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We have measured the nuclear transparency of the incoherent diffractive A(e, e′ρ0) process in 12C and
56Fe targets relative to 2H using a 5 GeV electron beam. The nuclear transparency, the ratio of the
produced ρ0’s on a nucleus relative to deuterium, which is sensitive to ρ A interaction, was studied
as function of the coherence length (lc), a lifetime of the hadronic fluctuation of the virtual photon, and
the four-momentum transfer squared (Q 2). While the transparency for both 12C and 56Fe showed no
lc dependence, a significant Q 2 dependence was measured, which is consistent with calculations that
included the color transparency effects.

© 2012 Elsevier B.V.

Quantum chromodynamics (QCD) predicts that hadrons pro-
duced in exclusive reactions with sufficiently high squared four
momentum transfers (Q 2) can pass through nuclear matter with
dramatically reduced interactions [1–3]. This is the so-called color
transparency (CT) phenomenon, a key property of QCD as a color
gauge theory. According to QCD, hard exclusive processes have the
power to select special configurations of the hadron wave function
where all quarks are close together, forming a color neutral small
size configuration (SSC) with transverse size r⊥ ∼ 1/Q . In these
SSCs, the external color field vanishes as the distance between
quarks shrinks and their color fields cancel each other, similar to
the reduced electric field of a very small electric dipole. The re-
duced color field of the SSC allows it to propagate through a nu-
cleus with little attenuation [4,5].

Nuclear transparency, defined as the ratio of nuclear cross sec-
tion per nucleon to that on a free nucleon, is the observable used
to search for CT. The experimental signature of CT is the increase
of the nuclear transparency, as Q 2 increases due to decreased in-
teraction of the ρ0 on its way out. In the absence of CT effects,
the hadron–nucleon total cross-section, and thus the nuclear trans-
parency, are nearly energy-independent [6].

Observation of CT requires that the SSC propagates a reasonable
distance through the nucleus before expanding into a fully formed
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hadron. At very high energies, this is easily achieved since the SSC
is highly relativistic and its lifetime in the nucleus rest frame will
be dilated [3,7]. CT at high energy was observed by the E791
experiment [8] at Fermilab which studied the A-dependence of co-
herent diffractive dissociation of 500 GeV pions into di-jets on car-
bon and platinum targets. As predicted [9,10], the A-dependence of
the measured cross sections was consistent with the nuclear tar-
get acting as a filter that removes all but small size configurations
of the pion wave function. Due to the small transverse separa-
tion of the filtered qq̄ pair, the quark and anti-quark each form
a jet of hadrons in the final state. At low and intermediate ener-
gies, where the SSC travels a very short distance before evolving
into a hadron, the situation is more challenging. In this kinemati-
cal region, the interaction of the hadron with the nucleus depends
on the momentum at which it is produced, the evolution time of
the SSC, its interaction cross section as it evolves into a normal
state, and the distance it must travel through the nucleus.

Studying CT at low energies provides valuable information on
SSC formation, expansion and, most importantly, its interaction
as a function of its color field. CT is a key property of QCD.
It offers a unique probe of “color”, a defining feature of QCD,
yet totally invisible in the observed structure of ordinary nuclear
matter. Establishing the kinematic conditions for the onset of CT
is also critical to the future program of proton structure studies
based on deep exclusive meson processes where the CT property
of QCD is routinely used in the proof of QCD factorization the-
orem [11]. Recently, CT was proposed [12] as the possible cause
of the anomalous increase with centrality in the ratio of protons-
to-pions produced at large transverse momenta in gold–gold colli-
sions at the relativistic heavy ion collider in Brookhaven National
Lab [13].

Searches for CT with proton knock-out have all been negative
[14–18] or inconclusive [19–21], while results for meson produc-
tion [22–25] have been more promising. The reason could be that
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Fig. 1. An illustration of the creation of a SSC and its evolution to a fully formed ρ0

(see the text for a full description).

the creation of a SSC is more probable for a meson than for a
baryon since only two quarks have to be localized to form the
SSC. The first hint of CT at moderate energies was obtained in
pion photoproduction off 4He [22] with photon energies up to
4.5 GeV, but the experiment needed greater statistical precision
to achieve conclusive findings. Another experiment [23] studied
pion electroproduction off 12C, 27Al, 64Cu and 197Au over a range
of Q 2 = 1.1–4.7 GeV2. The nuclear transparencies of all targets
relative to deuterium showed an increase with increasing Q 2.
The most statistically significant result corresponds to the nuclear
transparency for 197Au, which when fitted with a linear Q 2 de-
pendence resulted in a slope of 0.012 ± 0.004 GeV−2. The authors
concluded that measurements at still higher momentum transfer
would be needed to firmly establish the onset of CT.

Exclusive diffractive electroproduction of ρ0 mesons provides a
tool of choice to study color transparency. The advantage of using
ρ0 mesons is that they have the same quantum numbers as pho-
tons and so can be produced by a simple diffractive interaction,
which selects small size initial state [26]. In this process, illustrated
in Fig. 1, the incident electron exchanges a virtual photon with the
nucleus. The photon can then fluctuate into a virtual qq̄ pair [27]
of small transverse separation [28] proportional to 1/Q , which can
propagate over a distance lc = 2ν/(Q 2 + M2

qq̄), known as the co-
herence length, where ν is the energy of the virtual photon and
Mqq̄ is the invariant mass of the qq̄ pair. The virtual qq̄ pair can
then scatter diffractively off a bound nucleon and becomes an on
mass shell SSC. While expanding in size, the SSC travels through
the nucleus and ultimately evolves to a fully formed ρ0, which,
in the final state, decays into a (π+ , π−) pair. By increasing Q 2,
the size of the selected SSC can be reduced and consequently the
nuclear transparency for the ρ0 should increase.

The nuclear transparency, T A , is taken to be the ratio of the ob-
served ρ0 mesons per nucleon produced on a nucleus (A) relative
to those produced from deuterium, where no significant absorption
is expected. CT should yield an increase of T A with Q 2, but mea-
surements by the HERMES [29] Collaboration show that T A also
varies with lc , which can also lead to a Q 2 dependence. Thus, to
unambiguously identify CT, lc should be held constant or, alterna-
tively, kept small compared to the nuclear radius to minimize the
interactions of the qq̄ pair prior to the diffractive production of the
SSC.

Fermilab experiment E665 [24] and the HERMES experiment
[25] at DESY used exclusive diffractive ρ0 leptoproduction to
search for CT. However, both measurements lacked the necessary
statistical precision. HERMES measured the Q 2 dependence of the
nuclear transparency for several fixed lc values. A simultaneous
fit of the Q 2 dependence over all lc bins resulted in a slope of
0.089±0.046 GeV−2. The unique combination of high beam inten-
sities available at the Thomas Jefferson National Accelerator Facility
known as JLab and the wide kinematical coverage provided by the
Hall B large acceptance spectrometer [30] (CLAS) was key to the
success of the measurements reported here.

The experiment ran during the winter of 2004. An electron
beam with 5.014 GeV energy was incident simultaneously on a
2 cm liquid deuterium target and a 3 mm diameter solid target
(C or Fe). The nuclear targets were chosen to optimize two compet-
ing requirements; provide sufficient nuclear path length compared
to the SSC expansion length while minimizing the probability of
ρ0 decay inside the nucleus. A new double-target system [31]
was developed to reduce systematic uncertainties and allow high
precision measurements of the transparency ratios between heavy
targets and deuterium. The cryogenic and solid targets were lo-
cated 4 cm apart to minimize the difference in CLAS acceptance
while maintaining the ability to identify the target where the in-
teraction took place event-by-event via vertex reconstruction. The
thickness of the solid targets (1.72 mm for carbon and 0.4 mm for
iron) were chosen so that all of the targets including deuterium
had comparable luminosities (∼ 1034 nucleon cm−2 s−1). The scat-
tered electrons and two oppositely charged pions were detected
in coincidence using the CLAS spectrometer. The scattered elec-
trons were identified using the Čerenkov and the electromagnetic
calorimeter while the pions were identified through time-of flight
measurements [30].

The ρ0 mesons were identified through the reconstructed in-
variant mass of the two detected pions with 0.6 < Mπ+π− <

1 GeV. For each event, several kinematic variables were evaluated
including Q 2, lc using the ρ0 mass instead of Mqq̄ , the photon–
nucleon invariant mass squared W 2, the squared four-momentum
transfer to the target t , and the fraction of the virtual photon
energy carried by the ρ0 meson zρ = Eρ/ν where Eρ is the en-
ergy of the ρ0. To identify exclusive diffractive and incoherent ρ0

events, a set of kinematic conditions had to be satisfied. We re-
quired W > 2 GeV to suppress pions from decay of resonances,
−t < 0.4 GeV2 to select diffractive events, −t > 0.1 GeV2 to ex-
clude coherent production off the nucleus and zρ > 0.9 to select
elastically produced ρ0 mesons. The two pions invariant mass dis-
tributions are shown in Fig. 2. After applying all the cuts, the
invariant mass distribution (Fig. 2.b) exhibits a clean ρ0 peak po-
sitioned around 770 MeV with the expected width of 150 MeV.
A good description of the data was obtained using our Monte-Carlo
(MC) simulation. Our generator simulates the ρ0 electroproduction
process and the main channels that may produce a (π+ , π−) pair
in the final state and contribute to the background underneath the
ρ0 peak. These channels are ep → e�++π− , ep → e�0π+ and a
non-resonant ep → epπ+π− . The cross sections of these processes
were taken from existing measurements [32]. The standard CLAS
GEANT based simulation packages was used to simulate the exper-
imental apparatus. The Fermi motion of the nucleons in nuclei was
simulated by folding the elementary cross section with the spec-
tral function of the target using a realistic model [33]. Radiative
effects are also included in the simulation.

The nuclear transparency for a given target, with nucleon num-
ber A, is defined as

T A = (
Nρ

A/Lint
A

)
/
(
Nρ

D/Lint
D

)
, (1)

where D refers to deuterium, and A to carbon or iron, Lint
A,D to

the integrated luminosities and Nρ
A,D to the number of incoherent

ρ0 events per nucleon after subtraction of background contribu-
tions. The transparency ratios were also corrected from detector
and reconstruction efficiencies, acceptance and radiative effects,
Fermi motion and contributions from the liquid deuterium tar-
get windows. The CLAS acceptance and reconstruction efficiencies
were evaluated with the simulations described earlier. Data from
both simulation and measurements were processed with the same
analysis code. Based on the comparison between data and MC,
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Fig. 2. (Color online.) The (π+ , π−) invariant mass histogram for iron. Panel (a):
Before applying kinematic cuts. Panel (b): After applying kinematic cuts. The blue
shadow area represents the background contribution. Panel (c): After background
subtraction. Panel (d): The (π+ , π−) invariant mass histogram for deuterium after
background subtraction. The solid curves are non-relativistic Breit–Wigner fit to the
data.

the acceptance was defined in each elementary bin in all rele-
vant variables; Q 2, t , W , the ρ0 momentum Pρ0 , and the decay

angle in the ρ0 rest frame θπ+ , as the ratio of accepted to gen-
erated events. Each event was then weighted with the inverse
of the corresponding acceptance. The weighted (π+ , π−) mass
spectra were fitted as shown in Fig. 2(c) using a non-relativistic
Breit–Wigner for the shape of a ρ0 while the shape of the back-
ground was taken from the simulation. The magnitudes of each
contributing process were taken as free parameters in the fit of
the mass spectra. The acceptance correction to the transparency
ratio was found to vary between 5 and 30%. Radiative corrections
were extracted for each (lc , Q 2) bin using our MC generator in
conjunction with the DIFFRAD [34] code developed for exclusive
vector meson production. The radiative correction to the trans-
parency ratio was found to vary between 0.4 and 4%. An additional
correction of around 2.5% was applied to account for the contri-
bution of deuterium target endcaps. The corrected t distributions
for exclusive events were fit with an exponential form Ae−bt . The
slope parameters b for 2H (3.59 ± 0.5), C (3.67 ± 0.8) and Fe
(3.72 ± 0.6) were reasonably consistent with CLAS [35] hydro-
gen measurements of 2.63 ± 0.44 taken with 5.75 GeV beam en-
ergy.

The transparencies for C and Fe are shown as a function of lc
in Fig. 3. As expected, they do not exhibit any lc dependence be-
cause lc is much shorter than the C and Fe nuclear radii of 2.7
and 4.6 fm respectively. Consequently, the coherence length effect
cannot mimic the CT signal in this experiment.

Fig. 4 shows the increase of the transparency with Q 2 for both
C and Fe. The data are consistent with expectations of CT. Note

Fig. 3. (Color online.) Nuclear transparency as a function of lc . The inner error bars
are the statistical uncertainties and the outer ones are the statistical and point-
to-point (lc dependent) systematic uncertainties added in quadrature. There is an
additional normalization systematic uncertainty of 1.9% for carbon and 1.8% for iron
(not shown in the figure) with acceptance and background subtraction being the
main sources. The carbon data has been scaled by a factor 0.77 to fit in the same
figure with the iron data.

Fig. 4. (Color online.) Nuclear transparency as a function of Q 2. The inner error
bars are statistic uncertainties and the outer ones are statistic and point-to-point
(Q 2 dependent) systematic uncertainties added in quadrature. The curves are pre-
dictions of the FMS [39] (red) and GKM [38] (green) models with (dashed–dotted
and dashed curves, respectively) and without (dotted and solid curves, respectively)
CT. Both models include the pion absorption effect when the ρ0 meson decays in-
side the nucleus. There is an additional normalization systematic uncertainty of 2.4%
for carbon and 2.1% for iron (not shown in the figure).

that in the absence of CT effects, hadronic Glauber calculations
would predict no Q 2 dependence of T A since any Q 2 dependence
in the ρ0 production cross section would cancel in the ratio. The
rise in transparency with Q 2 corresponds to an (11 ± 2.3)% and
(12.5 ± 4.1)% decrease in the absorption of the ρ0 in Fe and
C respectively. The systematics uncertainties were separated into
point-to-point uncertainties, which are lc dependent in Fig. 3 and
Q 2 dependent in Fig. 4 and normalization uncertainties, which
are independent of the kinematics. Effects such as kinematic cuts,
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Table 1
Fitted slope parameters of the Q 2-dependence of the nuclear transparency for
carbon and iron nuclei. The results are compared with theoretical predictions of
KNS [37], GKM [38] and FMS [39].

Nucleus Measured slopes (GeV−2) Model predictions

KNS GKM FMS

C 0.044 ± 0.015stat ± 0.019syst 0.06 0.06 0.025
Fe 0.053 ± 0.008stat ± 0.013syst 0.047 0.047 0.032

model dependence in the acceptance correction and background
subtraction, Fermi motion and radiative correction were studied
and taken into account in the systematic uncertainties described
in details in [36]. The fact that we were able to observe the in-
crease in nuclear transparency requires that the SSC propagated
sufficiently far in the nuclear medium and experienced reduced
interaction with the nucleons before evolving to a normal hadron.
The Q 2 dependence of the transparency was fitted by a linear
form T A = a Q 2 + b. The extracted slopes “a” for C and Fe are
compared to the model predictions in Table 1. Our results for Fe
are in good agreement with both Kopeliovich–Nemchik–Schmidt
(KNS) [37] and Gallmeister–Kaskulov–Mosel (GKM) [38] predic-
tions, but somewhat larger than the Frankfurt–Miller–Strikman
(FMS) [39] calculations. While the KNS and GKM models yield an
approximately linear Q 2 dependence, the FMS calculation yields a
more complicated Q 2 dependence as shown in Fig. 4. The mea-
sured slope for carbon corresponds to a drop in the absorption of
the ρ0 from 37% at Q 2 = 1 GeV2 to 32% at Q 2 = 2.2 GeV2, in rea-
sonable agreement with the calculations. Despite the differences
between these models in the assumed production mechanisms and
SSC interaction in the nuclear medium, they all support the idea
that the observed Q 2 dependence is clear evidence for the on-
set of CT, demonstrating the creation of small size configurations,
their relatively slow expansion and their reduced interaction with
the nuclear medium.

The onset of CT in ρ0 electroproduction seems to occur at
lower Q 2 than in the pion measurements. This early onset sug-
gests that diffractive meson production is the optimal way to cre-
ate a SSC [26]. The Q 2 dependence of the transparency ratio is
mainly sensitive to the reduced interaction of the SSC as it evolves
into a full-sized hadron, and thus depends strongly on the expan-
sion length over which the SSC color fields expand to form a ρ0

meson. The expansion length used by the FMS and GKM models
is between 1.1 and 2.4 fm for ρ0 mesons produced with mo-
menta from 2 to 4.3 GeV while the KNS model uses an expansion
length roughly a factor of two smaller. The agreement between the
observed Q 2 dependence and these models suggests that these as-
sumed expansion distances are reasonable, yielding rest-frame SSC
lifetimes of about 0.5 − 1 × 10−24 second.

In summary, we have experimentally observed the formation of
small size configurations in diffractive ρ0 meson electroproduction
and its reduced interaction as it travels through the nucleus. Our
data are consistent with expectations of color transparency and,
based on the existing models, provide the first estimate of the
expansion time (lifetime) for these exotic configurations. Having
established these features, detailed studies of the theoretical mod-
els will allow the first quantitative evaluation of the structure and
evolution properties of the SSCs. Such studies will be further en-
hanced by future measurements [40], which will include additional
nuclei and extend to higher Q 2 values.
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