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In this paper we study an example-machine Bush(S, T ) where S and T are disjoint dense
subsets of R. We find some topological properties that Bush(S, T ) always has, others that
it never has, and still others that Bush(S, T ) might or might not have, depending upon
the choice of the disjoint dense sets S and T . For example, we show that every Bush(S, T )

has a point-countable base, is hereditarily paracompact, is a non-Archimedean space, is
monotonically ultra-paracompact, is almost base-compact, weakly α-favorable and a Baire
space, and is an α-space in the sense of Hodel. We show that Bush(S, T ) never has a σ -
relatively discrete dense subset (and therefore cannot have a dense metrizable subspace), is
never Lindelöf, and never has a σ -disjoint base, a σ -point-finite base, a quasi-development,
a Gδ-diagonal, or a base of countable order. We show that Bush(S, T ) cannot be a β-space
in the sense of Hodel and cannot be a p-space in the sense of Arhangelskii or a Σ-space
in the sense of Nagami. We show that Bush(P,Q) is not homeomorphic to Bush(Q,P).
Finally, we show that a careful choice of the sets S and T can determine whether the space
Bush(S, T ) has strong completeness properties such as countable regular co-compactness,
countable base compactness, countable subcompactness, and ω-Čech-completeness, and we
use those results to find disjoint dense subsets S and T of R, each with cardinality 2ω , such
that Bush(S, T ) is not homeomorphic to Bush(T , S). We close with a family of questions for
further study.
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1. Introduction

A topological space called the Big Bush has been an important example in the study of generalized metric base conditions
(e.g., point-countable bases, σ -disjoint bases, σ -point-finite bases, and quasi-developments) and also in the study of linearly
ordered topological spaces. The original Big Bush consisted of all strings of irrational numbers indexed by any countable
ordinal and ending with a rational number, with the set being ordered lexicographically [2].

It is now clear that the Big Bush described above is just one of a large family of spaces called Bush(S, T ) where S and
T are disjoint dense sets of real numbers1 and that Bush(S, T ) is really a two-parameter example machine that produces
linearly ordered spaces of varying degrees of complexity. There are some very strong topological properties that every
Bush(S, T ) has, and other properties that no Bush(S, T ) has. Even more interesting are the properties of Bush(S, T ) that can
be fine-tuned by careful choice of the sets S and T . The goal of this paper is to introduce the Big Bush example machine
and to study the way that the descriptive properties of S , T , and S ∪ T control the topological properties of Bush(S, T ). In
the process, we obtain examples that elucidate the fine structure of several strong completeness properties introduced by
Choquet, de Groot, and Oxtoby.

In this paper we restrict attention to the case where S and T are disjoint non-empty subsets of the real line and we
define the space Bush(S, T ) as follows: for each α < ω1 we let

X(α) := {
f : [0,α] → S ∪ T : β < α ⇒ f (β) ∈ S and f (α) ∈ T

}
,

and then Bush(S, T ) := ⋃{X(α): α < ω1}. (In this notation, the original Big Bush was Bush(P,Q), where P and Q are the
sets of irrational and rational numbers, respectively.) Note that for each f ∈ Bush(S, T ) there is exactly one ordinal α( f )
such that f ∈ X(α( f )) and we define lv( f ) = α( f ).

We linearly order the set Bush(S, T ) using the lexicographic order. In other words, if f �= g belong to Bush(S, T ) then
the set {α: f (α) �= g(α)} is not empty (because S ∩ T = ∅). Consequently there is a first ordinal δ = δ( f , g) such that
f (δ) �= g(δ) and we define f ≺ g provided f (δ) < g(δ) in the usual ordering of R. This linear order gives an open interval
topology on Bush(S, T ) in the usual way. In Section 2 we will show that basic neighborhoods of f ∈ Bush(S, T ) have a
particularly simple form: for ε > 0, and α = lv( f ), let

B( f , ε) := {
g ∈ Bush(S, T ): α � lv(g), g(β) = f (β) for all β < α, and

∣∣g(α) − f (α)
∣∣ < ε

}
.

In Section 2, we show that each B( f , ε) is a convex open set and that the collection {B( f , 1
n ): n � 1} is a neighborhood

base at f in the open-interval topology of the linear ordering ≺.
Our paper is organized as follows. In Section 2 we prove a sequence of technical lemmas about Bush(S, T ). In Section 3

we show that whenever S and T are disjoint dense subsets of R, the space Bush(S, T ) is monotonically normal, has a
point-countable base, is hereditarily paracompact, is the union of ω1-many metrizable subspaces, is a non-Archimedean
space, is monotonically ultra-paracompact, is almost base-compact, pseudo-complete, α-favorable, and a Baire space, and is
also an α-space in the sense of Hodel. In Section 4, we study properties that Bush(S, T ) cannot have (provided S and T
are disjoint dense subsets of R). We show that Bush(S, T ) is not Lindelöf, cannot have a σ -relatively-discrete dense subset
and therefore cannot have a dense metrizable subspace, cannot have a σ -disjoint or a σ -point-finite base, cannot be quasi-
developable, is not weakly perfect, and cannot be (for example) a Σ-space, a p-space, an M-space, or a β-space in the
sense of Hodel. In Section 5 we explore topological properties that Bush(S, T ) might or might not have, depending on the
descriptive structure of S , T , and S ∪ T . This allows us to show, as a start, that the two Big Bushes Bush(P,Q) and Bush(Q,P)

are not homeomorphic. Then we turn to the role of strong Baire-Category completeness properties in Bush(S, T ). We prove,
for example, that Bush(S, T ) is countably base-compact if and only if there is a dense Gδ-subset D ⊆ R with T ⊆ D ⊆ S ∪ T .
That result allows us to find disjoint dense subsets S and T of R, each with cardinality 2ω , such that Bush(S, T ) is not
homeomorphic to Bush(T , S). We give necessary conditions for Bush(S, T ) to be countably subcompact, ω-Čech-complete,
and strongly Choquet complete, namely that there is a dense Gδ-subset E ⊆ R with E ⊆ S ∪ T . In Section 6 we list a family
of open questions.

Throughout this paper, R, P and Q will denote the sets of real, irrational, and rational numbers with the usual ordering,
and Z will denote the set of all integers (positive, negative, and zero). We will use the symbol < for the ordering of [0,ω1)

as well as for the ordering of R, and context will make it clear which is meant in a given situation. We reserve the symbol
≺ for the ordering of Bush(S, T ). For f ,h ∈ Bush(S, T ) we will use the symbol ( f ,h) to denote {g ∈ Bush(S, T ): f ≺ g ≺ h}
and if s, t ∈ R we will use (s, t) for the usual open interval of real numbers. Context will make it clear whether a given
interval is in Bush(S, T ) or in R.

We want to thank the referee for his insightful suggestions the substantially improved our paper.

1 It is possible to use other kinds of disjoint subsets of a different linearly ordered space in the Bush(S, T ) construction, obtaining spaces with quite
different properties.
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2. Technical lemmas

In this section, we present the basic tools concerning the interplay between the order topology of Bush(S, T ) and the
sets B( f , ε) defined in the Introduction, where S and T are disjoint subsets of R. Some results need density of S and T
and others do not. At the end of the section, we describe a useful new base of open sets for Bush(S, T ).

Lemma 2.1. If S and T are disjoint subsets of R, then B( f , ε) is convex.

Proof. It will be enough to show that if f ≺ g ≺ h with h ∈ B( f , ε), then g ∈ B( f , ε). The case where h ≺ g ≺ f is analogous.
Compute the ordinals δ( f , g), δ( f ,h), and δ(g,h) as defined in the Introduction. Let α := lv( f ). Because f (β) is not defined
if β > α, we must have δ( f , g) � α and δ( f ,h) � α. Because h ∈ B( f , ε) we know that h|[0,α) = f |[0,α) and therefore
δ( f ,h) � α. Consequently δ( f ,h) = α and we have f (α) < h(α) < f (α) + ε .

Now consider δ( f , g). As noted above, δ( f , g) � α. We claim that δ( f , g) < α is impossible. For suppose δ( f , g) < α.
Then for each γ < δ( f , g) we have g(γ ) = f (γ ) = h(γ ) while h(δ( f , g)) = f (δ( f , g)) < g(δ( f , g)). Consequently δ(g,h) =
δ( f , g) and we have h ≺ g , contrary to f ≺ g ≺ h. Therefore δ( f , g) < α cannot occur and we have δ( f , g) = α. Then
we have g|[0,α) = f |[0,α) = h|[0,α) and f (α) < g(α). If g(α) = h(α) then we have f (α) < g(α) = h(α) < f (α) + ε so that
g ∈ B( f , ε) as claimed. If g(α) �= h(α), then δ(g,h) = α so that f ≺ g ≺ h gives f (α) < g(α) < h(α) < f (α) + ε , and once
again we have g ∈ B( f , ε). �
Lemma 2.2. If S and T are disjoint subsets of R such that S ∪ T is dense in R, then B( f , ε) is a neighborhood of f in the open interval
topology of Bush(S, T ).

Proof. We will find h ∈ Bush(S, T ) with f ≺ h and [ f ,h) ⊆ B( f , ε) where [ f ,h) denotes an interval in the ordering ≺ of
Bush(S, T ). Finding an interval (g, f ] ⊆ B( f , ε) is analogous. Let α = lv( f ).

Because S ∪ T is dense in R, (S ∪ T ) ∩ ( f (α), f (α) + ε) �= ∅. If there is some t0 ∈ T ∩ ( f (α), f (α) + ε), then we
define a function h by h(β) = f (β) for all β < α and h(α) = t0. Then h ∈ B( f , ε) so that, by Lemma 2.1, we have
[ f ,h) ⊆ B( f , ε).

If no such t0 exists, then there is some s1 ∈ S ∩ ( f (α), f (α) + ε). Choose any t1 ∈ T and define h(β) = f (β) if β < α,
h(α) = s1, and h(α + 1) = t1. Then h ∈ Bush(S, T ) and h ∈ B( f , ε) so that Lemma 2.1 completes the proof. �
Lemma 2.3. If S and T are disjoint subsets of R and S ∪ T is dense in R, then {B( f , ε): ε > 0} is a neighborhood base for the open
interval neighborhoods of f .

Proof. Suppose u ≺ f ≺ v where u, f , v ∈ Bush(S, T ). We must find some ε > 0 with B( f , ε) ⊆ (u, v). It will be enough
to find some ε′ > 0 with B( f , ε′) ∩ [ f ,→) ⊆ [ f , v). Analogously we find some ε′′ > 0 with B( f , ε′′) ∩ (←, f ] ⊆ (u, f ], and
then let ε := min(ε′, ε′′).

We know that f ≺ v . Compute α := lv( f ) and δ f v := δ( f , v). Then δ f v � α and for each γ < δ f v we have f (γ ) = v(γ )

and f (δ f v) < v(δ f v). If δ f v < α then B( f ,1) ∩ [ f ,→) ⊆ [ f , v) because any member g ∈ B( f ,1) agrees with f for every
γ < α so we have g(γ ) = f (γ ) = v(γ ) for each γ < δ f g and g(δ f v) = f (δ f v) < v(δ f v). Next consider the case where
δ f v = α. Then f (γ ) = v(γ ) for each γ < α and f (α) < v(α). Find ε′ > 0 with f (α) + ε′ < v(α). Then B( f , ε′) ∩ [ f ,→) ⊆
[ f , v) as required.

At this stage we know that B( f , ε) is a neighborhood of f for every f ∈ Bush(S, T ). Fix f and ε > 0 and consider any
h ∈ B( f , ε). Then lv( f ) � lv(h). If lv( f ) < lv(h), then h ∈ Int(B(h,1)) ⊆ B(h,1) ⊆ B( f , ε). And if α := lv( f ) = lv(h), then
|h(α) − f (α)| < ε so there is a δ > 0 with (h(α) − δ,h(α) + δ) ⊆ ( f (α) − ε, f (α) + ε). Then h ∈ Int(B(h, δ)) ⊆ B(h, δ) ⊆
B( f , ε), as required. �

Our next example shows what can happen if S ∪ T is not dense in R: the sets B( f , ε) might not be a base of open
neighborhoods at f . (However, the sets B( f , ε) are convex, and therefore could be used as a base for a generalized ordered
space topology on Bush(S, T ), and that might also be interesting to study.)

Example 2.4. Suppose S is the set of even integers and T is the set of odd integers. Define f (k) = 2 for k < ω and f (ω) = 3.
Then f ∈ Bush(S, T ) and B( f , 1

2 ) = { f } even though f is not isolated in the open interval topology of Bush(S, T ).

Proof. Clearly {3} = ( f (ω) − 1
2 , f (ω) + 1

2 ) ∩ (S ∪ T ) so that B( f , 1
2 ) = { f }. If this set were open in the open-interval topol-

ogy, then there would be some h ∈ Bush(S, T ) with f ≺ h and the interval ( f ,h) = ∅. Let δ be the first ordinal β with
f (β) �= h(β). Then δ � ω and f (δ) < h(δ). In case δ < ω define g(k) = f (k) for each k < ω and g(ω) = f (ω) + 2. Then
g ∈ ( f ,h) = ∅, which is impossible. Therefore δ = ω and we have 3 = f (ω) < h(ω) ∈ T so that h(ω) � 5. Define g(k) = f (k)

for all k < ω, g(ω) = 4, and g(ω + 1) = 3. Then g ∈ Bush(S, T ) and g ∈ ( f ,h) = ∅, which is impossible. �
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Even stranger things happen in the lexicographic order topology if S and T have endpoints. For example, if O :=
{2n + 1 ∈ Z: n � 0} and E := {2n: n ∈ Z} then one of Bush(E, O ) and Bush(O , E) is first countable, while the other is
not.

Lemma 2.5. If S and T are disjoint subsets of R such that S is dense in R, then for each B( f , ε) there is some g ∈ B( f , ε) with
lv(g) = lv( f ) + 1 > lv( f ) and B(g,1) ⊆ B( f , ε).

Proof. Let α := lv( f ). Because S is dense in R, S ∩ ( f (α), f (α)+ε) �= ∅. Choose s1 ∈ ( f (α), f (α)+ε) and choose any t1 ∈ T .
Define g(β) = f (β) for all β < α, g(α) = s1 and g(α + 1) = t1. Then g ∈ B( f , ε) and lv(g) > lv( f ), as required. �

Notice that in Lemma 2.5 we could have arranged for lv(g) to be arbitrarily larger than lv( f ). For example, we could
have defined g(β) = f (β) for all β < α, g(β) = s1 for α � β < α +ω, and g(α +ω) = t1. Also, note that Example 2.4 shows
that Lemma 2.5 needs density of S .

It is important to have a different way to describe the basic open sets in Bush(S, T ). Suppose α < ω1. Let Sα be the set
of all functions s̄ : [0,α) → S . For s̄ ∈ Sα and a function f we will write s̄ ⊆ f to mean that f (β) = s̄(β) for each β < α. Let
J be any open interval in R and let

C(s̄, J ) := {
g ∈ Bush(S, T ): s̄ ⊆ g and g(α) ∈ J

}
.

The next lemma describes the relationship between the sets C(s̄, J ) and B( f , ε).

Lemma 2.6. Suppose S and T are disjoint dense subsets of R. For each α < ω1 let C(α) := {C(s̄, J ): s̄ ∈ Sα and J = (a,b) ⊆ R}. Then
C := ⋃{C(α): α < ω1} is a base of open sets for Bush(S, T ).

Proof. First consider a fixed set C(s̄, J ) where s̄ ∈ Sα . For each t ∈ J ∩ T define a function ft : [0,α] → S ∪ T by
s̄ ⊆ ft and ft(α) = t . Find εt > 0 with (t − εt , t + εt) ⊆ J . Clearly

⋃{B( ft , εt): t ∈ T ∩ J } ⊆ C(s̄, J ). To prove that
C(s̄, J ) ⊆ ⋃{B( ft , εt): t ∈ T ∩ J } fix g ∈ C(s̄. J ). Then g(β) = s(β) for each β < α and g(α) ∈ J . Find t0 ∈ J ∩ T and εt0 > 0
with g(α) ∈ (t0 − εt0 , t0 + εt0 ) ⊆ J . Define ft0 (β) = s̄(β) if β < α, and ft0 (α) = t0. Then g ∈ B( ft0 , εt0 ) ⊆ ⋃{B( ft , εt): t ∈
T ∩ J }. Therefore

⋃{B( ft , εt): t ∈ T ∩ J } = C(s̄, J ) showing that C(s̄, J ) is an open set. Next consider any B( f , ε) where
f ∈ Bush(S, T ) and ε > 0. Suppose that the domain of f is [0, β]. Let s̄ = f |[0,β) and let J = ( f (β) − ε, f (β) + ε) ⊆ R. Then
B( f , ε) = C(s̄, J ). Because the sets B( f , ε) form a base for Bush(S, T ), so do the sets C(s̄, J ). �

The alternate base described in Lemma 2.6 is important because it allows us to restrict the sets J used in C(s̄, J ) to
belong to certain special collections of subsets of R. For example, let J0 be a countable collection of open intervals whose
endpoints belong to S and which contains a neighborhood base at each point of T . Then, as we will show in Proposition 3.1,
the collection {C(s̄, J ): α < ω1, s̄ ∈ Sα, J ∈ J0} is a point-countable base of clopen sets for the space Bush(S, T ).

Lemma 2.7. Suppose S and T are disjoint sets in R and S ∪ T is dense in R. If J = (x, y) ⊆ R with x, y ∈ S, then each C(s̄, J ) is closed
in Bush(S, T ).

Proof. Fix s̄ ∈ Sα and suppose f ∈ Bush(S, T ) with f /∈ C(s̄, J ). Let β := lv( f ). Because S ∪ T is dense in R, Lemma 2.2
shows that it will be enough to find some B( f , ε) that is disjoint from C(s̄, J ). There are three cases to consider, depending
upon how α and β are related.

Case 1: Suppose β < α. Then s̄(β) ∈ S while f (β) ∈ T so there is an ε with |s̄(β) − f (β)| > ε > 0. Let g ∈ B( f , ε). Then
|g(β) − f (β)| < ε so that g(β) �= s̄(β) and g /∈ C(s̄, J ). Therefore B( f , ε) ∩ C(s̄, J ) = ∅, as required to complete Case 1.

Case 2: Suppose β = α. Because f /∈ C(s̄, J ) either s̄ � f or else s̄ ⊆ f and f (α) /∈ J . If s̄ � f then there is some γ < α = β

with s̄(γ ) �= f (γ ). But then each g ∈ B( f ,1) has g(γ ) = f (γ ) �= s̄(γ ) so that g /∈ C(s̄, J ) and hence B( f ,1) ∩ C(s̄, J ) = ∅.
If s̄ ⊆ f , then f (α) /∈ J . Then s̄ = f |[0,α) and, because f (α) ∈ T while x, y ∈ S , there is a positive ε such that ( f (α) − ε,

f (α) + ε) ∩ (x, y) = ∅. But then B( f , ε) ∩ C(s̄, J ) = ∅ and this completes Case 2.

Case 3: Suppose α < β . Because f /∈ C(s̄, J ) either s̄ � f or else f (α) /∈ J . Consider B( f ,1) and suppose g ∈ B( f ,1)∩C(s̄, J ).
Then lv(g) � lv( f ) = β > α and g|[0,β) = f |[0,β) . Because s̄ ⊆ g we have s̄ ⊆ g|[0,β) so that s̄ ⊆ f , and therefore f (α) /∈ J .
But then α < β gives g(α) = f (α) /∈ J so g /∈ C(s̄, J ) which is impossible and this completes Case 3. �
3. Properties that Bush(S, T ) must have

Being a linearly ordered topological space (LOTS), Bush(S, T ) has strong normality properties such as hereditary collec-
tionwise normality and monotone normality [14]. In this section, we investigate other properties that Bush(S, T ) must have,
provided S and T are disjoint dense subsets of R.



1518 H. Bennett et al. / Topology and its Applications 159 (2012) 1514–1528

Proposition 3.1. If S and T are disjoint dense subsets of R, then Bush(S, T ) has a point-countable base.

Proof. This result appears in [2] for the space Bush(P,Q). The proof in the more general case is essentially the same. Let
J0 be a countable collection of open intervals that is a base for the usual topology of R. Let

C := {
C(s̄, J ): α < ω1, s̄ ∈ Sα and J ∈ J0

}
.

Then C is a base for Bush(S, T ). Suppose g ∈ Bush(S, T ). Find α = lv(g). If g ∈ C(s̄, J ) ∈ C , then s̄ ⊆ g , so that the domain of
s̄ is an initial segment of [0,α). Consequently the set of all s̄ for which g ∈ C(s̄, J ) is countable, and for each such s̄ there
are only countably many J ∈ J0. Hence g belongs to at most countably many members of C , as required. �
Corollary 3.2. If S and T are disjoint dense subsets of R, the space Bush(S, T ) is hereditarily paracompact.

Proof. Any LOTS with a point-countable base is hereditarily paracompact. One proof of that fact involves the hereditary
paracompactness characterization in [8] combined with the fact that no stationary subset of an uncountable regular initial
ordinal can have a point-countable base. �

Recall that any paracompact, locally metrizable space is metrizable [7]. This allows us to prove a corollary that will
contrast with some results in the next section.

Corollary 3.3. If S and T are disjoint dense subsets of R, then Bush(S, T ) is the union of ω1-many metrizable subspaces.

Proof. We know that Bush(S, T ) is hereditarily paracompact. For each α < ω1, consider the subspace X(α) defined in the
Introduction. The subspace X(α) consists of all f ∈ Bush(S, T ) with lv( f ) = α, i.e., where the domain of f is [0,α] with
f (β) ∈ S for each β < α and f (α) ∈ T . Write s̄ := f |[0,α); we will call s̄ the stem of f . Consider the relatively open set
G(s̄) := C(s̄,R) ∩ X(α) of X(α). Then f ∈ G(s̄) so the sets G(s̄) cover X(α). Note that every g ∈ G(s̄) has stem s̄ and has
g(α) is an arbitrary element of T . This gives a natural 1–1 function from G(s̄) onto T , and that natural function is a home-
omorphism. Thus X(α) is locally metrizable. Being paracompact, X(α) is metrizable, and Bush(S, T ) = ⋃{X(α): α < ω1}, as
required. �

Note that |Bush(S, T )| = 2ω so that if ω1 = 2ω then Bush(S, T ) is the union of ω1-many closed metrizable subspaces,
namely its singleton subsets. We do not know whether Bush(S, T ) is the union of ω1-many closed metrizable subspaces if
ω1 < 2ω .

Proposition 3.4. Suppose that S and T are disjoint dense subsets of R. Then Bush(S, T ) has cellularity = 2ω .

Proof. Because |Bush(S, T )| = 2ω , the cellularity of Bush(S, T ) is at most 2ω . To construct 2ω-many pairwise disjoint
open sets in Bush(S, T ), note that |S|ω = 2ω and fix any t0 ∈ T . Let J0 = (t0 − 1, t0 + 1) and consider the collection
D := {C(s̄, Jo): s̄ ∈ Sω}. If f ∈ C(s̄1, J0) ∩ C(s̄2, J0), then s̄1(k) = f (k) = s̄2(k) for each k ∈ ω, so that s̄1 = s̄2 and hence
C(s̄1, J0) = C(s̄2, J0). Therefore D is a pairwise disjoint collection of cardinality 2ω . �

Recall that a topological space X is non-Archimedean if it has a base C of open sets such that if C1, C2 ∈ C have
C1 ∩ C2 �= ∅, then either C1 ⊆ C2 or C2 ⊆ C1.

Proposition 3.5. If S and T are disjoint dense subsets of R, then Bush(S, T ) is non-Archimedean.

Proof. First we construct some special collections of open intervals of R. Let {s(n): n ∈ Z} ⊆ S such that s(n) < s(n + 1)

and |s(n + 1) − s(n)| < 1 for each n ∈ Z, and such that the set {s(n): n ∈ Z} is both co-initial and cofinal in R. Let J (1) :=
{(sn, sn+1): n ∈ Z}. Note that T ⊆ ⋃

J (1). Inside of each (s(n), s(n + 1)) choose a set {s(n,m): m � 1} ⊆ S having s(n,m) <

s(n,m + 1) and |s(n,m + 1) − s(n,m)| < 1
2 for each m ∈ Z and such that {s(n,m): m ∈ Z} is both cofinal and co-initial in

(s(n), s(n + 1)). Let J (2) := {(s(n,m), s(n,m + 1)): n,m ∈ Z}. Then J (2) is a pairwise disjoint collection of open intervals
each with length < 1

2 , with the property that T ⊆ ⋃
J (2) and with the property that if J i ∈ J (i), then either J1 ∩ J2 = ∅

or else J2 ⊆ J1. Continuing recursively, we obtain a collection J := ⋃{J (n): n � 1} that is a base at each point of T and
has the property that if J1, J2 ∈ J have J1 ∩ J2 �= ∅ then one of J1 and J2 is contained in the other.

For α < ω1, let C(α) := {C(s̄, J ): J ∈ J , s̄ ∈ Sα} and let C := ⋃{C(α): α < ω1}. Then C is a base for Bush(S, T ). Suppose
C(s̄i, J i) ∈ C for i = 1,2 and suppose h ∈ C(s̄1, J1) ∩ C(s̄2, J2). Then for some αi , the domain of s̄i is [0,αi). Without loss of
generality, we may assume α1 � α2.

In case α1 = α2, we know that if β < α1 = α2 we have s̄1(β) = h(β) = s̄2(β) so that s̄1 = s̄2. We also know that
h(α1) ∈ J1 and h(α1) = h(α2) ∈ J2. Therefore J1 ∩ J2 �= ∅ so that one of J1 and J2 is contained in the other. Hence one of
C(s̄1, J1) and C(s̄2, J2) is contained in the other.
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In case α1 < α2, for each β < α1 we have h(β) = s̄1(β) and h(β) = s̄2(β) so that s̄2 extends s̄1. We also have h ∈ C(s̄2, J2)

so that α1 < α2 yields h(α1) = s̄2(α1). But h ∈ C(s̄1, J1) implies h(α1) ∈ J1. Now consider any g ∈ C(s̄2, J2). Because α1 < α2
we have g(α1) = s̄2(α1) = h(α1) ∈ J1. In addition, g|[0,α2) = s̄2 so that g|[0,α1) = s̄2|[0,α1) = s̄1. Therefore g ∈ C(s̄2, J2) so
that we have C(s̄2, J2) ⊆ C(s̄1, J1). Once again we see that one of C(s̄1, J1) and C(s̄2, J2) must be contained in the other,
as claimed. �

The next lemma is due to Nyikos (Lemma 1.6 in [23]) and is the key to the proof that Bush(S, T ) has some very strong
monotonic covering properties, defined below.

Lemma 3.6. Any non-Archimedean space has a base D for its open sets with the following two properties:

(a) if D1, D2 ∈ D and D1 ∩ D2 �= ∅, then D1 ⊆ D2 or D2 ⊆ D1;
(b) there is no infinite sequence 〈Dn〉 of distinct members of D having Dn ⊆ Dn+1 for each n � 1.

We say that a topological space X is monotonically ultra-paracompact if there is a function m (called a monotone ultra-
paracompactness operator) such that:

(i) if U is an open cover of X , then m(U ) is a pairwise disjoint open cover of X that refines U ; and
(ii) if U and V are open covers of X with U refining V , then m(U ) refines m(V ).

If the pairwise disjointness condition in the above definition is changed to the requirement that each m(U ) must be point-
finite (respectively countable or finite), then one has the definition of monotonically metacompact (respectively, monotonically
Lindelöf or monotonically compact).

Proposition 3.7. Any non-Archimedean space is monotonically ultra-paracompact.

Proof. Let D be a base for the non-Archimedean space X as described in Lemma 3.6. For any open cover U of X , let
DU := {D ∈ D: for some U ∈ U , D ⊆ U }. Then each member of D U is contained in some maximal member (with respect
to set inclusion) of that same collection, for otherwise we could create an increasing infinite sequence of distinct members
of D. Let m(U ) be the collection of all maximal members of D(U ). Then m(U ) is an open cover of X . Suppose x ∈ D1 ∩ D2
where D1, D2 ∈ m(U ). Because D1 ∩ D2 �= ∅, one is contained in the other, say D1 ⊆ D2. But then D1 is not a maximal
member of D(U ) so that D1 /∈ m(U ), and that is impossible. Therefore, m(U ) is pairwise disjoint. If U refines an open cover
V of X , it is clear that m(U ) refines m(V ), so the proof is complete. �
Corollary 3.8. If S and T are disjoint dense subsets of R, the space Bush(S, T ) is monotonically ultra-paracompact and therefore
monotonically metacompact in the sense of [5].

Proof. Combine Propositions 3.5 and 3.7. �
The referee pointed out other important topological classes to which Bush(S, T ) must belong.

Proposition 3.9. If S and T are disjoint dense subsets of R then Bush(S, T ) is a non-Archimedean quasi-metric space (and hence a
γ -space).

Proof. See Gruenhage’s Handbook chapter [12] for relevant definitions. The paper [20] also contains a good survey of these
ideas.

A theorem of Ribeiro [25] characterizes quasi-metrizable spaces as being those T1-spaces X such that each x ∈ X has a
neighborhood base {U (n, x): n � 1} with the property that if y ∈ U (n + 1, x) then U (n + 1, y) ⊆ U (n, x). For f ∈ Bush(S, T ),
it is easy to check that the sets U (n, f ) := B( f , 1

2n ) have the required property. Hence Bush(S, T ) is quasi-metrizable.
(To define γ -spaces, weaken Ribeiro’s condition to “for each U (n, x) there is an m such that if y ∈ U (m, x), then U (m, y) ⊆
U (n, x)”. Obviously, any quasi-metrizable space is a γ -space.)

To complete the proof, we invoke a theorem of Gruenhage from [13]: Any paracompact γ -space with an orthobase must
be non-Archimedean quasi-metrizable. (A base C is an orthobase if for each D ⊆ C , either

⋂
D is open or else D contains a

neighborhood base at each of its points.) The base C constructed in Proposition 3.5 has the property that if C1, C2 ∈ C then
either C1 ∩ C2 = ∅ or else one of C1, C2 contains the other, and any such base is an orthobase. From Proposition 3.2, we
know that Bush(S, T ) is paracompact, and now Gruenhage’s theorem applies. �

Recall that a topological space X is a Baire space if
⋂{G(n): n � 1} is dense in X whenever each G(n) is a dense open

subset of X . The Baire space property is not particularly well-behaved (e.g., the product of two metrizable Baire spaces can
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fail to be a Baire space [10]) and consequently many types of spaces have been created with the additional property that any
finite product of such spaces is a Baire space (see [27] and [1]). Among these is a family of “almost completeness properties”
(see [1]) that describe the existence of pseudo-bases2 with various kinds of completeness. One of the strongest of these
almost completeness properties is a property called “almost countable base-compactness”. A space X is almost countably
base-compact if there is a pseudo-base P for X with the property that if {Pn: n � 1} is a countable centered subcollection
of P , i.e., a countable collection of non-empty sets with the finite intersection property, then

⋂{clX (Pn): n � 1} �= ∅.
A weaker property is Oxtoby’s pseudo-completeness [24] which (in regular spaces) requires a sequence 〈P (n)〉 of pseudo-
bases such that if Pn ∈ P (n) has clX (P (n + 1)) ⊆ P (n) then

⋂{Pn: n � 1} �= ∅. Still weaker is a property related to the
Banach–Mazur game G(X) in a space X . Recall that in the Banach–Mazur game, Players (I) and (II) alternate choosing non-
empty open sets U1, U2, U3, . . . with Un+1 ⊆ Un for each n. Player (II) wins the game if

⋂{Un: n � 1} �= ∅. Whether
Player (II) wins a particular play of G(X) is less important than whether Player (II) has a winning strategy in G(X). A space X
is said to be weakly α-favorable [27] (also called Choquet complete in [18]) if Player (II) has a winning strategy in G(X) where
a winning strategy for Player (II) is a function σ that tells Player (II) how to choose U2n given the previously chosen sets
U1, U2, . . . , U2n−1, with the guarantee that in any sequence U1, U2, U3, . . . where U2n = σ(U1, U2, . . . , U2n−1) for each n,
Player (II) will win. There are variations on this game, depending upon how much information Player (II)’s strategy uses
to define U2n . As originally defined, Player (II)’s winning strategy in a weakly α-favorable space is allowed to use the
entire history of the game and was described as a winning strategy that uses perfect information. At the other extreme,
if Player (II)’s winning strategy uses nothing but the previous move by Player (I) to define Player (II)’s response, then the
strategy is said to be a stationary winning strategy.

Proposition 3.10. For any pair S and T of disjoint dense subsets of R, the space Bush(S, T ) is almost countably base-compact and
therefore pseudo-complete in the sense of Oxtoby [24], weakly α-favorable with stationary winning strategies, and is a Baire space.

Proof. For any S ⊆ R let Ŝ := ⋃{Sα: α < ω1}. For each s̄ ∈ Ŝ let C(s̄,R) := { f ∈ Bush(S, T ): s̄ ⊆ f }. Then each C(s̄,R) is an
open (and closed) subset of Bush(S, T ). Let P := {C(s̄,R): s̄ ∈ Ŝ}.

To show that P is a pseudo-base for Bush(S, T ), consider any B( f , ε). Let α = lv( f ). Using density of S , choose some
s0 ∈ S ∩ ( f (α)− ε, f (α)+ ε) and define s̄(δ) = f (δ) whenever δ < α and s̄(α) = s0. Then s̄ ∈ Ŝ and C(s̄,R) ⊆ B( f , ε). Hence

P is a pseudo-base for Bush(S, T ).
Next, suppose that Pn = C(s̄n,R) is a centered sequence of distinct members of P . From Pm ∩ Pn �= ∅ we conclude that

either s̄m ⊆ s̄n or vice versa. Consequently we obtain a function s̄∞ ∈ Ŝ if we let s̄∞ := ⋃{s̄n: n � 1}. Then ∅ �= C(s̄∞,R) ⊆⋂{Pn: n � 1}, as required to show that P is an almost base-compact base for Bush(S, T ).
Clearly any almost base-compact space is pseudo-complete in the sense of Oxtoby. In addition, any almost base-compact

space is weakly α-favorable where Player (II) has the following stationary winning strategy: given any non-empty open
set U , Player (II) chooses any σ(U ) from the almost base-compact pseudo-base P with σ(U ) ⊆ clX (σ (U )) ⊆ U . Finally, as
already noted, any weakly-α-favorable space is a Baire space. �

In [15], R. Hodel introduced the α-space property, defined as follows: for each n � 1 and each point x ∈ X there is an
open neighborhood g(n, x) of x such that

⋂{g(n, x): n � 1} = {x} and such that if y ∈ g(n, x) then g(n, y) ⊆ g(n, x). He
showed that this property is a component of metrizability.

Proposition 3.11. Suppose that S and T are disjoint dense subsets of R. Then Bush(S, T ) is an α-space.

Proof. Use the collections J (n) constructed in the proof of Proposition 3.5. The key properties of the collections J (n) for
this proof are:

(i) T ⊆ ⋃
J (n) for each n;

(ii) if J ∈ J (n) then the diameter of J is less than 1
n ; and

(iii) the collection J (n) is pairwise disjoint.

For each f ∈ Bush(S, T ), let α = α( f ) be the level of f and define stem( f ) = f |[0,α) . Because f (α) ∈ T , there is a unique
J (n, f ) ∈ J (n) with f (α) ∈ J (n, f ). Let g(n, f ) = C(stem( f ), J (n, f )). In the light of (ii), if h ∈ ⋂{g(n, f ): n � 1} then
lv(h) � α and h(α) ∈ J ( f ,n) so that |h(α) − f (α)| < 1

n for each n, and therefore h(α) = f (α) ∈ T . Therefore lv(h) = α
and h = f , which verifies that Bush(S, T ) satisfies the first part of the α-space definition. Next suppose h ∈ g(m, f ) for
some fixed m. Then lv(h) � lv( f ) = α. If lv(h) > α, then g(m,h) ⊆ g(m, f ) is automatic. If lv(h) = α, then the fact that
h ∈ C(stem( f ), J (m, f )) guarantees that stem(h) = stem( f ) and h(α) ∈ J (m, f ). But then J (m, f ) is the unique element of

J (m) that contains h(α) so that J (m,h) = J (m, f ). Hence g(m,h) = C(stem(h), J (m,h)) = C(stem( f ), J (m, f )) = g(m, f ) as
required to show that Bush(S, T ) is an α-space. �

2 A collection P of non-empty open sets of a space X is a pseudo-base for X if for each non-empty open set U , some P ∈ P has P ⊆ U . Another term
for pseudo-base is π -base.
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4. Some properties that Bush(S, T ) cannot have

In the previous section, we showed that if S and T are disjoint dense subsets of R, then Bush(S, T ) is (hereditarily)
paracompact. In contrast, we have:

Lemma 4.1. If S and T are disjoint dense subsets of R, then Bush(S, T ) is not Lindelöf and not ℵ1-compact.

Proof. Fix s∗ ∈ S and t∗ ∈ T , and let J be a collection of open intervals in R such that T ⊆ ⋃
J ⊆ R − {s∗}. Let

U := {C(s̄, J ): α < ω1, s̄ ∈ Sα, and J ∈ J }. Then U is an open cover of Bush(S, T ). Suppose U0 := {C(s̄n, Jn): n � 1} is
a countable subcollection of U . For each n, the domain of s̄n is some initial segment [0,αn) of ω1. Let β be any countable
ordinal that is larger than each αn . Define a function f by the rule that f (γ ) = s∗ for each γ < β and f (β) = t∗ . Then
f ∈ Bush(S, T ). If f ∈ C(s̄n, Jn) for some n, then f |[0,αn) = s̄n and f (αn) ∈ Jn , contrary to f (αn) = s∗ /∈ ⋃

J . Hence the
subcollection U0 cannot cover all of Bush(S, T ).

Because any paracompact ℵ1-compact space is Lindelöf, it follows from Proposition 3.2 that Bush(S, T ) cannot be ℵ1-
compact. �

Recall that a set D in a space X is relatively discrete if for each x ∈ D , some open set U (x) has U (x) ∩ D = {x}. A set is
σ -relatively discrete if it is the union of countably many relatively discrete sets.

Lemma 4.2. If S and T are disjoint dense subsets of R, then Bush(S, T ) does not have a σ -relatively discrete dense subset.

Proof. For contradiction, suppose D = ⋃{D(n): n � 1} is a σ -relatively-discrete dense subset of Bush(S, T ). Fix s0 ∈ S
and t1 ∈ T . Then the function f1(0) = s0, f1(1) = t1 belongs to Bush(S, T ) and B( f1,1) is an open neighborhood of f1.
Let n1 be the first integer such that B( f1,1) ∩ D(n1) �= ∅ and choose d1 ∈ B( f1,1) ∩ D(n1). There is some neighborhood
B(d1, ε1) ⊆ B( f1,1) with the property that B(d1, ε1) ∩ D(n1) = {d1} because D(n1) is relatively discrete. Find f2 ∈ B(d1, ε1)

with lv( f2) > lv(d1). Then B( f2,1) ⊆ B(d1, ε1) ⊆ B( f1,1). Let n2 be the first integer such that B( f2,1) ∩ D(n2) �= ∅ and
choose d2 ∈ B( f2,1)∩ D(n2). Because d2 ∈ B( f2,1)∩ D(n2) ⊆ B( f1,1)∩ D(n2) we must have n1 � n2. We claim that n1 < n2.
For suppose n1 = n2. Then d2 ∈ B( f2,1) ∩ D(n2) = B( f2,1) ∩ D(n1) ⊆ B(d1, ε1) ∩ D(n1) = {d1} so that d2 = d1. But that is
impossible because lv(d2) � lv( f2) > lv(d1), and hence n1 < n2 as claimed. Recursively define fk,nk,dk, εk , and fk+1 such
that:

(i) lv( fk+1) > lv(dk) � lv( fk);
(ii) B( fk+1,1) ⊆ B(dk, εk) ⊆ B( fk,1);

(iii) nk+1 is the first integer i such that B( fk,1) ∩ D(i) �= ∅ and dk+1 ∈ B( fk,1) ∩ D(nk+1), and n1 < n2 < · · · ;
(iv) B(dk, εk) ∩ D(nk) = {dk}.

Notice that if β < lv( fk) then fk(β) = fk+1(β). Write α := sup{lv( fk): k � 1}. Choose any t ∈ T and define h : [0,α] →
S ∪ T by the rule h(β) = fk(β) whenever β < lv( fk), and h(α) = t . Then h ∈ Bush(S, T ) and h ∈ ⋂{B( fk,1): k � 1}. In
fact, B(h,1) ⊆ ⋂{B( fk,1): k � 1}. Because D is dense in Bush(S, T ) there is some m so that B(h,1) ∩ D(m) �= ∅. But then
∅ �= B(h,1) ∩ D(m) ⊆ D(m) ∩ B( fk,1) for each k so that m � nk for each k and that is impossible because the sequence 〈nk〉
is a strictly increasing sequence of positive integers. �

In [5] Bennett, Hart, and Lutzer studied a property called monotone (countable) metacompactness in LOTS and general-
ized ordered spaces that contain σ -relatively discrete dense subsets. The fact that Bush(S, T ) has no σ -relatively-discrete
dense subset and yet is monotonically metacompact shows that there is work left to be done in order to characterize
monotone (countable) metacompactness among linearly ordered spaces.

Recall that a space X is quasi-developable if there is a sequence 〈G(n)〉 of collections of open sets such that if U is
open and x ∈ U , then some n = n(x, U ) has x ∈ St(x, G(n)) ⊆ U . The following theorem of Bennett [3,4] shows that quasi-
developability has a special role to play in LOTS:

Theorem 4.3. Let X be a LOTS. Then the following are equivalent:

(1) X has a σ -disjoint base;
(2) X has a σ -point-finite base;
(3) X is quasi-developable.

Corollary 4.4. If S and T are disjoint dense subsets of R, then Bush(S, T ) is not quasi-developable, does not have a σ -point-finite base,
and does not have a σ -disjoint base, even though Bush(S, T ) has a point-countable base.
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Proof. Any space with a σ -disjoint base has a dense subset that is σ -relatively-discrete. Now combine Theorem 4.3 with
Lemma 4.2 and Proposition 3.1. �
Corollary 4.5. Suppose S and T are disjoint dense subsets of R. Then Bush(S, T ) has no dense metrizable subspace.

Proof. Any dense metrizable subspace would contain a dense σ -relatively discrete subspace, which is impossible by
Lemma 4.2. �

Because Bush(S, T ) has no dense σ -relatively discrete subspace, Bush(S, T ) cannot be the union of countably many
relatively discrete subsets and is not the union of countably many metrizable subspaces. However, as noted in Corollary 3.3,
if S and T are disjoint dense subsets of R, then Bush(S, T ) is the union of ω1-many metrizable subspaces.

Recall that a topological space X is perfect if each closed set is a Gδ-set in X . It is easy to describe subsets of Bush(S, T )

that are closed and not Gδ-sets, so that Bush(S, T ) is not perfect. However, a sharper result is available. Recall that a
topological space is weakly perfect if each closed subset C of X contains a set D having:

(a) D is a Gδ-subset of X ; and
(b) clX (D) = C , i.e., D is dense in C .

This property was introduced by Kocinac in [19]. Clearly every perfect space is weakly perfect. The converse if false, as can
be seen from the usual space of countable ordinals. A study of weakly perfect LOTS appears in [6].

Proposition 4.6. Suppose S and T are disjoint dense subsets of R. Then Bush(S, T ) is not weakly perfect.

Proof. Let F := { f ∈ Bush(S, T ): lv( f ) < ω}. Then F is a closed subset of Bush(S, T ). Because S is dense in R, we note that
if f ∈ F and ε > 0, then there is some g ∈ F ∩ B( f , ε) with lv( f ) < lv(g) < ω. (See Lemma 2.5.)

Suppose there is some subset K ⊆ F that is dense in F and is a Gδ-subset of Bush(S, T ), say K = ⋂{G(n): n � 1} where
each G(n) is open in Bush(S, T ). Fix any f1 ∈ K . Let m1 := lv( f1). Then f1 ∈ G(1) so there is some B( f1, δ1) ⊆ G(1). By
Lemma 2.5, there is some g1 ∈ B( f1, δ1) with m1 = lv( f1) < M1 where M1 := lv(g1) and M1 < ω. Then B(g1,1) ⊆ B( f1, δ1).
Because K is dense in F there is some f2 ∈ B(g1,1) ∩ K . Let m2 := lv( f2). Note that m2 � M1. Because f2 ∈ K ⊆ G(2) there
is some δ2 > 0 with B( f2, δ2) ⊆ G(2) ∩ B(g1,1). There is some g2 ∈ B( f2, δ2) with m2 = lv( f2) < lv(g2) < ω. Write M2 :=
lv(g2). Then B(g2,1) ⊆ B( f2, δ2) ⊆ G(2) and g2 ∈ F . This recursion continues, producing functions fn ∈ K , gn ∈ F with mn =
lv( fn) < lv(gn) = Mn and Mn � mn+1, and positive numbers δn with B(gn,1) ⊆ B( fn, δn)∩ G(n) and B( fn+1, δn+1) ⊆ B(gn,1).
Notice that because M1 < M2 < · · · , if i < ω then there is a j(i) > i such that whenever k � j(i) we have gk(i) = g j(i)(i).
Define a function h by the rule that h(i) = g j(i)(i) and h(ω) = t0 where t0 is any fixed element of T . Then h ∈ B(gi,1) ⊆ G(i)
for each i so that h ∈ ⋂{G(i): i < ω} = K ⊆ F . But lv(h) = ω so that h /∈ F and that contradiction completes the proof. �

The study of special types of bases (point-countable, σ -point-finite, σ -disjoint bases, and quasi-developments) is one
major theme in metrization theory. A second major theme is the study of a cluster of properties such as the p-space
and the base of countable order properties of A. Arhangelskii, the M-space property of K. Morita, the σ -space property of
A. Okuyama, the Σ-space property of K. Nagami, the semistratifiable space property of G. Creede and the β-space property
of R. Hodel. The definitions of these properties are too extensive to reproduce here and interested readers should consult
[12,7] or [22]. Our next result shows that Bush(S, T ) cannot have any of these properties provided S and T are disjoint
dense subsets of R.

Proposition 4.7. If S and T are disjoint dense subsets of R, then Bush(S, T ) cannot have any of the following properties:

(a) a Gδ-diagonal;
(b) the p-space property;
(c) the M-space property;
(d) the Σ-space property;
(e) the σ -space property;
(f) the semistratifiable-space property;
(g) the β-space property;
(h) a base of countable order.

Proof. Any LOTS with a Gδ-diagonal is metrizable [21], so that Bush(S, T ) cannot have a Gδ-diagonal. From Proposition 3.1
and Corollary 3.2 we know that Bush(S, T ) has a point-countable base and is hereditarily paracompact. V. Filippov [9]
proved that a paracompact p-space with a point-countable base must be metrizable. Therefore Bush(S, T ) cannot be a
p-space. Among paracompact spaces, the p-space and M-space properties are equivalent, so that Bush(S, T ) cannot be an
M-space. Because any Σ-space with a point-countable base is developable [26] and any developable LOTS is metrizable,
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Bush(S, T ) cannot be a Σ-space. Because any semistratifiable space is perfect, Proposition 4.6 shows that Bush(S, T ) cannot
be semistratifiable. In Theorem 5.2 of [15], Hodel proved that any regular space that is both an α-space and a β-space
must be semistratifiable. We know that Bush(S, T ) is not semistratifiable and (from Proposition 3.11) that Bush(S, T ) is an
α-space. Hence Bush(S, T ) cannot be a β-space. Finally, Bush(S, T ) cannot have a base of countable order (BCO) because
any paracompact space with a BCO is metrizable. �

The referee pointed out that results of Hodel [16,17] provide alternate proofs and some extensions of the results in
Proposition 4.7. For example, Hodel proved that every space that is both β and γ must be developable, and therefore
Bush(S, T ) cannot be a β space. But then Bush(S, T ) cannot be semistratifiable, a σ -space, a Σ-space, a Σ#-space, a w�-
space or an M space, because each of those spaces is a β-space.

In the next section we will show that Bush(S, T ) can sometimes have certain completeness properties that require that
certain countable collections have non-empty intersections. They are called ω-Čech completeness, countable regular co-
compactness, countable base compactness, and countable subcompactness, and definitions will be given in the next section.
Each of these countable completeness properties has an analog that does not include a cardinality restriction, and we close
this section by showing that Bush(S, T ) never has the unrestricted completeness property. We begin with Čech completeness
which can be characterized as follows among completely regular spaces: there is a sequence 〈G(n)〉 of open covers of X
such that

⋂
F �= ∅ whenever F is a centered collection of non-empty closed sets with the property that for each n some

Fn ∈ F and some Gn ∈ G(n) have Fn ⊆ Gn .

Corollary 4.8. Let S and T be disjoint dense subsets of R. Then Bush(S, T ) cannot be Čech-complete.

Proof. Any Čech-complete space is a p-space in the sense of Arhangelskii. Now apply part (b) of Proposition 4.7. �
Of the three properties regular co-compactness, base-compactness, and subcompactness, the third is the weakest. Sub-

compactness was introduced by J. de Groot [11]. Recall that a space X is subcompact if there is a base B for the open sets
of X such that

⋂
F �= ∅ whenever F ⊆ B is a regular filter base.3 The base B is called a subcompact base for X .

Proposition 4.9. If S and T are disjoint dense subsets of R, then Bush(S, T ) is not subcompact.

Proof. Suppose there is a subcompact base D for Bush(S, T ). Fix any f0 ∈ Bush(S, T ) and consider B( f0,1). Choose D(0) ∈ D
with f0 ∈ D(0) ⊆ cl(D(0)) ⊆ B( f0,1). Find ε0 > 0 with f0 ∈ B( f0, ε0) ⊆ D(0). Using Lemma 2.5 choose f1 ∈ B( f0, ε0) with
lv( f1) > lv( f0). Then B( f1,1) ⊆ B( f0, ε0) ⊆ D(0). Choose D(1) ∈ D with f1 ∈ D(1) ⊆ cl(D(1)) ⊆ B( f1,1) and then ε1 > 0
such that B( f1, ε1) ⊆ D(1). For induction hypothesis, suppose α < ω1 and suppose we have chosen fβ , D(β) ∈ D, and
εβ > 0 such that if β < γ < α, then

(a) lv( fγ ) > lv( fβ) � β ,
(b) B( fγ ,1) ⊆ B( fβ, εβ) ⊆ D(β),
(c) D(γ ) ⊆ cl(D(γ )) ⊆ D(β).

In case α = β + 1 the construction of fα , D(α) and εα parallels the construction of f1, D(1), and ε1. In case α is a limit
ordinal, write αβ = lv( fβ) whenever β < α. Define fα(γ ) = fαβ (γ ) whenever γ < αβ and let fα(α) be any element of T .
Then B( fα,1) ⊆ B( fβ, εβ) ⊆ D(β) for each β < α. Find D(α) ∈ D with fα ∈ D(α) ⊆ cl(D(α)) ⊆ B( fα,1) and then εα > 0
with B( fα, εα) ⊆ D(α). This recursion defines a collection F := {D(α): α < ω1} that is a regular filter base, so that the set⋂

F �= ∅. But any h ∈ ⋂
F has lv(h) � lv( fα) � α for each α < ω1 and that is impossible. �

5. Properties that Bush(S, T ) might have

In this section we will show that there are topological properties that the space Bush(S, T ) might or might not have,
depending upon the choice of the sets S and T . Consequences of our results appear in Example 5.3 and Example 5.6 showing
that there are many situations in which Bush(S, T ) can fail to be homeomorphic to Bush(T , S). In addition, we show that
the example machine Bush(S, T ) can be used to study how various strong completeness properties introduced by Choquet,
de Groot, and Oxtoby are interrelated.

Proposition 5.1. Suppose S and T are disjoint dense subsets of R. Then Bush(S, T ) has a separable subspace of cardinality |T | and no
separable subspace of Bush(S, T ) has cardinality > |T |.

3 A collection F of non-empty sets is a regular filter base provided whenever F1, F2 ∈ F some F3 ∈ F has clX (F3) ⊆ F1 ∩ F2.
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Proof. Fix an s0 ∈ S and let X := { ft : t ∈ T } where ft(0) = s0 and ft(1) = t . Then X ⊆ Bush(S, T ) and X is homeomorphic
to the subspace T of R, so that X is a separable subspace of cardinality |T |.

Next suppose that Y is a separable subspace of Bush(S, T ). We will show that |Y | � |T |. Let { fn: n � 1} be a countable
dense subset of Y . Let αn = lv( fn). Notice that [0,αn] has only countably many initial segments, namely the intervals [0, β)

for β < αn . If σ : [0, β) → S and t ∈ T , then σ ∗ t denotes the function that agrees with σ on [0, β) and maps β to t . Hence
σ ∗ t ∈ Bush(S, T ). Let

Z := {σ ∗ t: n � 1, σ is an initial segment of fn, and t ∈ T }.
Then |Z | = |T |. Consider any g ∈ Y and write γ := lv(g). The set B(g,1) := {h ∈ Bush(S, T ): stem(g) ⊆ stem(h) and |g(γ ) −
h(γ )| < 1} is an open neighborhood of g and therefore must contain some point fn . But then stem(g) is an initial segment
of stem( fn) and g(γ ) ∈ T so that g ∈ Z . Hence Y ⊆ Z showing that |Y | � |Z | = |T |, as required. �
Corollary 5.2. Suppose S and T are disjoint dense subsets of R with |S| �= |T |. Then Bush(S, T ) is not homeomorphic to Bush(T , S).

Proof. Without loss of generality, suppose |S| < |T |. Then Bush(S, T ) contains a separable subspace of cardinality |T |
and every separable subspace of Bush(T , S) has cardinality � |S| < |T |. Hence Bush(S, T ) cannot be homeomorphic to
Bush(T , S). �
Example 5.3. The spaces Bush(P,Q) and Bush(Q,P) cannot be homeomorphic.

In the remainder of this section, we will consider various completeness properties that are stronger than being a Baire
space. Recall [1] that a space X is:

(a) countably regularly co-compact if there is a base B of open sets such that if C ⊆ B is countable and if {clX (C): C ∈ C} is
centered4 then

⋂{clX (C): C ∈ C} �= ∅;
(b) countably base compact if there is a base B of open sets for X such that if C ⊆ B is a countable centered collection, then⋂{cl(C): C ∈ C} �= ∅.

Proposition 5.4. Suppose S and T are disjoint dense subsets of R. Then the following are equivalent:

(i) there is a dense Gδ-subset D of R having T ⊆ D ⊆ S ∪ T ;
(ii) Bush(S, T ) is countably regularly co-compact;

(iii) Bush(S, T ) is countably base-compact.

Proof. Clearly (ii) ⇒ (iii), so it is enough to prove (i) ⇒ (ii) and (iii) → (i).
To show that (i) ⇒ (ii) suppose that there is a dense Gδ-subset D of R with T ⊆ D ⊆ S ∪ T . Write D = ⋂{G(n): n � 1}

where each G(n) is open in R and G(n + 1) ⊆ G(n) for each n. We will recursively apply the following general con-
struction. Suppose W is a pairwise disjoint collection of open intervals in R with T ⊆ ⋃

W and suppose n � 1 is
fixed. For each W ∈ W , use density of S to choose points s(W ,k) ∈ S ∩ W for k ∈ Z in such a way that s(W ,k) <

s(W ,k + 1) < s(W ,k) + 1
n and such that the set {s(W ,k): k ∈ Z} is both co-initial and cofinal in W . Let Πn(W ) :=

{(s(W ,k), s(W ,k + 1)): W ∈ W , k ∈ Z}. Note that Πn(W ) is a pairwise disjoint collection with the property that if
V ∈ Πn(W ) then there is a unique W ∈ W with V ∩ W �= ∅, and for that W we have clR(V ) ⊆ W . Note that T ⊆ ⋃

Πn(W )

and note that the set S ′ := {s(W ,k): W ∈ W , k ∈ Z} is nowhere dense in R. Consequently, S − S ′ is a dense subset of R,
something that will be important when we apply the Πn construction recursively.

Let W (1) be the collection of convex components of the set G(1) and define L(1) := Π1(W (1)). Note T ⊆ ⋃
L1 because

S ∩ T = ∅. Let W (2) be the collection of all convex components of the set G(2) ∩ (
⋃

L(1)). Define L(2) := Π2(W (2)). In
general, given L(n), let W (n + 1) be the collection of all convex components of the set G(n + 1) ∩ (

⋃
L(n)) and define

L(n + 1) := Πn+1(W (n + 1)). Let L := ⋃{L(n): n � 1}.
Let C := {C(s̄, L): α < ω1, s̄ ∈ Sα, and L ∈ L}. Because T ⊆ ⋃

L(n) for each n and members of L(n) have diame-
ter at most 1

n , it is clear that L contains a base in R at each point of T and that the collection C is a base for
Bush(S, T ). Also, in the light of Lemma 2.7, each member of C is both open and closed (because the endpoints of mem-
bers of L were points of S). Therefore, to establish (ii), what we must show is that for any countable centered collection

C0 := {C(s̄n, Ln): n � 1} ⊆ C , we have
⋂{C(s̄n, Ln): n � 1} �= ∅. (Because the sets C(s̄, L) are clopen by Lemma 2.7, we omit

the closure operator.) For each n � 1 there is an αn < ω1 such that the domain of s̄n is the set [0,αn). There are two cases
to consider.

In the first case, the set {αn: n � 1} has no largest member. In that case, let β = sup{αn: n � 1}. Consider any γ < β . If
it happens that γ < αn and γ < αm then the fact that C(s̄m, Lm) ∩ C(s̄n, Ln) �= ∅ shows that s̄m(γ ) = s̄n(γ ) so that we may

4 A collection of non-empty sets is centered if it has the finite intersection property.
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define a function h by h(γ ) = s̄n(γ ) whenever γ < αn , and h(β) = t0 where t0 is any chosen member of T . The resulting h
is in Bush(S, T ), and h ∈ C(s̄n, Ln) for each n � 1 as required.

In the second case, the set {αn: n � 1} has a largest member, say αM . Fix any i with αi < αM . We know that C(s̄i, Li) ∩
C(s̄M , LM) �= ∅ because the collection C0 is centered. Choose hi ∈ C(s̄i, Li) ∩ C(s̄M , LM) and note that s̄i ⊆ hi and s̄M ⊆ hi .
Because [0,αi) ⊆ [0,αM) we know that s̄i ⊆ s̄M and s̄M(αi) = hi(αi) ∈ Li , so that C(s̄M , LM) ⊆ C(s̄i, Li). Consequently, to
show that

⋂
C0 �= ∅, it is enough to show that

⋂{C(s̄i, Li): αi = αM} �= ∅. Let IM := {i: αi = αM} and notice that if i ∈ IM
then s̄i = s̄M so that the fact that C(s̄i, Li) ∩ C(s̄M , LM) �= ∅ guarantees that LM ∩ Li �= ∅. Consequently, the special properties
of L guarantee that either clR(Li) ⊆ LM or clR(LM) ⊆ Li so that the collection {Li: i ∈ IM} is linearly ordered by inclusion
(indeed, by “inclusion of closures”). Therefore the set K := ⋂{Li: i ∈ IM} is a non-empty convex set of real numbers. If the
set K ∩ T �= ∅, choose any t1 ∈ K ∩ T . Then the function h1 defined by h1(γ ) = s̄M(γ ) when γ < αM and h1(αM) = t1 is
in Bush(S, T ) and has h1 ∈ ⋂

C0. If the set K ∩ T = ∅, then because T is dense in R, the set K must have diameter zero.
But then the set IM must be infinite and the sets Li for i ∈ IM must come from infinitely many different collections Ln so
that G(n + 1) ⊆ G(n) guarantees that K ⊆ ⋂{G(n): n � 1} = D ⊆ S ∪ T . Because K ∩ T = ∅ we must have K ∩ S = {s2} for
some s2 ∈ S . Choose any t2 ∈ T and define h2(γ ) = s̄M(γ ) if γ < αM , h2(αM) = s2, and h2(αM + 1) = t2. Then h2 ∈ ⋂

C0 as
required to establish (ii).

To complete the proof we show that (iii) ⇒ (i). We first use the Πn-process described above to construct collections
J (n) as in the proof of Proposition 3.5. Recall that for k ∈ Z, we chose points s(k) ∈ S with s(k) < s(k + 1) < s(k) + 1 and
such that the set {s(k): k ∈ Z} is both co-initial and cofinal in R. Let J (1) = {(s(k), s(k + 1)): k ∈ Z}. Let J (2) := Π2(J (1))

and in general let J (n + 1) := Πn+1(J (n)). Note that for each n we have T ⊆ ⋃
J (n).

Suppose D is a base for Bush(S, T ) that satisfies the countable base-compactness definition. Fix f ∈ Bush(S, T ), compute
α := lv( f ) and let s̄ := f |[0,α) . For each t ∈ T let ft(γ ) = s̄(γ ) if γ < α, and ft(α) = t . Let N(1, t) = 1 and let J (1, t)
be the unique member of J (1) that contains t . Then ft ∈ C(s̄, K (1, t)). Find D(1, t) ∈ D with ft ∈ D(1, t) ⊆ cl(D(1, t)) ⊆
C(s̄, J (1, t)). Using the fact that each member of J (n) has diameter less that 1

n , find the first integer N(2, t) > N(1, t)
with the property that some J (2, t) ∈ J (N(2, t)) has ft ∈ C(s̄, J (2, t)). Find D(3, t) ∈ D with ft ∈ D(3, t) ⊆ cl(D(3, t)) ⊆
C(s̄, J (2, t)). Then find the first integer N(3, t) > N(2, t) such that some member J (3, t) ∈ J (N(3, t)) has ft ∈ C(s̄, J (3, t)) ⊆
D(3, t). This recursion continues, producing integers N(i, t) � i, sets J (i, t) ∈ J (N(i, t)), and sets D(i, t) ∈ D with ft ∈
C(s̄, J (i, t)) ⊆ D(i, t) ⊆ cl(D(i, t)) ⊆ C(s̄, J (i − 1, t)) whenever i − 1 � 1.

For each i � 1, define G(i) := ⋃{ J (i, t): t ∈ T }. Then T ⊆ G(i). Write D := ⋂{G(i): i � 1}. We have T ⊆ D so it remains
only to prove that D ⊆ S ∪ T . To that end, let z ∈ D . For each i � 1 there is some ti ∈ T and some interval J (i, ti) with
z ∈ J (i, ti). Consider the collection D0 := {D(i, ti): i � 1}. We claim this collection is centered. To verify that assertion, fix
any integer K . Then z ∈ ⋂{ J (i, ti): i � K }. Because we have only K -many open intervals and know that their intersection is
non-void, we may use density of the set T to choose some t3 ∈ T ∩(

⋂{ J (i, ti): i � K }). Define a function h3 by h3(γ ) = s̄(γ )

if γ < α and h3(α) = t3. Then h3 ∈ Bush(S, T ) and h3 ∈ C(s̄, J (i, ti)) ⊆ D(i, ti) for i � J , showing that h3 ∈ ⋂{D(i, ti): i � K }.
Consequently the collection D0 is centered, so there is some function h4 ∈ ⋂{cl(D(i, ti)): i � 1}. But cl(D(i + 1), ti+1)) ⊆
D(i, ti) ⊆ C(s̄, J (i, ti)) for each i so we have s̄ ⊆ h4 showing that lv(h4) � α. Hence h4(α) must be defined and h4(α) ∈
S ∪ T .

At this point, we know that h4(α) ∈ J (i, ti) for each i, and that z ∈ J (i, ti). Furthermore, we know that J (i, ti) ∈
J (N(i, ti)) where N(i, ti) � i so that |h4(α) − z| < diam( J (i, ti)) � 1

i . It follows that z = h4(α) ∈ S ∪ T , as required to
complete the proof that (iii) ⇒ (i). �
Corollary 5.5. Suppose S and T are disjoint dense subsets of R and that S ∪ T is a Gδ-subset of R. Then both Bush(S, T ) and Bush(T , S)

are countably regularly co-compact. In particular Bush(P,Q) and Bush(Q,P) are countably regularly co-compact.

In Corollary 5.2 we saw that if S and T are disjoint dense subsets of R with different cardinalities, then Bush(S, T )

cannot be homeomorphic to Bush(T , S). Proposition 5.4 allows us to construct two disjoint dense subsets S and T of R
such that Bush(S, T ) and Bush(T , S) are not homeomorphic even though S and T both have cardinality 2ω .

Example 5.6. There exist disjoint dense subsets S and T of R, each with cardinality 2ω , such that Bush(S, T ) is countably
base-compact while Bush(T , S) is not. Therefore Bush(S, T ) and Bush(T , S) are not homeomorphic.

Proof. Let A be any Bernstein set5 and let B = R − A. Let D be any dense Gδ-subset of R with R − D uncountable. Then
D contains a Cantor set C . Let Kx := {x} × C . Then {Kx: x ∈ C} has cardinality 2ω and is a collection of pairwise disjoint
uncountable compact subsets of C × C . Because C × C is homeomorphic to C , it follows that D contains a pairwise disjoint
collection K of uncountable compact subsets of D , with |K| = 2ω . Consequently the sets A, B, A ∩ D , and B ∩ D each have
cardinality 2ω .

Because the uncountable set R − D has R − D = (A − D) ∪ (B − D), one of the sets A − D and B − D is uncountable.
Without loss of generality, assume B − D is uncountable. Let S := A and T := D ∩ B . Then T ⊆ D ⊆ S ∪ T so that Bush(S, T )

is countably base-compact, in the light of Proposition 5.4.

5 A subset A of R is a Bernstein set in R provided both A and R − A meet each uncountable compact subset of R.
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For contradiction, suppose there is a dense Gδ-subset E ⊆ R having S ⊆ E ⊆ S ∪ T . The definitions of S and T yield
A ⊆ E ⊆ A ∪ (B ∩ D) ⊆ A ∪ (B ∩ D) ∪ (B − D) and the three sets A, (B ∩ D), and (B − D) are pairwise disjoint. Therefore

(B − D) ⊆ R − (
A ∪ (B ∩ D)

) ⊆ R − E,

showing that R − E is uncountable. Because R − E is an Fσ -subset of R we may write R − E = ⋃{C(n): n � 1} where
each C(n) is compact. Then there must be some n0 such that C(n0) is both compact and uncountable. But A ⊆ E so that
C(n0) ⊆ R − E ⊆ R − A and that is impossible because A is a Bernstein set. Therefore, no dense Gδ-subset E ⊆ R has
S ⊆ E ⊆ S ∪ T , so that Proposition 5.4 shows that Bush(T , S) is not countably base compact. Therefore Bush(S, T ) and
Bush(T , S) are not homeomorphic. �

In addition to countable regular co-compactness and countable base-compactness defined above, there are other com-
pleteness properties that Bush(S, T ) might, or might not, have. Recall that a space X is:

(c) countably subcompact if there is a base B of open sets for X such that
⋂

F �= ∅ whenever F ⊆ B is a countable regular
filter base (as defined in the previous section).

(d) ω-Čech-complete if there is a sequence 〈G(n)〉 of open covers of X such that
⋂

F �= ∅ whenever F is a countable
centered collection of closed sets such that for each n � 1 there is some Fn ∈ F and Gn ∈ G(n) having Fn ⊆ Gn .

(e) strongly Choquet complete if Player (II) has a winning strategy in the strong Choquet game Ch(X) in which Player (I)
specifies a pair (x1, U1) with x1 being a point of the open set U1, then Player (II) specifies an open set U2
with x1 ∈ U2 ⊆ U1, then Player (I) specifies a pair (x3, U3) where x3 ∈ U3 ⊆ U2 with U3 being open, etc.
Player (II) wins if

⋂{Un: n � 1} �= ∅. A winning strategy for Player (II) is a function σ that computes U2k :=
σ((x1, U1), U2, . . . , (x2k−1, U2k−1)) and guarantees that

⋂{Un: n � 1} �= ∅ for any sequence (x1, U1), U2, (x3, U3), . . .

provided U2n = σ((x1, U1), U2, . . . , (x2k−1, U2k−1)). If σ uses only the pair (x2k−1, U2k−1) to compute U2k , then we say
that σ is a stationary winning strategy for Player (II) in Ch(X).

Properties (a) through (c) are countable strong completeness properties originally introduced by J. de Groot and his col-
leagues in Amsterdam and now called “countable Amsterdam properties”. See [1] for a survey. Property (e) is due to
Choquet, and property (d) is a natural modification of a property that Frolik used to characterize Čech completeness (see
Theorem 3.9.2 in [7]).

In an earlier draft of this paper, we used the term “countably Čech complete” as the name for property (d). Unfortunately,
that term already appears in the literature (see [1]) and means “there is a sequence 〈B(n)〉 of bases for X with the property
that if n1 < n2 < · · · and if B(ni) ∈ B(ni) are such that {B(ni): i � 1} is centered collection, then

⋂{cl(B(ni)): i � 1} �= ∅”.
It is easy to see that in a regular space, ω-Čech complete as defined in (d) implies countably Čech complete in the sense
of [1], but the two properties are not equivalent, as the space (P, σ ) shows, where σ is the usual Sorgenfrey topology on
the set P of all irrational numbers.

Clearly (a) ⇒ (b) ⇒ (c) and we have:

Lemma 5.7. If X is either countably subcompact or ω-Čech-complete, then X is strongly Choquet complete, and Player (II) has a
stationary winning strategy in the strong Choquet game Ch(X).

Proof. Suppose X is ω-Čech complete and 〈G(n)〉 is the sequence of open covers in the definition of ω-Čech completeness.
We define a stationary winning strategy for Player (II) as follows. Let (x, U ) be any pair with x ∈ U where U is open. There
are two cases:

(i) if there is a first positive integer n such that U is not a subset of any member of G(n), then we choose any G(n, x) ∈ G(n)

with x ∈ G(n, x) and let σ(x, U ) be any open set with x ∈ σ(x, U ) ⊆ clX (σ (x, U )) ⊆ U ∩ G(n, x);
(ii) if (i) does not hold, then for each n � 1, U is a subset of some member of G(n), and we let σ(x, U ) be any open set

with x ∈ σ(x, U ) ⊆ clX (σ (x, U )) ⊆ U .

Using the stationary strategy σ , Player (II) is guaranteed to win Ch(X). The proof for a countably subcompact space is even
easier. �

We do not see how to modify the proof of Proposition 5.4 to show that if Bush(S, T ) is countably subcompact, then
there is a Gδ-subset D of R with T ⊆ D ⊆ S ∪ T . The problem is to show that the collection D0 in the proof of (iii) ⇒ (i)
will be a regular filter base, rather than merely a centered collection. However, we can obtain some necessary conditions
for Bush(S, T ) to have properties (c), (d), or (e).

The proof of our next theorem uses the Banach–Mazur game G(Y ) in a subspace Y of R. See the paragraph before
Proposition 3.10 for a general description of the game. In our proof, the two players alternate choosing non-empty relatively
open subsets of Y in the sequence Y ∩ W1, Y ∩ W2, Y ∩ W3, . . . subject to the requirement each Wn is open in R and that
Y ∩ Wn+1 ⊆ Y ∩ Wn for each n � 1. (In fact we will have Wn+1 ⊆ Wn .) Recall that Player (II) wins if

⋂{Y ∩ Wn: n � 1} �= ∅
and Player (I) wins otherwise. See Section 3 for definitions of winning strategy for Player (II) and weakly α-favorable [27].
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Proposition 5.8. If S and T are disjoint dense subsets of R and if Bush(S, T ) is countably subcompact, ω-Čech complete, or strong
Choquet complete, then S ∪ T contains a dense, completely metrizable subspace (equivalently, there is a dense Gδ-subspace E ⊆ R
with E ⊆ S ∪ T ).

Proof. In the light of Lemma 5.7, it will be enough to consider the case where Bush(S, T ) is strongly Choquet complete.
Write Y := S ∪ T . In the rest of the proof, we will have two simultaneous games going on, one being the Banach–Mazur
game G(Y ) and the other being the strong Choquet game in Bush(S, T ). To keep the players separate, we will use subscripts:
the players in Ch(Bush(S, T )) will be called (I)B and (II)B while the players in G(Y ) will be called (I)Y and (II)Y . We will
suppose that Player (II)B has a winning strategy σ in Ch(Bush(S, T )). Player (II)Y will exploit that winning strategy in
Ch(Bush(S, T )) to define a winning strategy in G(Y ).

Construct K = ⋃{K(n): n � 1} as in the proof of Proposition 5.4. The key properties of K that we will use are:

(a) each K(n) is a pairwise disjoint family of open intervals in R, and for each K ∈ K(n) the endpoints of K are in S and
the diameter if K is < 1

n ;
(b) if Ki ∈ K(ni) with ni �= n j for i = 1,2 and if K1 ∩ K2 �= ∅, then either clR(Ki) ⊆ K j or else clR(K j) ⊆ Ki ;
(c) for each n � 1, T ⊆ ⋃

K(n).

Now suppose that Player (I)Y begins the game G(Y ) by proposing the non-empty open set W1 ∩ Y , where W1 is open
in R. Player (II)Y fixes α and s̄ ∈ Sα and, using density of T , chooses some t1 ∈ W1 ∩ T . Then Player (II)Y chooses some K1 ∈
K(n1) with t1 ∈ K1 ⊆ W1. Player (II)Y defines a function f1 ∈ Bush(S, T ) by f1|[0,α) = s̄ and f1(α) = t1. Then f1 ∈ C(s̄, K1)

and Player (II)Y proposes the pair ( f1, U1) as the first move in Ch(Bush(S, T )) where U1 = C(s̄, K1). Using the winning
strategy σ in Ch(Bush(S, T )), Player (II)B computes the set U2 := σ(( f1, U1)) that has f1 ∈ U2 ⊆ U1. Player (II)Y finds some
K2 ∈ K(n2) with n2 > n1 and with f1 ∈ C(s̄, K2) ⊆ σ(( f1, U1)) ⊆ U1 = C(s̄, K1) and notes that C(s̄, K2) ⊆ C(s̄, K1) yields
K2 ⊆ K1. Player (II)Y now defines τ (W1) := Y ∩ K2 and we have W2 = K2 ∩ Y ⊆ K1 ∩ Y ⊆ W1 ∩ Y .

With the sets W1 ∩ Y and W2 ∩ Y defined, suppose that Player (I)Y responds by specifying the set W3 ∩ Y where
W3 ⊆ W2. Using density of T , Player (II)Y chooses some point t3 ∈ W3 ∩ T and some K3 ∈ K(n3) with n3 > n2 and with
t3 ∈ K3 ⊆ W3. Then Player (II)Y defines a function f3 by f3|[0,α) = s̄ and f3(α) = t3. We have f3 ∈ C(s̄, J3) ⊆ C(s̄, J2) ⊆ U2,
where U2 is the set chosen using strategy σ in the previous paragraph, so that if Player (II)Y lets U3 := C(s̄, K3) then
( f1, U1), U2, ( f3, U3) is a legitimate initial segment in the game Ch(Bush(S, T )). Player (II)B uses the winning strategy σ to
compute the set U4 := σ(( f1, U1), U2, ( f3, U3)) with f3 ∈ U4 ⊆ U3. Player (II)Y chooses some K4 ∈ K(n4) with n4 > n3 and
with f3 ∈ C(s̄, K4) ⊆ U4, and notes that C(s̄, K4) ⊆ U4 ⊆ U3 = C(s̄, K3) which forces K4 ⊆ K3 ⊆ W3. Then Player (II)Y defines
W4 = τ (W1 ∩ Y , W2 ∩ Y , W3 ∩ Y ) := K4 ∩ Y and this completes another round in the game G(Y ).

This alternation between moves in G(Y ) and corresponding moves in Ch(Bush(S, T )) continues recursively, generating a
nested sequence W1, W2 = K2, W3, W4 = K4, . . . of open sets in R. Note that K2i ∈ K(n2i) where n2i > n2i−2. Therefore the
set

⋂{W i: i � 1} = ⋂{K2i: i � 1} is non-empty. To complete the proof, we will show that
⋂{K2i: i � 1} ⊆ Y .

In Bush(S, T ) look at the sequence ( f1, U1), U2, ( f3, U3), U4, . . . . Because the sets U2i were chosen using the winning
strategy σ , we must have some function h ∈ ⋂{U2i+1: i � 1} ⊆ ⋂{C(s̄, K2i): i � 1}. Then s̄ ⊆ h so that h(α) must be
defined, and h(α) ∈ S ∪ T = Y . (However, we do not know whether h(α) ∈ S or h(α) ∈ T .) In addition, h(α) ∈ K2i and
K2i has length < 1

2i for each i so that h(α) is the unique point of the set
⋂{K2i: i � 1}. Therefore we have proved that⋂{K2i: i � 1} = {h(α)} ⊆ S ∪ T . Consequently, Player (II)Y has a winning strategy in the Banach Mazur game G(Y ).

At this point, we know that Player (II)Y has a strategy τ in G(Y ) that will always result in a non-empty intersection.
This proves that the space Y is what H.E. White [27] called weakly α-favorable and what A. Kechris called a Choquet space
in [18]. White and Oxtoby showed that a metrizable space is weakly α-favorable if and only if it has a dense, completely
metrizable subspace. (See Theorem 8.17 in [18].) Hence there is a dense subspace E ⊆ S ∪ T that is completely metrizable,
and therefore E is a dense Gδ-subset of R, as claimed. �
Example 5.9. (a) If S and T are disjoint countable dense subsets of R, then Bush(S, T ) is almost base-compact, pseudo-
complete, weakly α-favorable, and a Baire space but by Proposition 5.7 is not countably subcompact, not ω Čech complete,
and not strongly Choquet complete. (b) If S ⊆ R is a Bernstein set and if T = R − S , then by Proposition 5.4, Bush(S, T ) is
countably regularly co-compact. (c) Suppose S and T are disjoint dense subsets of R such that S ∪ T is a non-measurable
subset of R. Then Bush(S, T ) is not strongly Choquet complete, not countably subcompact, and not ω-Čech complete.

6. Questions

Question 6.1. Let S and T be disjoint dense subsets of R. Under what conditions is Bush(S, T ) homeomorphic to Bush(T , S)?
What if S and T are complementary Bernstein sets? (Note that in Example 5.6, S is a Bernstein set while T is part, but not
all, of the complementary Bernstein set.)

Question 6.2. Suppose ω1 < 2ω and suppose that S and T are disjoint dense subsets of R. Is Bush(S, T ) the union of
ω1-many closed metrizable subspaces?
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Question 6.3. Suppose that S and T are disjoint dense subsets of R. Under what conditions does Bush(S, T ) have a small
diagonal? (A space X has a small diagonal if for every uncountable subset A ⊆ X2 − {(x, x): x ∈ X} there is an open subset
W of X2 such that {(x, x): x ∈ X} ⊆ W and A − W is uncountable.)

Question 6.4. Find sets S and T that are disjoint dense subsets of R and for which Bush(S, T ) is countably subcompact but
not countably base compact.

Question 6.5. Suppose S and T are disjoint dense subsets of R. Characterize countable subcompactness, ω-Čech complete-
ness, and strong Choquet completeness of Bush(S, T ).

Question 6.6. Find other topological properties that Bush(S, T ) might or might not have, depending upon the choice of the
two disjoint dense subsets S and T of R.
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