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We update the determination of the isovector nucleon electromagnetic self-energy, valid to leading

order in QED. A technical oversight in the literature concerning the elastic contribution to Cottingham’s

formula is corrected, and modern knowledge of the structure functions is used to precisely determine the

inelastic contribution. We find �M�
p-n ¼ 1:30ð03Þð47Þ MeV. The largest uncertainty arises from a

subtraction term required in the dispersive analysis, which can be related to the isovector magnetic

polarizability. With plausible model assumptions, we can combine our calculation with additional input

from lattice QCD to constrain this polarizability as: �p�n ¼ �0:87ð85Þ � 10�4 fm3.

DOI: 10.1103/PhysRevLett.108.232301 PACS numbers: 13.40.Dk, 13.40.Ks, 13.60.Fz, 14.20.Dh

Given only electrostatic forces, one would predict that
the proton is more massive than the neutron but the oppo-
site actually occurs [1–3]:

Mn �Mp ¼ 1:29333217ð42Þ MeV: (1)

Before we knew of quarks and gluons, there were many
attempts to explain this contradiction, see Ref. [4] for a
review. We now know there are two sources of isospin
breaking in the standard model, the masses of the up and
down quarks as well as the electromagnetic interactions
between quarks governed by the charge operator. The
effects of the mass difference between down and up quarks
are larger and of the opposite sign than those of electro-
magnetic effects, see the reviews [5–7]. The net result of
the quark mass difference and electromagnetic effects is
well known, Eq. (1), but our ability to disentangle the
contributions from these two sources remains poorly
constrained.

In contrast, lattice QCD calculations have matured
significantly. There are now calculations performed with
the light quark masses at or near their physical values
[8–12], reproducing the ground state hadron spectrum
within a few percent. These advances have allowed for
calculations to begin including explicit isospin breaking
effects from both the quark masses [13–17] and electro-
magnetism [15,18–21]. While the lattice calculations of
md �mu effects are robust, the contributions from
electromagnetism are less mature and suffer from larger
systematics, due in large part to the disparity between the
photon mass and a typical hadronic scale. Improved
knowledge of md �mu and its effects in nucleons will
enhance the ability to use effective field theory to com-
pute a variety of isospin-violating (charge asymmetric)
effects in nuclear reactions [7,22–27].

An application [28] of the Cottingham sum rule [29],
which relates the electromagnetic self-energy of the
nucleon to measured elastic and inelastic cross sections,
gives the result �M�

p�n ¼ 0:76� 0:30 MeV. Given the
high present interest in the precise value of �M�

p�n and
its many possible implications, it is worthwhile to revisit
this result. Many high-quality electron scattering experi-
ments have been performed since 1975, and there have also
been theoretical advances. The central aim of this work is
to provide a modern, robust evaluation of �M�

p�n. We will
show the precision of this effort is severely limited by our
knowledge of the required subtraction function. Given
plausible model assumptions, this limitation is translated
into our knowledge of the isovector nucleon magnetic
polarizability, �p�n ¼ �p

M � �n
M, for which even the

sign is presently unknown [30].
Cottingham’s sum rule.—In perturbation theory, the elec-

tromagnetic self-energy of the nucleon, �M�, can be related
to the spin-averaged forward Compton scattering tensor

T�� ¼ i

2

X
�

Z
d4�eiq��hp�jTfJ�ð�ÞJ�ð0Þgjp�i; (2)

integrated with the photon propagator over space-time

�M� ¼ i

2M

�

ð2	Þ3
Z
R
d4q

T
�
� ðp; qÞ
q2 þ i


; (3)

where we work in the nucleon rest frame p� ¼ ðM; 0Þ,
� ¼ e2=4	 and the subscript R implies the integral has
been renormalized. Performing a Wick rotation of the in-
tegration contour to imaginary photon energy, the nucleon
self-energy can be related to the structure functions arising
from the scattering of spacelike photons through dispersion
theory, giving rise to what is known as Cottingham’s for-
mula (the Cottingham sum rule) [29,31]. In principle, this
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allows the integral in Eq. (3) to be computed in a model
independent fashion with input from experimental data.
There are a few issues that complicate the realization of
this method: a subtracted dispersive analysis is required
introducing an unknown subtraction function [32,33] and
the integral in Eq. (3) diverges logarithmically in the ultra-
violet region and requires renormalization [34]. We review
these issues briefly.

Lorentz invariance significantly constrains the form of
T��, for which there are two common parametrizations,

T��ðp; qÞ ¼ �Dð1Þ
��T1ð�;�q2Þ þDð2Þ

��T2ð�;�q2Þ (4a)

¼ dð1Þ��q2t1ð�;�q2Þ � dð2Þ��q2t2ð�;�q2Þ (4b)

where p � q ¼ M� and

dð1Þ�� ¼ Dð1Þ
�� ¼ g�� �

q�q�

q2
;

dð2Þ�� ¼ 1

M2

�
p�p� � p � q

q2
ðp�q� þ p�q�Þ þ ðp � qÞ2

q2
g��

�
;

Dð2Þ
�� ¼ 1

M2

�
p� � p � q

q2
q�

��
p� � p � q

q2
q�

�
: (5)

Performing the Wick rotation � ! i� and the variable
transformation Q2 ¼ q2 þ �2, the self-energy becomes

�M� ¼ �

8	2

Z �2

0
dQ2

Z þQ

�Q
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 � �2

p
Q2

T�
�

M
þ �Mctð�Þ;

(6)

where �Mctð�Þ derives from counterterms required
for renormalization [34] and the Lorentz contracted
Compton tensor is

T
�
� ¼ �3T1ði�;Q2Þ þ

�
1� �2

Q2

�
T2ði�;Q2Þ; (7a)

¼ �3Q2t1ði�;Q2Þ þ
�
1þ 2

�2

Q2

�
Q2t2ði�;Q2Þ: (7b)

The scalar functions (Ti, ti) can be evaluated using a
dispersive analysis. It is known the (T1, t1) functions
require a subtracted dispersive analysis while the (T2, t2)
functions can be evaluated with an unsubtracted dispersion
relation [32]. In Ref. [28], it was claimed the elastic con-
tributions to t1 could be evaluated with an unsubtracted
dispersive analysis. However, performing an unsubtracted
dispersive analysis of the elastic contributions to Eqs. (7)
by inserting a complete set of elastic states into Eq. (2)
leads to inconsistent results:

�Mel
unsub;a ¼

�

	

Z �2

0
dQ

�
½G2

EðQ2Þ � 2�elG
2
MðQ2Þ� ð1þ �elÞ3=2 � �3=2el � 3

2

ffiffiffiffiffiffi
�el

p
1þ �el

� 3

2
G2

MðQ2Þ �3=2el

1þ �el

�
; (8a)

�Mel
unsub;b ¼

�

	

Z �2

0
dQ

�
½G2

EðQ2Þ � 2�elG
2
MðQ2Þ� ð1þ �elÞ3=2 � �3=2el

1þ �el
þ 3G2

MðQ2Þ �3=2el

1þ �el

�
; (8b)

with �el � Q2

4M2 . If both parametrizations of the elastic
contribution were to satisfy unsubtracted dispersion rela-
tions, the following positive-definite integral would have to
vanish

3�

2	

Z 1

0
dQ

ffiffiffiffiffiffi
�el

p G2
EðQ2Þ þ �elG

2
MðQ2Þ

1þ �el
: (9)

Equating Eqs. (4a) and (4b) allows one to solve for Ti in
terms of ti and vice versa and to demonstrate that if the
elastic contributions to T1ðt1Þ do not satisfy an unsub-
tracted dispersive analysis, then neither will the elastic
contributions to t1ðT1Þ. Eq. (8b) was used in Ref. [28]
and is often quoted as the elastic contribution to the nu-
cleon self-energy.

Starting from either Eqs. (7a) or (7b), performing a
subtracted dispersive analysis of (T1, t1), and an unsub-
tracted analysis of (T2, t2), using a mass-independent re-
normalization scheme (dimensional regularization), one
arrives at [34]

�M� ¼ �Mel þ �Minel þ �Msub þ � ~Mct; (10)

with

�Mel ¼ �

	

Z �2
0

0
dQ

�
3

ffiffiffiffiffiffi
�el

p
G2

M

2ð1þ �elÞ þ
½G2

E � 2�elG
2
M�

1þ �el

�
�
ð1þ �elÞ3=2 � �3=2el � 3

2

ffiffiffiffiffiffi
�el

p ��
(11)

�Minel ¼ �

	

Z �2
0

0

dQ2

2Q

Z 1

�th

d�

�
�
3F1ð�;Q2Þ

M

�
�3=2 � �

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p þ ffiffiffi
�

p
=2

�

�

þ F2ð�;Q2Þ
�

�
ð1þ �Þ3=2 � �3=2 � 3

2

ffiffiffi
�

p ��
; (12)

where � ¼ �2=Q2, Fið�;Q2Þ are the standard nucleon
structure functions and �th ¼ m	 þ ðm2

	 þQ2Þ=2M;

�Msub ¼ � 3�

16	M

Z �2
0

0
dQ2T1ð0; Q2Þ; (13)

and

� ~Mct ¼ � 3�

16	M

Z �2
1

�2
0

dQ2
X
i

C1;ihOi;0i; (13)
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where C1;i are Wilson coefficients determined from the

operator product expansion of the counterterms [34]. The
UV divergence has been entirely cancelled by the counter-
term and � ~Mct is a remaining finite contribution with
residual scale dependence. The scales �0 and �1 can be
chosen arbitrarily provided their values are in the asymp-
totic scaling region. Restricting our attention to the isospin
breaking contribution, with 2� ¼ md �mu

� ~Mct
p�n ¼ 3� ln

�
�2

0

�2
1

�
e2umu � e2dmd

8	M�
hpj�ð �uu� �ddÞjpi

(15)

with eu ¼ 2=3 and ed ¼ �1=3. In QCD, mu;d � �, so the

entire contribution is numerically second order in isospin
breaking, Oð��Þ, and for practical purposes can be ne-
glected [34]. Estimating the size of this term, with �2

1 ¼
100 GeV2, �2

0 ¼ 2 GeV2 yields j� ~Mct
p�nj< 0:02 MeV.

The remaining contribution to the self-energy is the
subtraction term, which can not be directly related to
experimentally measured cross sections. We now have a
better theoretical understanding of this term enabling a
more robust determination of its contribution than has
been previously made. While the function is not known,
the low and high Q2 limits can be determined in a model
independent fashion; the asymptotic region is constrained
by the operator product expansion (OPE) to scale as
limQ!1T1ð0; Q2Þ � 1=Q2 [34] while the low Q2 limit is

fixed by non-relativistic QED [35–39]

T1ð0; Q2Þ ¼ 2�ð2þ �Þ �Q2

�
2

3
½ð1þ �Þ2r2M � r2E�

þ �

M2
� 2M

�M

�

�
þOðQ4Þ; (16)

where � � F2ð0Þ is the anomalous magnetic moment,
rEðrMÞ is proportional to the slope of the electric (mag-
netic) form factor and commonly denoted as the nucleon
electric (magnetic) charge radius, and �M is the magnetic
polarizability.

A direct evaluation of Eq. (13) with Eq. (16) diverges
quadratically, resulting in an uncontrolled uncertainty.
However, the displayed Q2 dependence is not of the form
required by the OPE, so we are necessarily led to introduce
model dependence. The first few terms in Eq. (16) are
recognized as the low-Q2 expansion of elastic form factors
and the magnetic polarizability term is the leading inelastic
contribution. In evaluating the elastic contributions to T��,

only the elastic u-spinors need be used in the dispersion
relation. If one uses the full Feynman propagator in the full
amplitude, a procedure known to be correct in the point-
limit (as for the electron) and vertex functions with ordi-
nary F1 and F2 form factor contributions, then the specific
elastic terms of Eq. (16) would arise [39,40]. This suggests
a resummation in which one uses the appropriate elastic
form factors. The inelastic contribution can be multiplied

by a dipole form factor ð1þQ2=m2
0Þ�2, such that it has the

correct asymptotic limits asQ2 ! 0,1. The parameter m2
0

should be a typical hadronic scale, and we will take m2
0 ¼

0:71 GeV2. The subtraction term is then approximated by
two pieces that have the correct low- and high-Q2 limiting
behavior,

T1ð0;Q2Þ ’ 2G2
MðQ2Þ�2F2

1ðQ2ÞþQ22M
�M

�

�
m2

0

m2
0þQ2

�
2
;

(17)

leading to the convenient separation

�Msub
el ¼ � 3�

16	M

Z �2
0

0
dQ2½2G2

M � 2F2
1�; (18a)

�Msub
inel ¼ � 3�M

8	

Z �2
0

0
dQ2Q2

�
m2

0

m2
0 þQ2

�
2
: (18b)

The second term, generated using the model assumptions
described above, will cause the largest uncertainties, as we
show below.
Evaluation of contributions.—In all subsequent evalu-

ations, we take�2
0 ¼ 2 GeV2 for our central values and the

range 1:52 <�2
0 < 2:5 GeV2 to estimate uncertainties. We

begin with an evaluation of the elastic contribution,
Eq. (11). The form factors are well measured over the
kinematic range required by the integrals, which are rep-
resented by a number of analytic fits. The elastic contribu-
tions converge well at the upper limit, which may be taken
to infinity with negligible error. Using the Kelly parame-
trization of the form factors [41], or an updated version
[42–44], the elastic contribution is given by

�Meljp�n ¼ 1:39ð02Þ MeV: (19)

The uncertainty is determined through an uncorrelated
Monte Carlo evaluation of the fit parameters in the parame-
trization. It is also interesting to note, that if the simple
dipole parametrization of the form factors is used, the same
value within the quoted uncertainty is obtained.
In the inelastic contribution, Eq. (12), most of the sup-

port for the integrals lies in the resonance region, where
there are good data from JLab, and there are analytic fits
valid in the resonance region for both the neutron and
proton structure functions from Bosted and Christy
[45,46] (we also remind the reader the neutron functions
are determined from deuterium-Compton scattering with
the additional uncertainties captured in the coefficients of
the neutron functions, and propagated into our uncertain-
ties through a Monte Carlo treatment). Their quoted range
of validity includes Q2 up to 8 GeV2 andW up to 3.1 GeV
(W2 ¼ M2 þ 2M��Q2). To extend the W range, we use
the parametrizations of Refs. [47,48] which fit proton
structure functions in the diffraction region using forms
recognizable as Pomeron and rho meson Regge trajecto-
ries. The former is isoscalar and the latter isovector, so we
have a straightforward extension to the neutron case.
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Taking �2
0 ¼ 2 GeV2 and Wtrans ¼ 3:1 GeV as the transi-

tion between the two parametrizations, the inelastic con-
tribution is

�Mineljp�n ¼ 0:057ð16Þ MeV: (20)

The uncertainties are estimated by the range of �2
0 given

above as well as by varying the transition value of W
between 2:5<Wtrans < 3:5 GeV. These two variations
dominate the uncertainty estimate. The numerical integra-
tion is insensitive to the upper limit of the W integration
through Wmax � 200 GeV (or x� 10�4).

We are left with the subtraction terms. Using the model
assumptions described above, the contribution from the
elastic subtraction term, Eq. (18a), is

�Msub
el jp�n ¼ �0:62ð02Þ MeV: (21)

It is interesting to note the sum of Eqs. (19) and (21)
is surprisingly close to that of Ref. [28] (although the
individual proton and neutron elastic self-energies are
different).

The most troublesome contribution to evaluate is that of
the inelastic subtraction term, Eq. (18b). This contribution
is proportional to the isovector nucleon magnetic polar-
izability �p�n. The determination of this isovector quan-

tity was part of the motivation for the recent deuterium
Compton scattering experiment, MAX-Lab at Lund [49],
for which we are still awaiting results. The HIGS experi-
ment [50] at TUNL will also help determine this quantity.
From chiral perturbation theory, one expects the isovector
polarizabilities to be small; the leading contribution to the
polarizabilities occurs at order P3 and these are purely
isoscalar. The isovector contributions arise at order P4

and are suppressed in the chiral power counting [51]. A
recent review provides the conservative estimate �p�n ¼
�1� 1� 10�4 fm3 [30]. Using this in Eq. (18b) provides
the determination

�Msub
ineljp�n ¼ 0:47� 0:47 MeV; (22)

(a smaller value of m2
0 would reduce these values).

Adding all the various contributions, Eqs. (19)–(22), we
arrive at

�M�jp�n ¼ 1:30ð03Þð47Þ MeV; (23)

where the second uncertainty arises from the inelastic con-
tribution to the subtraction term.Clearly, any improvement in
our knowledge of�p�n will significantly improve our ability

to determine the electromagnetic contribution toMp �Mn.

The isovector magnetic polarizability.—Within the
model assumptions used to arrive at Eqs. (18), we can
combine the experimental value for Mn �Mp with lattice

QCD determinations of the md �mu contribution. There
are three published numbers from lattice QCD [13,15,17],
which are uncorrelated. For each result, we combine the
quoted uncertainties in quadrature and then perform a
simple weighted mean, arriving at

�Mlatt
md�mu

jp�n ¼ �2:53ð40Þ MeV: (24)

Combining this with Eqs. (1), (18b), and (19)–(21), and our
value for m2

0, we find

�p�n ¼ �0:87ð85Þ � 10�4 fm3; (25)

in good agreement with current estimates [30].
Model independence.—One can infer the nucleon iso-

vector electromagnetic self-energy without recourse to
models by utilizing the known mass splitting, Eq. (1),
combined with the lattice QCD determination of the con-
tribution from md �mu, Eq. (24),

�M�
p�n ¼ 1:24ð40Þ MeV: (26)

Combined with Eqs. (19) and (20), this can be translated
into a model-independent bound on the unknown subtrac-
tion function

3�

16	M

Z �2
0

0
dQ2Tp�n

1 ð0; Q2Þ ¼ 0:21ð02Þð40Þ MeV: (27)

This is compared with Eqs. (21) and (22) which give 0.15
(02)(47) MeV for the same quantity. This bound demon-
strates that our treatment of the subtraction function, while
not model-independent, is also not wildly speculative but
in agreement with the combined constraint of experiment
and lattice QCD.
Conclusions—We have provided a modern and robust

determination of the isovector electromagnetic self-energy
contribution, �M�

p�n ¼ 1:30 03Þð47ð Þ. A technical over-
sight in the evaluation of the elastic contribution was high-
lighted resulting in a larger central value than previously
obtained [28]. Modern knowledge of the structure func-
tions was used to constrain the elastic and inelastic con-
tributions, reducing the uncertainty from these sources by
an order of magnitude (� 0:30 MeV [28] compared to our
�0:03 MeV). However, a careful analysis of the subtrac-
tion function has yielded an overall larger uncertainty than
previously recognized. The larger central value suggests a
larger contribution to Mp �Mn from md �mu, consistent

with expectations from lattice QCD, thus impacting the
phenomenology of Refs. [22–27]. With plausible model
assumptions and additional input from lattice QCD, this
knowledge can be used to provide a competitive estimate
of the nucleon isovector magnetic polarizability, albeit still
with a 100% uncertainty. Alternatively, a bound can be
placed on the unknown subtraction function, which cannot
otherwise be determined and lends further support for our
determination of �p�n.
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