, p< 0.05), reflecting decreased
relative hits during shorter signal durations, and of dose (F(2,14)
¼ 4.39, p< 0.05). Post hoc tests revealed that the relative hits fol-

lowing 2.0mg/kg chelerythrine chloride were significantly lower

compared with following vehicle administration (t(7) ¼ 2.02,

p< 0.05; Figure 2). For the distracter condition, the dose 3

signal durationANOVAdidnot yieldany statistically significant
effects of chelerythrine chloride on the relative hits (Figure 3).

Thus, chelerythrine chloride administration decreased signal
detection in the standard task, but the basis for the further inter-
actionwith signal duration (as part of the significant task3 dose

3 signal duration interaction) could not be determined. For cor-
rect rejections, there was a significant effect of task, reflecting
lower accuracy on nonsignal trials during the distracter
condition (Figures 2 and 3), but no main effect of dose or task

3 dose interaction. There were no statistically significant effects
of task or dose on omissions.

Discussion

The present experiment was designed to test the effects of

muscarinic M1 receptor blockade and PKC inhibition on

Figure 1. The figure depicts relative hits (A), relative correct rejections (B) and omissions per session (C) following each dicyclomine dose (0–5.0 mg/kg).

In (A) the bars denote the different signal durations (500, 100 and 25 ms). Dicyclomine produced a significant dose 3 signal duration that did not further

interact with task (p< 0.05; n¼ 9). Thus, the data shown here are combined from the standard and flashing houselight conditions. Compared with vehicle,

dicyclomine (0.625, 2.5 and 5.0 mg/kg) decreased the accuracy of detecting the 500-ms signal and at one dose (2.5 mg/kg) decreased the accuracy of

detecting the 100-ms signal. The asterisks denote dicyclomine doses that were significantly different compared with vehicle administration (p< 0.05).

There were no effects of dicyclomine on correct rejections or omissions.
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attention task performance. Dicyclomine-induced muscarinic
M1 receptor blockade decreased the accuracy of signal detec-

tion (relative hits) in the standard and distracter versions of
this sustained attention task. The lack of drug effects on non-
signal trial accuracy indicates that dicyclomine administration
did not disrupt the ability to respond based on the task rules.

There were no significant effects of any drug treatments on
omissions, although several of the higher drug doses pro-
duced trends for increases in omissions. The highest number

of omissions remained near an average of 20 per session,
which represents less than 13% of the total number of
trials. Thus, it seems unlikely that the drugs had large effects

on motivation or on the motoric abilities necessary for the
task. Finally, dicyclomine administration decreased detection
of the longer (500- and 100-ms) signals in this sustained
attention task. On 25-ms signal trials, the rats typically

responded (incorrectly) as if a nonsignal was presented by
pressing the miss/correct rejection lever. Thus, dicyclomine
administration appears to decrease signal detection, and this

effect is confined to trials that are most likely to be identified
by the animal as signals. Overall, this pattern of impairment is
similar to the deficits observed following widespread loss of

corticopetal cholinergic neurons (McGaughy and Sarter,

1998; McGaughy et al., 1996), suggesting that muscarinic
M1 receptors in multiple cortical regions may contribute to

attentional performance (Sarter et al., 2005). Loss of hippo-
campal cholinergic projections does not affect accuracy in the
standard version of this attention task (Sarter et al., 2002).
Thus, the effects of dicyclomine are more likely to be medi-

ated by the cortical muscarinic M1 receptors compared with
hippocampal muscarinic M1 receptors.

Chelerythrine chloride selectively decreased signal detec-

tion accuracy in the standard version of the attention task.
Accuracy on nonsignal trials and the number of omitted trials
were unaffected by chelerythrine chloride administration,

suggesting this drug produced a relatively selective effect on
task performance. Interestingly, a selective decrease in signal
detection in the present task is associated with pharmacolog-
ical or lesion manipulations that depress the functioning of

the cholinergic system (for example, McGaughy et al., 1996).
Other manipulations, such as exposure to amphetamine,
decrease the accuracy on nonsignal trials in this task

(Kondrad and Burk, 2004). Moreover, lesions of the dorsal
noradrenergic bundle do not affect performance in this two-
lever sustained attention task (McGaughy et al., 1997).

Thus, the selectivity of the effects of chelerythrine chloride

Figure 2. The figure depicts relative hits (A), relative correct rejections (B) and omissions per session (C) following each chelerythrine chloride dose

(0–2.0 mg/kg) in the standard task trained prior to drug administration. In (A) the bars depict the different signal durations (500, 100 and 25 ms). The

asterisk denotes a significant decrease in the relative hits following 2.0 mg/kg chelerythrine chloride compared with vehicle administration (p< 0.05;

n ¼ 7). There were no significant effects of chelerythrine chloride on correct rejections or omissions.
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administration suggests that it may be possible to associate

the actions of PKC on attentional processing required by the
standard task with specific neurotransmitter systems, and that
the interactions between PKC and the cholinergic system

represent a logical starting point.
Chelerythrine chloride administration did not differen-

tially affect group performance when background noise was
increased. The standard version of this task is thought to

require more bottom-up, signal-driven processing, whereas
increasing background noise is thought to activate top-
down cognitive modulation in response to attentional chal-

lenge (Sarter et al., 2005). The present findings suggest that
PKC may contribute to dissociable aspects of attentional
processing, as chelerythrine chloride administration decreased

the relative hits in the standard version of the task but not
when background noise was increased. Collectively, our find-
ings suggest that it is possible that PKC contributes to some
aspects of processing mediated by muscarinic M1 receptor,

namely, those aspects necessary for maintaining performance
in the standard task. Certainly, concurrent manipulations of
the muscarinic M1 receptor and PKC during the standard

task are needed to test this hypothesis. Previous studies
have shown correlations between firing rates of prefrontal
and posterior parietal cortical neurons and presentation of

a flashing houselight in this attention task (Broussard et al.,

2009; Gill et al., 2000). Moreover, lesions of cholinergic pro-

jections to these cortical regions can alter task performance
when distracters are presented, but do not affect performance
in the standard task (Broussard et al., 2009; Newman and

McGaughy, 2008). Infusions of dicyclomine into these dis-
crete cortical areas would help to identify whether muscarinic
M1 receptors in these regions contribute to the present effects
observed following systemic administration.

Several caveats need to be kept inmindwhen interpreting the
present results. First, although the M1 receptor antagonist
dicyclomine shows a much greater affinity for binding to

muscarinic M1 receptors compared with muscarinic M2 recep-
tors (Kunysz et al., 1988), thisdrughasbeen shown tobind toM3

receptors (Doods et al., 1987), which could contribute to the

signal detection deficits observed in the present experiment
following dicyclomine administration. This concern is some-
what tempered by the lower doses of dicyclomine used in the
present experiment compared with in other experiments assess-

ing learning and memory. Second, the possibility exists that
if acetylcholine is released and the muscarinic M1 receptor is
occupied by an antagonist, then a greater amount of acetylcho-

line binds to the muscarinic M2 receptors, leading to decreased
acetylcholine release which would be expected to decrease signal
detection in this attention task.Thus, the locationsofmuscarinic

M1andM2receptorsand their regulationofacetylcholine release

Figure 3. The figure depicts relative hits (A), relative correct rejections (B) and omissions per session (C) following each chelerythrine chloride dose

(0–2.0 mg/kg) in the distracter task with the houselight flashing throughout the session. In (A) the bars denote the different signal durations (500,

100 and 25 ms). Chelerythrine chloride did not differentially affect hits, correct rejections or omissions during the distracter condition (n ¼ 7).
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make it difficult to definitively associate the attentional deficits
only with muscarinic M1 receptors. Third, the effects of scopol-
amine on similar two-lever sustained attention tasks have not

always been consistent, with some experiments demonstrating
that muscarinic receptor blockade selectively decreases signal
detection (Johnson and Burk, 2006; McQuail and Burk, 2006)
while other experiments demonstrate that muscarinic receptor

blockade decreases accuracy on trials with no signal presenta-
tion (Rezvani et al., 2009) or on both signal and nonsignal trials
(Bushnell et al., 1997). The experiments presented in thesepapers

vary in deprivation and reward procedures (food or water), in
whether the signal duration or signal intensity is varied, and in
apparatus (whether there is a noise generator above one of the

choice levers). Examination of the effects of dicyclomine with
these different methodological procedures would be useful for
testing the generalizability of the effects ofM1 receptor blockade

observed in the present experiment. If such studies revealed that
the effects of dicyclomine, similar to those of scopolamine, vary
dependent upon someexperimental parameters, then itwouldbe
important to investigatewhich aspects of the procedures bias the

sensitivity of the measures in this task that detect the effects of
muscarinic receptor manipulations. Finally, a relatively narrow
dose range was used with both dicyclomine and chelerythrine

chloride.Thesedose rangeswere chosenbecause, inpilot studies,
higher doses resulted in very few lever presses during a testing
session with this attention task. In this task, an increase in omis-

sions (failure to press either lever on a trial) can be difficult to
interpret, as it may reflect changes in multiple factors, including
motivation for reward and motoric functioning.

Previous experiments have found that PKC overactivity

can impair working memory (Birnbaum et al., 2004) and
that PKC inhibition can attenuate age-related working
memory deficits in rats and monkeys (Brennan et al., 2009).

Thus, PKC inhibition that ‘normalizes’ relatively high levels
of PKC may be beneficial for restoring some aspects of cog-
nitive processing. The present results may be taken as evi-

dence that abnormally low PKC activity may be associated
with attentional deficits. Such a conclusion is consistent with
observations from patients with Alzheimer’s disease who

exhibit a disruption of PKC activity (Battaini et al., 1999;
Masliah et al., 1991; Wang et al., 1994) along with attentional
deficits (Berardi et al., 2005; Parasuraman and Haxby, 1993).
Interestingly, PKC activation has been proposed as a treat-

ment to restore some cognitive deficits in patients with
Alzheimer’s disease (Sun and Alkon, 2010). Thus, abnormally
high or low levels of PKC activity may be detrimental to

cognitive processing, and restoring ‘normal’ levels of PKC
activity may be beneficial for alleviating these cognitive
deficits. In summary, the present findings support the hypoth-

esis that muscarinic M1 receptors contribute to normal atten-
tional processing and also support the idea that PKC is
involved in some, most likely bottom-up, aspects of perfor-
ming attention-demanding tasks.
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