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a b s t r a c t

A diffusive Holling–Tanner predator–prey model with no-flux boundary condition is
considered, and it is proved that the unique constant equilibrium is globally asymptotically
stable under a new simpler parameter condition.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In this work, we revisit a reaction–diffusion Holling–Tanner predator–prey model in the form given in [1]:

∂u
∂t

= d11u + au − u2
−

uv
m + u

, x ∈ Ω, t > 0,

∂v

∂t
= d21v + bv −

v2

γ u
, x ∈ Ω, t > 0,

∂u(x, t)
∂ν

=
∂v(x, t)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ (≢)0, x ∈ Ω.

(1.1)

Here u(x, t) and v(x, t) represent the density of prey and predators; respectively, x ∈ Ω ⊂ Rn, n ≥ 1, and Ω is a bounded
domainwith a smooth boundary ∂Ω; d1, d2 are the diffusion coefficients of prey and predators respectively; and parameters
a,m, b and γ are all positive constants; a no-flux boundary condition is imposed on ∂Ω so that the ecosystem is closed to
the exterior environment.

The (non-spatial) kinetic equation of system (1.1) was first proposed by Tanner [2] andMay [3], while Leslie [4] and Leslie
and Gower [5] consider a similar equation with unbounded predation rate. In (1.1), the predator functional response is of
Holling type II as in Holling [6]. The Holling–Tanner system is regarded as one of the prototypical predator–prey models in
several classical mathematical biology books; see, for example, May [3, p. 84] and Murray [7, pp. 88–94].
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Hsu and Huang [8] dealt with the question of global stability of the positive equilibrium in a class of predator–prey
systems including the ODE version of system (1.1) with certain conditions on the parameters, and in [9], they proved
the uniqueness of the limit cycle when the unique positive equilibrium is unstable. For diffusive system (1.1), Peng and
Wang [10] studied the existence/nonexistence of positive steady state solutions, and they [1] also proved a result on the
global stability of the positive constant steady state. Li et al. [11] considered the Turing andHopf bifurcations in (1.1). Related
work on a similar diffusive Leslie–Gower system can also be found in Du and Hsu [12], Chen et al. [13].

In this note, we prove a new global stability result for the constant positive equilibrium by using a comparison
method, and our result significantly improves the earlier one given in [10] which was established with the Lyapunov
method.

2. The main results

It is easy to verify that system (1.1) has a unique positive equilibrium (u∗, v∗), where

u∗ =
1
2
(a − m + bγ +


(a − m − bγ )2 + 4am), v = bγ u∗.

We recall the following known result from [1].

Theorem 2.1. Assume that the parameters m, a, b, γ , d1, d2 are all positive. Then for system (1.1):

1. The positive equilibrium (u∗, v∗) is locally asymptotically stable if

m2
+ 2(a + bγ )m + a2 − 2abγ ≥ 0. (2.1)

2. The positive equilibrium (u∗, v∗) is globally asymptotically stable if

m > bγ , and (m + K)[bγ + 2(m + u∗ + K − a)] > (a + m)bγ , (2.2)

where

K =
1
2


a − m +


(a − m)2 + 4a(m − bγ )


.

In [1], the local stability was established through a standard linearization procedure, and the global stability was proved by
using a Lyapunov functional. In this note, we prove the global stability under only the condition m > bγ but without the
second condition in (2.2); thus our result improves on the one in [1]. Our proof is based on the upper and lower solution
method in [14,15]. Our main result is stated as:

Theorem 2.2. Assume that the parameters m, a, b, γ , d1, d2 are all positive. Then for system (1.1), the positive equilibrium
(u∗, v∗) is globally asymptotically stable, that is, for any initial values u0(x) > 0, v0(x) ≥ (≢)0,

lim
t→∞

u(t, x) = u∗, lim
t→∞

v(t, x) = v∗, uniformly for x ∈ Ω,

if

m > bγ . (2.3)

Proof. It is well known that if c > 0, and w(x, t) > 0 satisfies the equation
∂w

∂t
= D1w + w(c − w), x ∈ Ω, t > 0,

∂w(t, x)
∂ν

= 0, x ∈ ∂Ω, t > 0,
w(x, 0) ≥ (≢)0, x ∈ Ω,

then w(x, t) → c uniformly for x ∈ Ω as t → ∞.
Since (2.3) holds, we can choose an ϵ0 satisfying

0 < ϵ0 <
bγ (m − bγ )a

bγ (bγ + 1) + mbγ + m
. (2.4)

Because u(x, t) satisfies

∂u
∂t

= d11u + au − u2
−

uv
m + u

≤ d11u + au − u2,
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and the Neumann boundary condition, then from comparison principle of parabolic equations, there exists t1 such that for
any t > t1, u(x, t) ≤ c1, where c1 = a + ϵ0. This in turn implies

∂v

∂t
= d21v + bv −

v2

γ u

≤ d21v + v


b −

v

γ (a + ϵ0)


for t > t1. Hence there exists t2 > t1 such that for any t > t2, v(x, t) ≤ c2, where c2 = bγ (a + ϵ0) + ϵ0. Again this implies

∂u
∂t

= d11u + au − u2
−

uv
m + u

≥ d11u + au − u2
−

bγ (a + ϵ0) + ϵ0

m
u,

for t > t2. Sincem > bγ , then for ϵ0 chosen as in (2.4),

a −
bγ (a + ϵ0) + ϵ0

m
> 0, and a −

bγ (a + ϵ0) + ϵ0

m
− ϵ0 > 0.

Hence there exists t3 > t2 such that for any t > t3, u(x, t) ≥ c1 > 0, where

c1 = a −
bγ (a + ϵ0) + ϵ0

m
− ϵ0.

Finally we apply the lower bound of u to the equation of v, and we have

∂v

∂t
= d21v + bv −

v2

γ u

≥ d21v + v


b −

v

γ c1


for t > t3. Since for the ϵ0 chosen above in (2.4),

bγ

a −

bγ (a + ϵ0) + ϵ0

m
− ϵ0


− ϵ0 > 0,

then there exists t4 > t3 such that for any t > t4, v(x, t) ≥ c2 > 0, where

c2 = bγ

a −

bγ (a + ϵ0) + ϵ0

m
− ϵ0


− ϵ0.

Therefore for t > t4 we obtain that

c1 ≤ u(x, t) ≤ c1, c2 ≤ v(x, t) ≤ c2,

and c1, c2, c1, c2 satisfy

0 ≥ a − c1 −
c2

m + c1
, 0 ≥ b −

c2
γ c1

,

0 ≤ a − c1 −
c2

m + c1
, 0 ≤ b −

c2
γ c1

.

(2.5)

The inequalities (2.5) show that (c1, c2) and (c1, c2) are a pair of coupled upper and lower solutions of system (1.1) as in
the definition in [14,15] (see also [16]), as the nonlinearities in (1.1) are mixed quasimonotone. It is clear that there exists
K > 0 such that for any (c1, c2) ≤ (u1, v1), (u2, v2) ≤ (c1, c2),au1 − u2

1 −
u1v1

m + u1
− au2 + u2

2 +
u2v2

m + u2

 ≤ K(|u1 − u2| + |v1 − v2|),bv1 −
v2
1

γ u1
− bv2 +

v2
2

γ u2

 ≤ K(|u1 − u2| + |v1 − v2|).

We define two iteration sequences (c(m)
1 , c(m)

2 ) and (c(m)
1 , c(m)

2 ) as follows: form ≥ 1,

c(m)
1 = c(m−1)

1 +
1
K


ac(m−1)

1 − (c(m−1)
1 )2 −

c(m−1)
1 c(m−1)

2

m + c(m−1)
1


,
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c(m)
2 = c(m−1)

2 +
1
K


bc(m−1)

2 −
(c(m−1)

2 )2

γ c(m−1)
1


,

c(m)
1 = c(m−1)

1 +
1
K


ac(m−1)

1 − (c(m−1)
1 )2 −

c(m−1)
1 c(m−1)

2

m + c(m−1)
1


,

c(m)
2 = c(m−1)

2 +
1
K


bc(m−1)

2 −
(c(m−1)

2 )2

γ c(m−1)
1


,

where (c01, c
0
2) = (c1, c2) and (c01, c

0
2) = (c1, c2). Then for m ≥ 1, (c1, c2) ≤ (c(m)

1 , c(m)
2 ) ≤ (c(m+1)

1 , c(m+1)
2 ) ≤

(c(m+1)
1 , c(m+1)

2 ) ≤ (c(m)
1 , c(m)

2 ) ≤ (c1, c2), and there exists (c̃1, c̃2) and (č1, č2) such that (c1, c2) ≤ (č1, č2) ≤ (c̃1, c̃2) ≤

(c1, c2), so limm→∞ cm1 = c̃1, limm→∞ c(m)
2 = c̃2, limm→∞ c(m)

1 = č1, limm→∞ c(m)
2 = č2 and

0 = a − c̃1 −
č2

m + c̃1
, 0 = b −

c̃2
γ c̃1

,

0 = a − č1 −
c̃2

m + č1
, 0 = b −

č2
γ č1

.

(2.6)

Simplifying (2.6) we obtain

(a − c̃1)(m + c̃1) = bγ č1,
(a − č1)(m + č1) = bγ c̃1.

(2.7)

Subtracting the first equation of (2.7) from the second equation, we have

(c̃1 − č1)(a − m + bγ − c̃1 − č1) = 0. (2.8)

If we assume that c̃1 ≠ č1, then

a − m + bγ = c̃1 + č1. (2.9)

Substituting equation (2.9) into (2.7), we have

(a − c̃1)(m + c̃1) = bγ (a − m + bγ − c̃1),
(a − č1)(m + č1) = bγ (a − m + bγ − č1).

(2.10)

Hence the following equation:

(a − x)(m + x) = bγ (a − m + bγ − x) (2.11)

has two positive roots c̃1 and č1. Eq. (2.11) can be written as follows:

x2 + (m − a − bγ )x + (bγ + a)(bγ − m) = 0.

Since m > bγ , Eq. (2.11) cannot have two positive roots. Hence c̃1 = č1, and consequently, c̃2 = č2. Then from the results
in [14,15], the solution (u(x, t), v(x, t)) of system (1.1) satisfies

lim
t→∞

u(t, x) = u∗, lim
t→∞

v(t, x) = v∗, uniformly for x ∈ Ω.

The conditionm > bγ implies thatm2
+ 2(a+ bγ )m+ a2 − 2abγ ≥ 0. Hence from Theorem 2.1 and the above analysis,

we can obtain that the constant equilibrium (u∗, v∗) is globally asymptotically stable for system (1.1) if (2.3) holds. �

For the diffusiveHolling–Tanner systemwith same kinetic equations, there are twoother versions of nondimensionalized
equations in [8,11]. Our result Theorem 2.2 can be applied to both equations with a conversion of the parameters. In [8] only
a system of ordinary differential equations was considered, but adding diffusion will cast the system in [8] into the form

∂u
∂t

= d11u + u(1 − u) −
uv

a + u
, x ∈ Ω, t > 0,

∂v

∂t
= d21v + v


δ − β

v

u


, x ∈ Ω, t > 0,

∂u(t, x)
∂ν

=
∂v(t, x)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ (≢)0, x ∈ Ω.

(2.12)
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In [8], for the corresponding kinetic system, it was proved that the positive equilibrium (u∗, v∗) is globally asymptotically
stable if one of the following assumptions is satisfied:
(C1) a + δ ≥ 1;
(C2) a + δ < 1, (1 − a − δ)2 − 8δ ≤ 0;
(C3) a + δ < 1, (1 − a − δ)2 − 8δ > 0, β > β2, where

β2 =
δa2

(1 − a2)(a + a2)
, a2 =

1
4
(1 − a − δ +


(1 − a − δ)2 − 8aδ).

Theorem 2.2 implies that if β > δ
a , then (u∗, v∗) is globally asymptotically stable for the diffusive Holling–Tanner system

(2.12). One can show that the parameter region given by β > δ
a is contained in the set given by (C1)–(C3). If a and δ

satisfy (C1) or (C2), then it is clear that β > δ
a is satisfied. If a and δ do not satisfy (C1) or (C2), then 0 < a + δ < 1, and

(1 − a − δ)2 − 8δ > 0. Hence

a2 =
1
4
(1 − a − δ +


(1 − a − δ)2 − 8aδ)

≤
1
2
(1 − a − δ) ≤

1
2
.

Consequently,

β2 =
δa2

(1 − a2)(a + a2)
<

δ

a + a2
<

δ

a
.

Hence in this case, β > δ
a implies (C3).

On the other hand, the diffusive Holling–Tanner system in [11] is in the form of

∂u
∂t

= d11u + u(1 − βu) −
muv
1 + u

, x ∈ Ω, t > 0,

∂v

∂t
= d21v + sv


1 −

v

u


, x ∈ Ω, t > 0,

∂u(t, x)
∂ν

=
∂v(t, x)

∂ν
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) ≥ 0, ≢ 0.

(2.13)

For the kinetics system corresponding to (2.13), it was shown in [11] (by using the result of [8]) that the positive equilibrium
(u∗, v∗) is globally asymptotically stable if

β ≥ 1, or β < 1, and m ≤
(1 + β)2

2(1 − β)2
. (2.14)

Now our Theorem 2.2 can be applied to (2.13), and we have proved that if β > m, then (u∗, v∗) is globally asymptotically
stable for (2.13). The parameter region of global stability for the ODE in [8,11] is larger than the one proved in Theorem 2.2
for the PDE case (the diffusion coefficients d1, d2 are arbitrary), but this is not unexpected as the global stability for an infinite
dimensional dynamical system is much more complex, as demonstrated in [17]. The parameterization of the system in [11]
is easier to show for the parameter regions of global stability in Theorem 2.2 and [11].
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