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The �þ�þ s-wave scattering phase shift is determined below the inelastic threshold using lattice QCD.

Calculations were performed at a pion mass of m� � 390 MeV with an anisotropic nf ¼ 2þ 1 clover

fermion discretization in four lattice volumes, with spatial extent L� 2:0, 2.5, 3.0 and 3.9 fm, and with a

lattice spacing of bs � 0:123 fm in the spatial direction and bt � bs=3:5 in the time direction. The phase

shift is determined from the energy eigenvalues of �þ�þ systems with both zero and nonzero total

momentum in the lattice volume using Lüscher’s method. Our calculations are precise enough to allow for

a determination of the threshold scattering parameters, the scattering length a, the effective range r, and

the shape parameter P, in this channel and to examine the prediction of two-flavor chiral perturbation

theory: m2
�ar ¼ 3þOðm2

�=�
2
�Þ. Chiral perturbation theory is used, with the lattice QCD results as input,

to predict the scattering phase shift (and threshold parameters) at the physical pion mass. Our results are

consistent with determinations from the Roy equations and with the existing experimental phase shift data.

DOI: 10.1103/PhysRevD.85.034505 PACS numbers: 12.38.Gc

I. INTRODUCTION

Pion-pion (��) scattering at low energies is the theo-
retically simplest and best-understood hadronic scattering
process. Its simplicity and tractability follow from the
pseudo-Goldstone boson nature of the pion, a consequence
of the spontaneously broken chiral symmetry of QCD,
which implies powerful constraints on its low-momentum
interactions. The amplitudes for �� scattering are
uniquely predicted at leading order (LO) in chiral pertur-
bation theory (�PT) [1]. Subleading orders in the chiral
expansion give rise to perturbatively-small deviations from
the LO determinations (for small pion masses), and contain
both calculable nonanalytic contributions and analytic
terms with low-energy constants (LEC’s) that cannot be
determined by chiral symmetry alone [2–4]. Fortunately,
lattice QCD calculations are reaching a level of precision
where statistically significant values of the LEC’s in the
I ¼ 2 (�þ�þ) channel are being calculated. Once the
LEC’s are obtained using unphysical lattice pion masses,
�PT can be used to predict the phase shift at the physical
pion mass to relatively high precision and with quantified
uncertainties. The current capability of lattice QCD—in
conjunction with �PT—to calculate �� scattering

parameters very accurately is important theoretically be-
cause Roy-equation [5–7] determinations of �� scattering
parameters, which use dispersion theory to relate scattering
data at high energies to the scattering amplitude near
threshold, have also reached a remarkable level of preci-
sion [8–10], and the results of the two methods can now be
compared and contrasted.
There have been independent lattice QCD determina-

tions of the �þ�þ scattering length; with three flavors
(nf ¼ 2þ 1) of light quarks using domain-wall valence

quarks on asqtad-improved staggered sea quarks [11,12],
and with two flavors (nf ¼ 2) of light quarks using

twisted-mass quarks [13] and improved Wilson quarks
[14–17]. These determinations are in agreement with the
Roy equation values. The first calculation of the �þ�þ
scattering phase shift was carried out by the CP-PACS
Collaboration, who exploited the finite-volume strategy
to study s-wave scattering with nf ¼ 2 improved Wilson

fermions [14,15] at pion masses in the range m� ’
500–1100 MeV. The amplitudes obtained from the
Lattice QCD calculations were extrapolated to the physical
mass using a polynomial dependence upon the pion mass,
instead of using the known pion-mass dependence of the

PHYSICAL REVIEW D 85, 034505 (2012)

1550-7998=2012=85(3)=034505(12) 034505-1 � 2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.85.034505


amplitude based upon the symmetries of QCD encapsu-
lated in �PT. In a recent paper, the Hadron Spectrum
Collaboration (HSC) studied the s wave �þ�þ phase shift
with pion masses in the range m� ’ 390–520 MeV [18].
Further, they have provided the first lattice QCD calcula-
tion of the �þ�þ phase shift in the d-wave (l ¼ 2) [18].

In this work, which is a continuation of our high statistics
lattice QCD explorations [19–23], we determine the�þ�þ
scattering amplitude below the inelastic threshold.
Calculations are performed with four ensembles of nf ¼
2þ 1 anisotropic clover gauge-field configurations at a
single pion mass of m� � 390 MeV with a spatial lattice
spacing of bs � 0:123 fm, an anisotropy of �� 3:5, and
with cubic spatial volumes of extent L� 2:0, 2.5, 3.0 and
3.9 fm. Predictions are made for a number of threshold
parameters which encode the leading momentum-
dependence of the scattering amplitude, and dictate the
scattering length, effective range and shape parameters in
the effective range expansion (ERE) of the inverse scatter-
ing amplitude. The lattice QCD predictions are found to be
in agreement with the Roy-equation determinations of the
threshold parameters and phase shift, and with the available
experimental data. Beyond the threshold region, the LEC’s
that contribute to the two-flavor chiral expansion of the
scattering amplitude are determined, allowing for a predic-
tion of the phase shift at the physical pion mass to be
performed at next-to-leading order (NLO). The predicted
phase shift is in agreement with the experimental data.

The Maiani-Testa theorem demonstrates that S-matrix
elements cannot be determined from stochastic lattice
calculations of n-point Green’s functions at infinite vol-
ume, except at kinematic thresholds [24]. Lüscher showed
that by computing the energy levels of two-particle states
in the finite-volume lattice, the 2 ! 2 scattering amplitude
can be recovered [25–34]. These energy levels are found to
deviate from those of two noninteracting particles by an
amount that depends on the scattering amplitude (eval-
uated at that energy) and varies inversely with the lattice
spatial volume in asymptotically large volumes. In this
paper, Lüscher’s method is used to extract the phase shift
from the lattice-determined energy levels.

This paper is organized as follows. In Sec. II, we provide
some details of the lattice calculations: we discuss the
anisotropic clover lattices that are used and the determi-
nation of the anisotropy parameter. Sec. III gives a sum-
mary of the eigenvalue equation which is relevant to
extracting phase shifts from lattice-measured energy

levels, in the center-of-mass (CoM) system and in boosted
(lattice ¼ laboratory) systems. The results of the lattice
QCD calculations are presented in Sec. IV and relevant
fits that are used to determine the effective range parame-
ters, up to and including the shape parameter, are dis-
cussed. Sec. V includes a summary of the relevant �PT
formulas, the chiral fits to the lattice data, and the predic-
tion for the �þ�þ phase shift up to the inelastic threshold
at the physical pion mass. Finally, a summary of our
predictions and a discussion of the systematic uncertainties
are given in Sec. VI.

II. DETAILS OF THE LATTICE QCD
CALCULATIONS

A. Anisotropic clover lattices

Anisotropic gauge-field configurations have proven use-
ful for the study of hadronic spectroscopy [35–38], and, as
the calculations required for studying multihadron systems
rely heavily on spectroscopy, we have put considerable
effort into calculations using ensembles of gauge fields
with clover-improved Wilson fermion actions with aniso-
tropic lattice spacing that have been generated by the HSC.
In particular, the nf ¼ 2þ 1 flavor anisotropic clover

Wilson action [39,40] with stout-link smearing [41] of
the spatial gauge fields in the fermion action with a smear-
ing weight of � ¼ 0:14 and n� ¼ 2 has been used. The

gauge fields entering the fermion action are not smeared in
the time direction, thus preserving the ultralocality of the
action in the time direction. Further, a tree-level tadpole-
improved Symanzik gauge action without a 1� 2 rect-
angle in the time direction is used.
The present calculations are performed on four ensem-

bles of gauge-field configurations with L3 � T of
163 � 128, 203 � 128, 243 � 128 and 323 � 256 lattice
sites, with a renormalized anisotropy � ¼ bs=bt where bs
and bt are the spatial and temporal lattice spacings, re-
spectively. The spatial lattice spacing of each ensemble is
bs ¼ 0:1227� 0:0008 fm [37] giving spatial lattice ex-
tents of L� 2:0, 2.5, 3.0 and 3.9 fm, respectively. The
same input light-quark mass parameters, btml ¼
�0:0840 and btms ¼ �0:0743, are used in the production
of each ensemble, giving a pion mass of m� � 390 MeV.
The relevant quantities to assign to each ensemble that
determine the impact of the finite lattice volume and
temporal extent are m�L and m�T, which are given in
Table I. In addition, we tabulate the pion masses on the four

TABLE I. Results from the lattice QCD calculations in the four lattice volumes. t.l.u denotes temporal lattice units.

L3 � T 163 � 128 203 � 128 243 � 128 323 � 256

LðfmÞ �2:0 �2:5 �3:0 �3:9
m�L 3.888(20)(01) 4.8552(84)(35) 5.799(16)(04) 7.7347(74)(91)

m�T 8.89(16)(01) 8.878(54)(22) 8.836(85)(02) 17.679(59)(73)

m� (t.l.u.) 0.069 43(36)(0) 0.069 36(12)(0) 0.069 03(19)(0) 0.069 060(66)(81)
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lattice volumes. As discussed in detail in Ref. [22], expo-
nential finite-volume corrections to the pion masses are
negligible for these volumes, a necessary condition for the
application of Lüscher’s finite-volume method for obtain-
ing phase shifts. Additionally, the predicted exponential
finite-volume corrections to �� scattering near threshold
are expected to be negligible [42]. Multiple light-quark
propagators were calculated on each configuration in the
four ensembles. The source locations were chosen
randomly in an effort to minimize correlations among
propagators.

B. Determination of the anisotropy parameter, �

In the continuum and in infinite volume, the energy-
momentum relation for the pion is that of special relativity,
E2 ¼ m2

� þ jpj2. In lattice QCD calculations, this relation
is more complicated due to the finite lattice spacing (in-
cluding the violation of Lorentz invariance) and the finite
volume, resulting in E2 being a nontrivial function of p,
which has a polynomial expansion at small momentum.
Retaining the leading terms in the energy-momentum re-
lation, including the lattice anisotropy �, the energy and
mass in temporal lattice units, and the momentum in spatial
lattice units (s.l.u) are related by

ðbtE�ðjnjÞÞ2 ¼ ðbtm�Þ2 þ 1

�2

�
2�bs
L

�
2
n2: (1)

The lattice QCD calculations of the energy of the single
pion state at a given momentum p ¼ 2�

L n (where n is an

integer triplet) allow for a determination of �, and hence
establish the single-particle energy-momentum relation
that is crucial for determining the scattering amplitude
from the location of two-particle energy eigenvalues. We
obtain � ¼ 3:469ð11Þ where the statistical and systematic
uncertainties have been combined in quadrature. This is
consistent with the value determined byDudek et al. of� ¼
3:459ð4Þ [18]. A fit to a higher order polynomial provides a
result that is consistent with this value but with larger
uncertainties in the contributing terms. It is important to
use the lattice determined value of �, and to propagate its
associated uncertainty, as small variations in this parameter
are amplified in the determination of the scattering ampli-
tude from two-particle energy eigenvalues when the inter-
action is weak (and the energy of the two-particle state is
consequently near that of the noninteracting system).

III. THE FINITE VOLUME METHODOLOGY

The formalism that was put in place by Lüscher to
extract two-particle scattering amplitudes below the inelas-
tic threshold from the energy eigenvalues of two-particle
systems at rest in a finite cubic volume [27,28] was ex-
tended to systems with nonzero total momentum by
Rummukainen and Gottlieb [30]. Subsequent derivations
have verified and extended [15,31–34] the work in that
paper. The use of boosted systems allows for the amplitude

to be determined at more values of momentum (in the
CoM), between those defined by 2�

L n. Here the results

that are relevant to the present analysis of the boosted
�þ�þ systems, and to systems at rest, are restated.
Using the notation of Ref. [31], the energy in the CoM

frame is denoted by E�, which is related to the energy E
and momentum Pcm in the ‘‘laboratory system’’ (the total
lattice momentum) by E�2 ¼ E2 � jPcmj2. In what fol-
lows, it is useful to define Pcm ¼ jPcmj. The �-factor is
straightforwardly defined by � ¼ E=E�, and E� is also
related to the magnitude of the momentum of each �þ in

FIG. 1 (color online). The two-pion EMP’s for the first six
levels (here n indicates the level) with Pcm ¼ 0 (top), 1 (middle)
and

ffiffiffi
2

p
(bottom) in units of the temporal lattice spacing on the

323 � 256 ensemble. Only one half of the temporal lattice points
are shown.
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the CoM frame q� by E�2 ¼ 4½q�2 þm2
��. The real part of

the inverse of the s-wave scattering amplitude below in-
elastic threshold, and hence the scattering phase shift, can
be extracted from the total energy of the two-particle
system with total momentum Pcm ¼ 2�

L d in the finite

volume via the generalized Lüscher eigenvalue relation

q� cot�ðq�Þ ¼ 2

�L
ffiffiffiffi
�

p Zd
00ð1; ~q�2Þ; (2)

where the dimensionless quantity ~q� is defined by ~q� ¼
L
2� q

�. The function Zd
00ð1; ~q�2Þ is a generalization of the

functions defined by Lüscher [27,28],

Zd
LMð1; ~q�2Þ ¼

X
r

jrjLYLMð�rÞ
jrj2 � ~q�2

; (3)

where the YLM are spherical harmonics and the sum is over
vectors defined by

r ¼ 1

�

�
nk � 1

2
d

�
þ n? ¼ �̂�1

�
n� 1

2
d

�
; (4)

which in turn are related to the lattice momentum-vectors
by k ¼ 2�

L n ¼ 2�
L ðnk þ n?Þ. The n are triplets of integers

and the decomposition of n is along the direction defined
by the boost-vector d. Lüscher presented a method [27,28]
which can be used [30] to accelerate the numerical evalu-
ation of the sum in Eq. (3), and a generalization of that
method leads to

Zd
LMð1; ~q�2Þ¼

X
r

e��ðjrj2�~q�2Þ

jrj2� ~q�2
jrjLYLMð�rÞ

þ�L;0Y00��
3=2

�
2~q�2

Z �

0
dt
et~q

�2ffiffi
t

p

� 2ffiffiffiffi
�

p e�~q�2
�
þ�

X
w�0

e�i�w�dj�̂wjLYLMð��̂wÞ

�
Z �

0
dt

�
�

t

�
3=2þL

et~q
�2
e�ð�2j�̂wj2=tÞ; (5)

where

�̂w ¼ �wk þ w?: (6)

The value of the sum is independent of the choice of�, and
� ¼ 1 has been used in previous works [15].
The energy-level structure resulting from Zd

00ð1; ~q�2Þ has
been discussed previously, e.g. Ref. [30]. For the present
calculations of boosted systems it is important to identify
the closely spaced energy levels. This is because the am-
plitudes extracted from such levels are subject to large
systematic and statistical uncertainties due to the rapid
variation of Zd

00ð1; ~q�2Þ in their vicinity, and also due to

the difficulty in separating the states contributing to the
correlation functions. The energy levels associated with
two noninteracting particles are located at the poles of
Zd
00ð1; ~q�2Þ, and Eq. (4) gives

d¼ð0;0;0Þ: ~q�2¼0;1;2;3;4;5; . . .

d¼ð0;0;1Þ: ~q�2

¼ 1

4�2
;
4�2þ1

4�2
;
9

4�2
;
8�2þ1

4�2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl};
4�2þ9

4�2
;

16�2þ1

4�2
; . . .

d¼ð0;1;1Þ: ~q�2¼ 1

2�2
;
1

2|fflffl{zfflffl};
2�2þ1

2�2
;
3

2|fflfflfflfflffl{zfflfflfflfflffl};
4�2þ1

2�2
;
4þ�2

2�2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl} . . . ;
(7)

and so forth, where the underbraces denote states that
become degenerate as � ! 1. We stress that the relations
summarized in this section are only valid below inelastic
threshold.

TABLE II. Results from the lattice QCD calculations of �þ�þ scattering in the four lattice volumes. Pcm denotes the magnitude of
the momentum of the center-of-mass in units of 2�=L. In the column denoted by ‘‘level’’, g.s. denotes the ground state, 1st denotes the
first excited state and 2nd denotes the second excited state.

k2=m2
� L3 � T Pcm level k cot�=m� �

0.006 78(54)(81) 323 � 256 0 n ¼ 0 �4:49ð35Þð52Þ �1:06ð12Þð18Þ
0.017 72(14)(23) 243 � 128 0 n ¼ 0 �4:24ð32Þð49Þ �1:82ð19Þð30Þ
0.0309(17)(27) 203 � 128 0 n ¼ 0 �4:25ð21Þð34Þ �2:37ð18Þð29Þ
0.0715(32)(48) 163 � 128 0 n ¼ 0 �3:80ð15Þð22Þ �4:03ð25Þð35Þ
0.1641(20)(23) 323 � 256 1 n ¼ 0 �3:33ð38Þð48Þ �7:1ð0:8Þð1:0Þ
0.378(5)(11) 203 � 128 1 n ¼ 0 �4:1ð0:4Þð1:0Þ �8:6ð0:8Þð3:6Þ
0.3838(42)(85) 323 � 256

ffiffiffi
2

p
n ¼ 0 �1:65ð12Þð28Þ �20:6ð1:5Þð3:1Þ

0.7323(53)(88) 323 � 256 0 n ¼ 1 �2:78ð29Þð57Þ �17:2ð1:7Þð2:9Þ
0.9233(51)(73) 323 � 256 1 n ¼ 1 �2:14ð16Þð26Þ �24:1ð1:6Þð2:6Þ
1.373(13)(22) 243 � 128 0 n ¼ 1 �2:10ð19Þð36Þ �29:2ð2:3Þð4:3Þ
1.582(9)(16) 323 � 256 0 n ¼ 2 �1:19ð09Þð14Þ �46:5ð2:3Þð3:5Þ
1.969(02)(04) 203 � 128 0 n ¼ 1 �2:33ð32Þð56Þ �31:6ð3:5Þð5:6Þ
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IV. �þ�þ SCATTERING ON THE LATTICE

A. Lattice phase shift

The scattering of pions in the I ¼ 2 channel is perturba-
tive at low momentum and at small light-quark masses, as
guaranteed by �PT. In a finite volume, this translates into
two-pion energies that deviate only slightly from the non-
interacting energies; i.e., the sum of the pion masses (or
boosted pion masses for moving systems). We have ana-

lyzed �þ�þ correlation functions with Pcm ¼ 0, 1,
ffiffiffi
2

p
(in

units of 2�
L ) and with various (noninteracting) momentum

projections among the pions. It is straightforward to par-
tially diagonalize this system of correlation functions into
the energy eigenstates at intermediate and long times. This
is achieved by assuming that the two-pion energy levels are
close to their noninteracting values, and then varying the
linear combination of correlation functions in order to
maximize the plateau region. (Coupled exponential fits to
the various correlators with the same Pcm lead to consistent
determinations). As an example, in Fig. 1 we show the two-
pion effective mass plots (EMP’s) on the 323 � 256 en-

semble with Pcm ¼ 0, 1,
ffiffiffi
2

p
. Six energy levels can be

clearly identified in the EMP’s in Fig. 1 for each of the
values of Pcm. [Note that these levels clearly show the near
degeneracies of the noninteracting system as established in
Eq. (7)]. However, only the first few levels, when propa-
gated through the eigenvalue equation, lead to statistically
significant values for the phase shift. While the energies of
other levels are established, the structure of the eigenvalue

FIG. 2 (color online). The two-pion energies in units of the
temporal lattice spacing for the lattice ensembles considered in
this work. The (vertical) thickness of each level indicates the
uncertainty of the energy determination. Each state is labeled
according to its center-of-mass momentum Pcm, and its excita-
tion level n. The noninteracting levels are denoted by dashed
(black) lines. Notice that the 323 � 256 Pcm ¼ ffiffiffi

2
p

, n ¼ 0 and
Pcm ¼ 0, n ¼ 1 levels are nearly degenerate.

FIG. 3 (color online). Results of the lattice QCD calculations
processed through the energy-eigenvalue relation to give values
of k cot�=m�. The {circles, squares, triangles, diamonds}
({black, red, blue, green}) correspond to the ensembles
{163 � 128, 203 � 128, 243 � 128, 323 � 256g. Statistical and
systematic uncertainties are shown as the inner and outer error-
bars, respectively. The vertical (blue) line at k2 ¼ m2

� indicates
the limit of the range of validity of the ERE set by the t-channel
cut. The inelastic threshold is at k2 ¼ 3m2

�.

FIG. 4 (color online). Results of the lattice QCD calculations
processed through the energy-eigenvalue relation to give values
of the phase shift �. The phase shift at low energies is shown as
an inset. The {circles, squares, triangles, diamonds} ({black, red,
blue, green}) correspond to the ensembles {163 � 128,
203 � 128, 243 � 128, 323 � 256g. Statistical and systematic
uncertainties are shown as the inner and outer error-bars, re-
spectively. The vertical (blue) line at k2 ¼ m2

� indicates the limit
of the range of validity of the ERE set by the t-channel cut. The
inelastic threshold is at k2 ¼ 3m2

�.

TABLE III. ERE parameters extracted from the lattice QCD
calculations of k cot�=m�.

Quantity Fit A: k2=m2
� < 0:5 Fit B: k2=m2

� < 1

m�a 0.230(10)(16) 0.226(10)(16)

m�r 12.9(1.5)(2.9) 18.1(2.4)(4.7)

m2
�ar 2.95(20)(42) 4.06(30)(57)

P - �0:001 23ð30Þð55Þ
�2=dof 0.83 0.79

I ¼ 2 �� S-WAVE SCATTERING PHASE SHIFT . . . PHYSICAL REVIEW D 85, 034505 (2012)
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equation is such that the uncertainties, as small as they
appear, are sufficiently large to produce uncertainties in the
amplitude that are too large and preclude statistical signifi-
cance.1 The states that have been analyzed to produce
amplitudes and phase shifts are given in Table II, and are
shown in Fig. 2. Note that momenta are quoted in units of
m� in order to formulate the subsequent analysis in a
manner that is independent of the scale setting. The values
of k cot�=m� and � resulting from the energy eigenvalues
are shown in Fig. 3 and Fig. 4, respectively.

Note that while the 323 � 256 Pcm ¼ ffiffiffi
2

p
, n ¼ 0 and

203 � 128 Pcm ¼ 0, n ¼ 1 levels appear discrepant, we
believe this is likely a statistical fluctuation. Also, the

phase shift we have extracted from the first excited state
in the 243 � 128 ensemble disagrees with the equivalent
extraction presented in Ref. [18]. While we find a phase
shift of � ¼ �29:2� 2:3� 4:3o at k2 � 0:21 GeV2,
Ref. [18] finds ���13� 2o at k2 � 0:2 GeV2. Our result
is consistent with the phase shifts at the nearby momenta
calculated on the 323 � 256 ensemble.

B. The effective range expansion parameters

The ERE is an expansion of the real part of the inverse
scattering amplitude in powers of the CoM energy,

k cot�

m�

¼ � 1

m�a
þ 1

2
m�r

�
k2

m2
�

�
þ Pðm�rÞ3

�
k2

m2
�

�
2 þ . . . ;

(8)

FIG. 5 (color online). Left panel: a two-parameter fit to k cot�=m� over the region k2=m2
� < 0:5 (fit A). The {circles, squares,

triangles, diamonds} ({black, red, blue, green}) correspond to the {163 � 128, 203 � 128, 243 � 128, 323 � 256g ensembles. The
shaded bands correspond to statistical (inner-yellow) and statistical and systematic added in quadrature (outer-pink). Right panel: 68%
confidence interval error ellipses in the ðm�aÞ�1-12m�r space. The inner-solid ellipse and the outer-dashed ellipse correspond to the

statistical and to the statistical and systematic uncertainties added in quadrature, respectively.

FIG. 6 (color online). Left panel: a three-parameter fit to k cot�=m� over the region k2=m2
� < 1 (fit B). The {circles, squares,

triangles, diamonds} ({black, red, blue, green}) correspond to the {163 � 128, 203 � 128, 243 � 128, 323 � 256g ensembles. The
shaded bands correspond to statistical (inner-yellow) and statistical and systematic added in quadrature (outer-pink). Right panel: 68%
confidence interval error ellipses in the ðm�aÞ�1-12m�r space. The inner-solid ellipse and the outer-dashed ellipse correspond to the

statistical and to the statistical and systematic uncertainties added in quadrature, respectively.

1The EMPs of Fig. 1 indicate that the signal-to-noise ratio of
the two-pion correlation functions decreases with increasing
excitation number.
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where m�a and m�r are the scattering length and effective
range in units of m�1

� , and P is the shape parameter.2 Here
k ¼ jkj is the magnitude of each pion’s momentum in the
CoM. Such an expansion is expected to be convergent for
energies below the t-channel cut, which is set by ��
exchange in the t channel. The t-channel cut starts at
k2 ¼ m2

�, while the inelastic threshold is k2 ¼ 3m2
�.

As the calculations of k cot�=m� are approximately lin-
ear in k2 in the region k2=m2

� < 0:5, the scattering length
and the effective range are fit (fit A) using Eq. (8) withP and
the other higher order terms set to zero. The extracted values
of m�a and m�r are given in Table III, and the resulting
fit is shown in Fig. 5, along with the 68% confidence
interval error ellipses for the two-parameters. In the region
k2=m2

� < 1 the lattice QCD calculations exhibit curvature
consistent with quadratic (and higher) dependence on k2. In
fit B the three leadingEREparameters are fit to the results of
the lattice QCD calculations. The fits are compared to the
lattice QCD calculations in Fig. 6, which also shows the
68% confidence interval error ellipse for the two-parameter
subspace of the three-parameter fit. It is clear from Table III
that the fit parameters are consistent within the combined
statistical and systematic uncertainties. In what follows,
where we use �PT to predict the parameters at the physical
point, the spread in value of the ERE parameters will serve
as a useful gauge of the systematic uncertainty introduced in
the fitting of the scattering amplitude. It is noteworthy that
the data allows a significant determination of the shape
parameter, P.

V. CHIRAL INTERPOLATIONS

A. Motivation

Although these lattice QCD calculations have been per-
formed only at one value of the pion mass, as we will see,
the effective range and threshold scattering parameters
satisfy low-energy theorems mandated by chiral symmetry,
and therefore each scattering parameter can be used to fix
the corresponding LEC that appears at NLO in �PT. Thus
the scattering parameters at the physical point can be
predicted at NLO in �PT. This is, in a sense, a chiral
interpolation rather than an extrapolation since one is
interpolating between the pion mass of the lattice QCD
calculation and the chiral limit. Unfortunately, the pion
decay constant, f�, has not yet been accurately computed
on the anisotropic lattice ensembles that have been used in
this work. However, �PT and the results of mixed-action
lattice QCD calculations [43] can be used to determine f�
(and its uncertainty) evaluated at the pion mass of the
present lattice QCD calculations up to lattice spacing

artifacts. Specifically, in what follows we use
ffiffiffiffiffiffiffiffi
zlatt

p
�

mlatt
� =flatt� ¼ 2:59ð13Þ at m� � 390 MeV.

B. Threshold parameters in �PT

The relation between the �þ�þ s-wave scattering am-
plitude tðsÞð¼ tI¼2

L¼0ðsÞÞ and the phase shift � is given by [4]

tðsÞ ¼
�

s

s� 4

�
1=2 1

2i
fe2i�ðsÞ � 1g; (9)

where s ¼ 4ð1þ k2=m2
�Þ and k ¼ jkj is the magnitude of the three-momentum of each �þ in the CoM frame. The NLO

scattering amplitude can be expressed in terms of three LEC’s, C1, C2, and C4 [2,3]:

tðkÞ ¼ � m2
�

8�f2�
�m4

�

f4�

�
C1 � 31

384�3

�
þ k2

f2�

�
� 1

4�
þm2

�

f2�

�
301

1152�3
� 1

128�2
C2 � 7

2
C1

��

þ k4

f4�

�
14

45�3
�

�
19

8
C1 � 9

512�2
C2 þ 216�C4

��
� 1

4�3f4�

�
3

32
m4

� þ 5

12
m2

�k
2 þ 5

9
k4
�
log

�
m2

�

f2�

�

þ 1

16�3f4�

�
1

4
m4

� þm2
�k

2 þ k4
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2

k2 þm2
�

s
log

0
B@

ffiffiffiffiffiffiffiffiffiffiffi
k2

k2þm2
�

q
� 1ffiffiffiffiffiffiffiffiffiffiffi

k2

k2þm2
�

q
þ 1

1
CAþ 1

8�3f4�

�
3

16
m4

� þ 7

9
m2

�k
2 þ 11

18
k4
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�

k2

s
log

0
B@

ffiffiffiffiffiffiffiffiffiffiffi
k2þm2

�

k2

q
� 1ffiffiffiffiffiffiffiffiffiffiffi

k2þm2
�

k2

q
þ 1

1
CA� m4

�

128�3f4�

�
1þ 13

12

m2
�

k2

�
log2

0
B@

ffiffiffiffiffiffiffiffiffiffiffi
k2þm2

�

k2

q
� 1ffiffiffiffiffiffiffiffiffiffiffi

k2þm2
�

k2

q
þ 1

1
CA: (10)

The Ci can be expressed in terms of the li � lri ð� ¼ f�Þ, the familiar low-energy constants of two-flavor �PT [2],

C1 � � 1

2�
ð4l1 þ 4l2 þ l3 � l4Þ � 1

128�3
; C2 � 32�ð12l1 þ 4l2 þ 7l3 � 3l4Þ þ 31

6�
;

C4 � 1

5184�2
ð212l1 þ 40l2 þ 123l3 � 69l4Þ þ 701

622 080�4
:

(11)

The behavior of the amplitude near threshold (k2 ! 0) can be written as a power-series expansion in the CoM energy

2For a modern discussion of the effective range expansion and its regime of validity, see Ref. [29].
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Re tðkÞ ¼ �m�aþ k2bþ k4cþOðk6Þ; (12)

where the threshold parameters b and c are referred to as slope parameters. Matching the threshold expansion in Eq. (12) to
the ERE in Eq. (8) gives [4]:

m�r ¼ � 1

m�a
� 2m2

�b

ðm�aÞ2
þ 2m�a; (13)

P ¼ �ðm�aÞ3½ðm�aÞ2 � 4ðm�aÞ4 þ 8ðm�aÞ6 � 4ðm�aþ 2ðm�aÞ3Þbm2
� � 8ðb2 þm�acÞm4

��
8ðm�a� 2ðm�aÞ3 þ 2bm2

�Þ3
: (14)

These equations can be inverted to obtain b and c from the lattice-determined ERE parameters. Expanding the NLO
amplitude in Eq. (10) in powers of k, one finds NLO �PT expressions for the ERE and threshold parameters:

m�a ¼ z

8�
þ z2C1 þ 3z2

128�3
logz; m�r ¼ 24�

z
þ C2 þ 17

6�
logz; m2

�ar ¼ 3þ zC3 þ 11z

12�2
logz;

P ¼ � 23z2

13 824�2
þ z3C4 þ 613z3

995 328�4
logz; m2

�b ¼ � z

4�
� z2

�
7

2
C1 þ 1

128�2
C2 þ 5

48�3
logz

�
;

m4
�c ¼ �z2

�
19

8
C1 � 9

512�2
C2 þ 216�C4 þ 5

36�3
logz

�
; (15)

where z � m2
�=f

2
� and C3 ¼ 24�C1 þ 1

8�C2. It is impor-
tant to note that the shape parameter P and the threshold
parameter c do not receive contributions from LO �PT;
i.e., they vanish in current algebra.

C. Chiral interpolation of threshold parameters

Using the ERE parameter set from fit B given in
Table III, with statistical and systematic uncertainties com-
bined in quadrature, the four functions C1ððm�aÞlatt; zlattÞ,
C2ððm�rÞlatt; zlattÞ, C3ððm2

�arÞlatt; zlattÞ, C4ðPlatt; zlattÞ can be
determined. The ERE parameters in Table III give

CNLO
1 ¼ �0:002 37ð52Þ; CNLO

2 ¼ 5:2ð5:2Þ;
CNLO
3 ¼ �0:02ð0:10Þ; CNLO

4 ¼ 9:0ð4:0Þ � 10�6;

(16)

where the superscripts denote that these constants are
evaluated at NLO in �PT, and from which follow, using
Eq. (15), the predictions at the physical point3 of

m�a ¼ 0:0417ð07Þð02Þð16Þ;
m�r ¼ 72:0ð5:3Þð5:3Þð2:7Þ;

m2
�ar ¼ 2:96ð11Þð17Þð11Þ;
P ¼ �2:022ð58Þð12Þð76Þ � 10�4;

b ¼ �0:832ð50Þð0Þð31Þ � 10�1m�2
� ;

c ¼ 0:013ð33Þð01Þð0Þm�4
� ;

(17)

where the first systematic uncertainty has been estimated
by comparing the interpolated results of Fits A and B, and
by ‘‘pruning’’ the highest energy datum from the lattice
QCD results and refitting. The second systematic uncer-
tainty contains estimates, using naive dimensional analy-
sis, of the effects from higher orders in the chiral
expansion, next-to-next-to-leading order (NNLO) and
higher, as well as the contributions from lattice spacing
artifacts that are expected to contribute at Oðb2sÞ [44]. The
chiral interpolation of m2

�ar is shown in Fig. 7. (Note that
the band in Fig. 7 represents fit B, and the outer uncertainty
on the interpolated result represents the effect of the two

FIG. 7 (color online). The dashed (green) line denotes the
physical line, and the horizontal solid (purple) line denotes
the LO �PT prediction, which is m2

�ar ¼ 3 in the chiral limit.
The band denotes the 68% confidence interval interpolation of
the results of the lattice calculation (the (red) rectangle) from
fit B. The lattice QCDþ �PT prediction at the physical point is
the (red) star on the physical line, and the Roy equation pre-
diction [8] is the (black) circle on the physical line.

3Note that the precise NPLQCD result for the scattering
length, m�a ¼ �0:043 30ð42Þ, computed in Ref. [12] with
domain-wall valence quarks on staggered sea quarks, is more
precise than the result of Eq. (17).
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systematic uncertainties and the statistical uncertainty
added in quadrature, as described above).

With Eq. (11), the fit values of the Ci in Eq. (16) can be
used to constrain various combinations of the li, and the
renormalization group can be used to express these con-
straints in terms of the scale-independent dimensionless
barred quantities, the �li [2].

4 We find that

�l3 � 4�l4 ¼ �29ð27Þ; �l1 � 6�l4 ¼ �32ð25Þ
2�l1 � 3�l3 ¼ 28ð29Þ; �l1 þ 4�l2 ¼ 15:8ð6:7Þ;

(18)

where statistical and systematic uncertainties have been
combined in quadrature. With increased precision in the
determination of the ERE parameters, such determinations
of the LECs could become competitive with other methods.

These results may seem surprisingly accurate for a
lattice QCD calculation performed at a single pion mass.
As mentioned previously, it is the chiral symmetry con-
straints on the scattering parameters in the approach to the
chiral limit that is responsible for the precision. The scat-
tering length obtained here is consistent within uncertain-
ties with the previous lattice QCD determinations [11–13].
Further, the scattering length and threshold parameters are
found to agree with determinations from the Roy equation
(with chiral symmetry input) [8],

m�a ¼ 0:0444ð10Þ; b ¼ �0:803ð12Þ � 10�1m�2
� ;

m2
�ar ¼ 2:666ð0:083Þ; (19)

at the 1�-level. Figure 7 provides a comparison of the
lattice calculation (and interpolation) and the Roy equation
value of m2

�ar.

D. Chiral interpolation of the phase shift

The �þ�þ scattering phase shifts calculated with lattice
QCD, which extend above the range of validity of the ERE
but remain below the inelastic threshold, can be used to
predict the phase shift at the physical value of the pion
mass. While the chiral expansion may break down for
scattering at sufficiently high energies, we ignore this issue
and fit the NLO �PT amplitude (one-loop level) to the
results of the lattice QCD calculations at all of the calcu-
lated energies, the maximum invariant mass being

ffiffiffi
s

p �
1340 MeV.
The results of the lattice QCD calculations given in

Table II are fit to the formula

k cot�

m�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k2

m2
�

s �
1

tLOðkÞ �
tNLOðkÞ
ðtLOðkÞÞ2

�
þ i

k

m�

; (20)

where tLO and tNLO are the LO and NLO contributions to
tðkÞ in the chiral expansion, given in Eq. (10). The result of
the fit is shown in Fig. 8; in the left panel the fit (of C1, C2,
and C4) to k cot�=m� is shown, and in the right panel, the
fit values of C1, C2, and C4 (fully correlated) are used to
predict the phase shift at the pion mass of the lattice QCD
calculations, m� � 390 MeV. The 68% confidence inter-
vals for C1, C2, and C4 from this fit are

CNLO
1 ¼ ð�0:0040;�0:0013Þ; CNLO

2 ¼ ð2:67; 24:1Þ;
CNLO
4 ¼ ð�1:7;þ3:6Þ � 10�5; (21)

with a �2=dof ¼ 2:1 (for the fit with the statistical and
systematic uncertainties combined in quadrature). The in-
terpolated ERE parameters are

m�a ¼ 0:0412ð08Þð16Þ; m�r ¼ 80:0ð9:58Þð3:0Þ;
P ¼ �1:85ð31Þð07Þ � 10�4; (22)

FIG. 8 (color online). Three parameter fit (C1, C2, and C4) of the NLO �PT expression for k cot�=m� to the results of the lattice
QCD calculations. The shaded bands correspond to statistical (inner-yellow) uncertainties and statistical and systematic uncertainties
added in quadrature (outer-pink). The solid (black) curve in the right panel is the LO �PT prediction (current algebra) at the pion mass
used in the lattice QCD calculations, m� � 390 MeV.

4The li are related to the �li via

li ¼ �i

32�2

�
�li þ log

�
m2

�

�2

��
;

where �1 ¼ 1
3 , �2 ¼ 2

3 , �3 ¼ � 1
2 and �4 ¼ 2.
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which are consistent within uncertainties, but less precise,
than the threshold determinations of Eq. (17). Here the
second uncertainty is a naive dimensional analysis estimate
of the effects of higher orders in the chiral expansion and
lattice spacing artifacts. For a better determination of the
threshold parameters from the global fit, one requires more
accurate lattice QCD calculations and the �þ�þ ampli-
tude beyond NLO in the chiral expansion. In Fig. 9 the fit
values of C1, C2, and C4 are used to predict the phase shift
at the physical value of the pion mass, m� � 140 MeV,
which is compared to the experimental data of Refs.
[45–48]. Figure 10 compares the phase shift prediction to
the lattice QCD phase-shift determination by CP-PACS
[15], and the Roy equation determinations of the phase
shift from Refs. [8,9]. One should keep in mind that the
interpolated phase shift is valid above the inelastic thresh-
old, as the 4� intermediate state appears beyond NLO in
the �PT calculation (at two-loop level). The combined
lattice QCD and �PT prediction of the �þ�þ phase shift
at the physical pion mass is found to be in good agreement
with the experimentally-determined phase shift. While for
jkj 	 400 MeV the uncertainty in the prediction exceeds
the uncertainties in the experimental data, below this
momentum the lattice QCDþ �PT prediction is more
precise.

It is interesting to observe that while the LO phase shift
well reproduces the results of the lattice QCD calculations
at m� � 390 MeV, as shown in Fig. 8, the NLO contribu-
tions are important at the physical pion mass, as seen in
Fig. 10. This is to be contrasted with the chiral behavior of
the scattering length which is dominated by the LO ampli-
tude, with NLO making a small but noticeable contribu-
tion. In an attempt to isolate the origin of this apparent
difference, it is useful to consider scattering at NLO in the
chiral limit where

cot� ! � 4�f2�
k2

þ 40

9�
log

�
2k

f�

�
þ 38�2C1

� 9

32
C2 þ 3456�3C4 � 224

45�
: (23)

The phase shift can be defined this way even in the chiral
limit because at LO and NLO the only intermediate states
contributing to the scattering amplitude involve two pions.
Inelastic channels, such as four-pion intermediate states
which would invalidate the relation in Eq. (9), first con-
tribute to the scattering amplitude at NNLO. This is what
allows for the phase shift to be predicted above the inelastic
threshold, and to remain perturbatively close to the actual
value for momenta below the chiral symmetry breaking
scale. At LO in the expansion, the phase shift reaches
� ¼ �=4 when k2 ¼ 4�f2� � 0:22 GeV2 (using f� ¼
132 MeV), consistent with the phase shift shown in
Fig. 10. Clearly, it is reasonable to take the limit m� 
 k
for this value of kðk� 470 MeVÞ. Further, at this value of
k, the NLO terms are approximately equal to the LO terms,
providing an estimate of the convergence region of the
chiral expansion for the scattering process.
It is also worth noting that while it is formally invalid to

use the Lüscher relation in Eq. (2) for the scattering of
pions above inelastic threshold, �PT indicates that the
error introduced into phase-shift determinations is small,
occurring at NNLO in the chiral expansion. This is not
expected to be true for other scattering processes (those not
involving the pseudo-Goldstone bosons). Therefore, while
strictly speaking the results presented in Ref. [18] above
inelastic threshold arise from an invalid application of
Eq. (2), the expected deviation from the true result is

FIG. 9 (color online). The shaded band is the lattice QCD
prediction of the phase shift at the physical value of the pion
mass, m� � 140 MeV using NLO �PT with the statistical and
systematic uncertainties combined in quadrature. The data is
experimental (black and grey) taken from Refs. [45–48]. The red
vertical line denotes the inelastic (4�) threshold.

FIG. 10 (color online). The shaded band is the lattice QCD
prediction of the phase shift at the physical value of the pion
mass, m� � 140 MeV using NLO �PT with the statistical and
systematic uncertainties combined in quadrature. The outer
(magenta) band is the CP-PACS physical prediction [15], and
the two inner (blue and purple) bands are the Roy equation
predictions [8,9]. (Note that the band from Ref. [8] lies above the
band from Ref. [9]). The solid (purple) curve is the LO �PT
prediction (current algebra) at the physical pion mass. The red
vertical line denotes the inelastic (4�) threshold.
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expected to be small (at momenta for which the chiral
expansion is converging), suppressed by two orders in
the chiral expansion. Clearly, precision calculations of
the phase shift above the inelastic threshold cannot rely
upon a methodology that does not include the effects of
inelastic processes. As all of the calculations in our work
are below the inelastic threshold, the present analyses and
predictions do not suffer from this inconsistency.

VI. SUMMARYAND CONCLUSION

The increases in high-performance computing capabil-
ities and the advent of powerful new algorithms have thrust
lattice QCD into a new era where the interactions among
hadrons can be computed with controlled systematic un-
certainties. While calculation of the basic properties of
nuclei and hypernuclei is now a goal within reach, it is
important to consider the simplest hadronic scattering
processes as a basic test of the lattice methodology for
extracting scattering information (including bound states)
from the eigenstates of the QCD Hamiltonian in a finite
volume. In this work, we have calculated the �þ�þ scat-
tering amplitude using lattice QCD over a range of mo-
menta below the inelastic threshold. Our predictions for the
threshold scattering parameters, and hence the leading
three terms in the ERE expansion, are consistent with
determinations using the Roy equations [8,9] and the pre-
dictions of �PT. In particular, our determination of
m2

�ar ¼ 2:96ð11Þð17Þð11Þ from an interpolation of a fit to
the low momentum values of k cot�=m� is consistent with
the LO prediction of �PT of m2

�ar ¼ 3ð1þOðm2
�=�

2
�ÞÞ.

Further, the resulting predictions for the phase shift at the
physical pion mass—using NLO �PT—are in agreement
with experimental data, and are even more precise in the
low-momentum region.

The lattice QCD calculations presented here were per-
formed at one lattice spacing simply due to the lack of
computational resources, therefore, an extrapolation of the
ERE parameters to the continuum limit (as was performed
in the work of CP-PACS [15]) could not be performed.
The discretization of the quark fields that has been em-
ployed gives rise to lattice spacing artifacts at Oðb2sÞ, and
we expect such contributions to be small for these
calculations.
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