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I. INTROOOCTION 

The capability of flight plays a central role in the lives of most 
birds. Indeed, the existing morphological and ecological characteristics 
of many species are almost entirely dictated by the aerodynamic requirements 
of the highly developed flight modes they have acquired through evolutional 
specialization. In the case of such species, a clear understanding of the 
aerodynamic mechanisms underlying the particular flight modes can often 
provide a lucid insight into the basic physical relationships which govern 
a bird's characteristic activities and behavior. 

This aerodynamic approach to the study of avian ecology is particularly 
useful in the case of soaring birds, where survival depends entirely upon 
the aerodynamic efficiency of the bird in exploiting the energy of special 
forms of air currents for sustained flight, and where the wing actions are 
sufficiently simple that the flight patterns can adequately be formulated 
for aerodynamic analysis. Such an approach was utilized by the author in a 
recent studyl* of land birds which practice soaring flight in thermal air 
currents. By applying aerodynamic precepts to the analysis and interpreta­
tion of observed flight patterns, it was possible to explain, correlate, and 
even predict many facts of importance in the morphology and ecology of the 
land soarers. It is the purpose of the present study to apply a similar 
analysis to the dynamic soaring flight of sea birds, such as the albatross, 
and to utilize the results for establishing the significant factors in the 
ecology of the ocean soarers. 

The magnificent soaring flight of the pelagic albatross and similar sea 
birds, although not readily observable because it takes place in remote 
regions of the ocean, is in its way every bit as fascinating and nzy-sterious 
as that of the more easily observed land soarers. The source of the 
albatross' flight power, however, is quite different from that of the 
vulture or hawk. While the vulture secures its flight energy by steady 
circling in rising thermal shellsl,2,3, the albatross makes its way by a 
much more complex and difficult flight cycle. Operating in the thin shear 
layer of air generated near the water surface by the strong and relatively 
steady sea winds, the albatross has found a remarkable way to exploit the 
energy of horizontally-moving air flows. Unlike the steady and almost auto­
matic soaring of the vulture, that of the albatross involves continuous 
voluntary maneuvering and control regulation. Yet, so perfectly adapted in 
structure and instinct is the albatross to its particular mode of flight 
that it performs its cycle with a geometrical precision of a.mazing exact­
ness. We shall in this paper examine in detail the physical processes by 
which the albatross is able to accomplish such flight and to remain at sea 
for years at a time, covering untold thousands of miles, all without any 
significant expenditure of its own muscular energy for propulsion. 

The paper commences with a description of typically observed soaring 
patterns and other pertinent flight characteristics of the albatross. Then 
using these observations as a basis, an idealized soaring cycle is 

*Superscript numbers refer to references listed in Appendix A-1, 
page 99. 
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constructed, for purposes of analysis, which contains the four basic phases 
utilized in accomplishing dynamic soaring flight in shear layers. The 
mechanics of each ~f these four basic phases is subsequently investigated in 
detail, and the fund.a.mental equations governing the motion and energy inter­
changes are formulated. The factors in the resulting equations, expressed 
in terms of the structural and aeroccyna.mic parameters of the albatross, are 
analyzed as the development proceeds in order to delineate their relative 
importance and significance in the ecological regime of the bird. It is 
shown how the albatross can combine the basic phases of the ideal cycle with 
various secondary flight phases to obtain almost any desired flight path 
for travel purposes. Various related facts of importance in the general 
ecology of the bird are then discussed in light of the aerodynamic analyses, 
and ecological comparisons of land and ocean soarers are made on the basis 
of the aerodynamic requirements for the two different types of soaring 
flight. The mechanics of dynamic soaring in gusts, as used by some land 
birds, is also discussed and the exact correspondence to shear layer soar­
ing is pointed out. 

The basic equations and other relations developed in the aerodynamic 
analyses, as will be pointed out, require for their complete evaluation a 
considerable amount of quantitative field measurements and other data not 
presently available. The analyses yield, nevertheless, a clear picture 
of the physical factors involved in albatross ecology and bring into focus 
the specific field researches needed to establish the overall ecology of 
the albatrosses on a complete and comprehensive basis. It is shown that, 
when sufficient field data are obtained, the aerodynamic equations can be 
completely solved in a manner which will yield not only the quantitative 
aerodynamic properties of the albatross but also the effective properties of 
the wind shear layer in which the bird soars. 

"Aeroecological" studies such as the present one necessarily involve 
the mechanical aspects of flight, and hence require full utilization of the 
principles and terminology of aerodynamics, together with the associated 
ma.thematics. The present paper involves a considerable amount of mathe­
matical analysis which, although straight forward, may still prove somewhat 
abstruse for biologists unfamiliar with this discipline. In order to 
alleviate undue obscurity, therefore, the mathematical developments and 
derivations are presented in considerable detail, and the physical signifi­
cances of the analyses are indicated as explicitly as possible. A large 
number of sketches and diagrams is included in order to increase the clarity 
of the presentation. 

A number of appendices are presented at the end of the paper which give 
additional information and explanations intended to supplement the material 
in the main text. Particular attention is called to Appendices A-2, A-3, 
and A-4 which contain a definition list of the most frequently used symbols 
and discuss the classification basis and aerodynamic fundamentals of natural 
soaring flight. More detailed discussions of aerodynamic principles and 
terminology are available from standard aerodynamics textbooks. Appendix 
A-5 contains a classification and description of the various species of 
albatrosses comprising the order Procellariiformes. 
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The possibility of emulating natural dynamic soaring by use of sail­
planes has long been an intriguing question to soaring enthusiasts. 
Consequently, Appendix A-6 has been included in order to indicate the 
application of the results of the present study on albatross soaring to 
establish the feasibility of dyanmic soaring flight by man. Unfortunately, 
the resulting conclusions make it appear doubtful that any generally useful 
degree of dynamic soaring by man will be developed, at least in the fore­
seeable future, despite a number of theoretical possibilities. 

II. OBSERVED CHARACTERISTICS OF ALBA.TROSS FLIGHT 

This section presents a brief description of some of the more charac­
teristic features of albatross flight. The descriptions given are based 
primarily on observations of the Wandering Albatross (Diomedea exulans), an 
albatross of the southern hemisphere and the largest flying sea bird. The 
essential features of this bird's flight appear common, however, to all the 
albatrosses and apply in principle to the other Procellariiformes which 
practice dynamic soaring. 

Since the Wandering Albatross is a very large bird, its flight is 
easily followed at sea, even at considerable distances,.and the flight 
patterns have been described by many observers. The remote areas of the 
south seas inhabited by exulans and most other albatross species (i.e. 
between 37° and 65° south latitude) were once rather heavily traversed by 
sailing vessels making use of the westerly winds prevailing there, and some 
useful information of a general nature has been compiled on the albatrosses 
of the region. In addition, a number of more systematic field studies and 
surveys of albatrosses have been car6ied out

7
by variogs investigators, for 

example ~hy, 4 Ma.thews, 5 Richda.le, Dixon, · Hutton, Idrac, 9 and 
Jameson. 10 Idrac, however, appears to be the only investigator to stuccy­
albatross soaring flight from a truly technical standpoint. 

Appendix A-5 (page 100) gives the classification scheme of the 
albatrosses and notes the principal ranges of the various species. 

SOARING FLIGHT 

The basic requirement for albatross soaring is a brisk and steady wind, and 
albatrosses are found only where this condition is highly prevalent. In 
addition, the air space immediately above the surface must be free of all 
obstructions since the bird's flight is performed almost entirely within a 
thin boundary layer of air extending on}¥ 55 to 60 :feet above the surface. 
These requirements are met only over the open sea where the relatively 
smooth water surface allows the prevailing winds to move with but a small 
amount of resistance, and where vast areas of unobstructed flight space 
exist. Using the practically boundless energy of the sea shear layers, the 
albatross, on its efficient wings, traverses vast expanses of sea from dawn 
to dusk in endless search of the squid and shrimp which form its diet. With 
the exception of the breeding season, when it returns to the small isolated 
islands where it nests, the albatross is truzy pelagic, remaining far at 
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sea. There it ceaselessly orbits within the narrow wind shear layer above 
the water, alighting only briefly to claim its food from the sea. 

The Basic Flight Pattern 

Let us first consider the basic flight pattern typical of albatross 
soaring at sea. The wind is brisk; the air well above the surface is moving 
with a speed of 4o miles per hour or more. Just above the surface of the 
water, however, the wind speed is considerably reduced, say only 10 miles 
per hour or less, having been slowed by the retarding action of the water 
surface. This region wherein the wind speed varies with altitude from a 
minimum at the surface to that of the full wind force at some distance 
above the water constitutes the important shear layer within which all 
soaring occurs. 

We join the albatross at a point in the cycle when it is very near the 
surface, moving at high speed directly into the wind, and climbing rapidly 
as it progresses to windward. The bird continues to climb, rapidly losing 
speed as it rises, until it reaches an altitude of some 50 feet, where its 
ground speed to windward (i.e. relative to a stationary observer) has 
considerably decreased. It then executes a turn of 180° directly to lee­
ward by smoothly banking its wings. During this turn the bird is observed 
to accelerate very rapidly so that, at the completion of the turn, it is 
moving to leeward at a very high rate of speed. 

During &11 of the climb and turn, the bird has held its wings rigidly 
outstretched at their maximum span, but now the wings are suddenly folded 
into the shape of a shallow W and, simultaneously with this wing flexing, 
the bird commences a steep glide, almost a dive, toward the surface. The 
bird picks up still more speed during the dive and ends the leeward plunge 
with a sharp pullout just above the water surface. At this point, the 
albatross is moving with the maximum absolute velocity of its cycle. 

Upon completion of the dive, the bird again turns into the wind, but 
this turning phase may take on one of two forms, depending upon the flight 
path the bird wishes to follow: it may immediately execute a full 180° 
turn into the wind, or it may perform only a partial turn, skim along a 
wave trough for some distance, and then turn into the wind. In either case, 
the turns are usually very steep, being made close to the surface with the 
wings banked to an almost vertical position. In fact, the turns are 
performed so close to the surface that the tip of the lower wing often cuts 
the water during the maneuver. At the completion of the low-level turn, the 
bird is once again moving directly into the wind at high speed, and, some­
times using the air flow off the crest of a wave for an initial boost, it 
commences another windward climb to begin a new cycle. 

This circuitous pattern of climbing, turning downwind, diving, and 
turning upwind constitutes the basic flight cycle of the albatross. It 
permits the bird to remain continuously and effortlessly airborne, and to 
scan vast areas of sea in its search for food. By judiciously and instinc­
tively varyi~g the duration of each step in this cycle according to the 
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strength and direction of the prevailing wind, the albatross is able to 
regulate its resultant flight pattern so as to follow almost any desired 
path over the sea. 

Variations of the Basic Pattern 

When the wind conditions are adequate, the albatross is capable of 
accomplishing a wide variety of use:f'ul soaring patterns in addition to the 
simple basic flight cycle described above. Many of these patterns may 
appear quite irregular and complex, depending upon the particular locomotion 
needs or desires of the bird at a given time. The four essential phast:::s of 
the basic flight pattern, however, are implicitly contained in the total 
motion, each in its proper order, although the duration of each phase is 
subject to considerable variation. By injecting periods of simple gliding 
or coasting flight between the basic phases, by properly regulating the 
duration of each phase, and by performing the basic turns in the same or in 
opposite directions, consistently or alternately, the albatross constructs 
flight patterns which allow it to travel in practically any desired 
direction. 

Following a leeward glide, or dive, the albatross may execute only a 
partial turn at low level and may skim along a wave trough for considerable! 
distance before turning into the wind, as already mentioned. By always 
turning in the same direction along the waves, the bird makes rapid progress 
in a direction approximately transverse to the wind. In an analogous manner, 
the bird may perform a brief lateral coast or glide at high altitude follow­
ing a windward climb. In some instances a bird may actually perform a 
lateral dive across the wind,' instead of the usual leeward dive, in order 
to increase its lateral and windward rate of travel. Variation of the rela­
tive durations and speeds of the basic climb and dive phases results in the 
bird's making net progress to either leeward or windward, as the case may 
be. So skillful is the bird in performing the complex system of required 
motions that it can follow ships with ease and certainty, in all except very 
strong headwinds. The course of the ship relative to the prevailing wind 
is usually of little consequence to the bird provided the direct headwinds 
are not too strong. Albatrosses frequently follow vessels for several days 
at a time, disappearing at night, but reappearing off the stern again at 
daybreak. 

The travel of an albatross in a given direction is usually accomplished 
by very indirect means, much like the tacking of a sailboat, and the bird 
perfqrms a relatively complex pattern of motions in order to proceed along 
a particular mean course (such as in following a ship). For every mile of 
net displacement in a particular direction, the bird may have traversed 
many times that distance in actual flight path. This "excess" motion 
involved in albatross flight is not "wasted," however; it continuously 
carries the bird over fresh areas of water, the surface of which it closely 
scans for possible food. 

It should be noted that observations of albatross soaring at sea must 
normally be made from ships, and the very presence of an observer's vessel 
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may influence the type of flight patterns observed. This situation exists 
because the birds are attracted by the vessel and their flight patterns 
are the result of their conscious endeavor to follow or remain in the 
vicinity of the ship. Thus, the flight patterns observed from a vessel are 
not necessarily those which the bird would pursue under completely natural 
conditions at sea; nevertheless, they clearly exhibit the basic phases 
involved in the dynamic soaring of the albatross, and illustrate the 
versatility of the bird's flight capabilities. 

The presence of a vessel often allows the albatross to practice modes 
of flight which are quite foreign to its normal patterns. Such modes 
involve static soaring in the updra~s generated by the superstructure (or 
sails) of the vessel in its motion relative to the air. Albatrosses are 
able to statically balance themselves in such currents for long periods of 
time and to maintain a practically constant position relative to the ship. 
In coastal waters, gulls are routinely observed taking similar advantage of 
this free energy source. Such flight is exactly analagous to the soaring 
of land birds in the declivity currents existing on the windward slopes of 
hills. 

Limiting Flight Conditions 

The amazing flight powers of the albatross are entirely dependent upon 
the presence of adequate wind, and the bird becomes incapable of sustained 
flight when the wind dies. Idrac9 states that dynamic soaring ceases at 
wind speeds below lO toll miles per hour at the surface and the bird must 
then resort to flapping flight to remain airborne. The relatively weak 
wing muscles are quite incapable of producing sustained flight of so large 
a bird, however, and during periods of calm the albatross alights and 
remains resting upon the surface, waiting the return of the wind. Some 
albatross species make almost habitual use of a few wing strokes at the 
termination of the windward climb. This is particularly characteristic of 
the species Diomedea nigripes, and may indicate a slight aerodynamic 
deficiency in ability to use shear layers of only moderate strength. 

When the wind becomes excessively strong, such as in violent gales, 
dynamic soaring also ceases. The birds appear able to fly in very strong 
winds for a time, but as the gale intensifies the birds disappear and are 
seen no more until the storm subsides. Idrac9 says that the albatross is 
swept to leeward by winds exceeding 43 miles per hour. 

Whatever the flight limitations placed on the albatross by the 
extremes of wind conditions, the continued survival of the bird is ample 
testimony that the frequency of occurrence of winds in the usable strength 
range is quite adequate for the bird's practical flight needs. 

Flight Along Wave Fronts 

When moderate to strong winds blow over the sea, waves of appreciable 
amplitude are generated. The air moving over these wave forms can create 
updra~s of considerable strength on the windward sides, much like those 
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caused by hills on land. When these wave-generated upcurrents are strong 
enough, sea birds can use them for accomplishing static soaring. Even in 
cases where the upcurrents are insufficient to completely support the 
heavier birds like the albatross, flight energy can still be gained by the 
bird, and its flight path considerably lengthened by gliding or skimming 
through the upcurrent region, parallel to the waves. The low altitude skims 
characteristic of the albatross are an example of the use of this energy 
source. Other water birds, such as the pelicans and shearwaters, make 
frequent use of the waves by coasting along on the upcurrents as far as 
possible, and supplying additional energy as required by periodically 
flapping their wings. 

LANDING AND TAKE-OFF 

While the albatross is capable of some degree of flapping flight, the 
use of the wings for this purpose is relatively rare compared to soaring. 
So perfectly adapted is the bird to the exploitation of the wind that the 
auxiliary power available from flapping is usually called upon only for the 
special demands of the take-off. Even in this case the bird appears to 
make a special effort to avoid the need for flapping its wings by utilizing 
the wind whenever possible. Some flapping-type wing motions may also be 
used in the landing process, but these motions are in the nature of a control 
or braking action. The albatross is very specifically designed for rapid 
sailing flight in the free wind over unobstructed seas. Flight at other 
than this "design" condition imposes some very difficult and often dangerous 
operational problems for the bird. 

Landing 

Albatrosses alight frequently upon the surface to feed when the wind 
is strong. Not only is the landing much easier when the wind is brisk, but 
the more difficult process of the subsequent take-off is greatly simplified. 
In order to land -under strong wind cond.i tions the bird simply turns into the 
wind at the proper altitude level and, having lost a large part of its 
horizontal speed relative to earth, settles into the water. When the wind 
is weak, the landing is- accomplished in much the same manner as that used by 
ducks. The large webbed feet are used as hydroplanes and the bird "planes" 
for some distance over the water before coming to rest. The ratio of wing 
span to body length for most albatrosses is about 5.5 so that the bird has 
very little room for strong wing flapping during"landing (or take-off). 
Consequently, without the aid of the wind, tqe bird must make its landing 
approach at a relatively high ground speed, and depends upon its feet for 
the necessary braking action. The difficulty of landing results from the 
high value of the minimum or stalling airspeed of the bird, about 30-35 
miles per hour. 

When aided by use of the feet, landings on water under weak wind 
conditions are not particularly dangerous, although somewhat clumsy. High 
speed landings on the beaches of the nesting islands, however, pose a 
serious threat to the bird. 'Without the aid of the wind the bird must 
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"touch down" at 30 miles per hour or more and undergoes a rather violent 
impact with the ground. Since the feet are useless under such conditions, 
the bird takes the brunt of the impact on its well-feathered breast and 
often does a complete somersault before coming to rest and folding up the 
long wings. Such hard landings can be quite dangerous and may result in 
broken bones. 

Take-off 

Take-off at sea is easily accomplished with the aid of the wind. In 
many cases when an albatross alights to feed, it remains on the surface 
only briefly and does not fold its wings. Paddling vigorously with its 
large webbed feet, it makes its way up the face of the nearest wave and 
launches itself into the wind from the crest. Without sufficient wind, the 
bird holds its huge wings fully extended and with violent leg action uses 
its feet to drive it across the water. Some 100 yards may be required 
before the bird is able to become airborne. The wings may be flapped 
vigorously through a small arc, but effective propulsive flapping does not 
become possible until the albatross has lifted clear of the water. 

So difficult a process is the take-off for the albatross in low-speed 
winds that some species nest only on high prominences where they can take­
off simply by jumping into the air. Those which nest on the beaches and 
lowland areas of islands usually take off only when the wind is sufficient. 
The birds select only those islands which offer long sloping beaches 
relatively free of surrounding shrubs and other obstructions. Even then, 
the difficulty in taking-off from land is usually insurmountable unless the 
wind is adequate; for the short, widely-spaced legs of the albatross are 
quite unsuited for rapid locomotion on land. 

The foregoing discussion has been but a brief description of the most 
typical characteristics of albatross flight as observed in field studies. 
While a number of interesting descriptions of albatross flight patterns and 
habits appear in the literature, only a few are sufficiently detailed or 
accurate enough to be of any real value for technical flight studies. The 
avail.able observations and field data are adequate for establishing the 
general mechanisms of albatross soaring but a great deal of additional 
quantitative field data must be obtained before we can specify the exact 
values of the various parameters which govern albatross soaring. 

III. THE AERODYNAMICS OF ALBATROSS FLIGHT 

This section treats the aeroccynamic mechanisms of albatross flight in 
considerable cietail. Primary attention is devoted to the mathematical 
formulation and analysis of the ccynamic soaring mode; but certain auxiliary 
modes of importance, such as landing and take-off, and wave soaring, are 
also discussed. The ecological significance of some of the more important 
aero~amic results is pointed out as the development proceeds; additional 
ecolog~cal factors are discussed in the following Sections IV and V. 
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THE BA.SIC SOARING CYCLE 

The essential features of a typical tt,namic soaring cycle were briefly 
described in the preceding Section II. It was noted that, although a broad 
range of variations exists in the individual phases comprising the total 
cycle, with some phases at times approaching vanishing duration, the 
sequence of the four basic phases is always the same. By consciously 
varying the duration and intensity of each phase of the cycle, the bird can 
regulate its displacement speed and direction so as to travel along almost 
any intended flight path. 

Let us now consider the structure of the general soaring cycle in 
somewhat finer detail. For purposes of analysis, we divide the total cycle 
into four primary and two secondary phases. As indicated in Fig. 1, the 
primary phases, which constitute the basic soaring cycle, are: (1) the 

/ 

,,,. 
L_ _____ _ 

------
X ... 

Fig. I 

windward climb, (2) the high altitude turn to leeward, (3) the leeward 
glide, and ( 4) the low altitude turn to windward. The secondary phases 
(Fig. 2) are (a) the high altitude coast or glide across the wind (following 
the windward climb), and (b) the low altitude coast across the wind (follow­
ing the leeward glide). Each of the four primary phases involves a differ­
ent type of aerodynamic action; the secondary phases are essentially 
constant-altitude glides spaced between the primary phases in order to 
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control the mean course of the bird relative to earth. The durations of 
the secondary phases can be controlled to a considerable extent by the bird, 
but the maximum allowable durations at any particular time are governed by 
the energy available from the wind, as will be discussed later. 

In order to more clearly illustrate the essential features of the 
aerodynamics involved, we shall for the present assume that the secondary 
coasting phases are absent, so that the total cycle consists only of a 
sequence of the four primary phases, as shown in Fig. 1. We shall refer to 
this simple idealized sequence as the basic cycle of dynamic soaring; it 
contains all the processes essential to flight in shear layers. The condi­
tions at the end of one basic phase are coincident with those at the 
beginning of the following phase and a smooth, continuous cycle is thus 
produced. The bird's flight pattern consists of a periodic repetition of 
the simple basic cycle. 

Starting at the beginning of the windward climb, the bird faces into 
the wind and, utilizing its existing supply of horizontal momentum to 
oppose the decelerating aero~amic forces caused by its motion relative to 
the air, it rises to a typical hei~t of 40 to 50 feet (Phase 1). Then 
the bird banks its wings and executes a turn to leeward, undergoing a rapid 
acceleration, relative to the earth, throughout the turn (Phase 2). Upon 
completion of this high altitude turn to the downwind direction, the bird 
commences a rather steep glide or dive and continues to accelerate along 
its glide path, for some distance (Phase 3). This high speed dive 
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continues until the bird is very near the water. Then, rolling into a. 
nearly vertical bank, the bird simultaneously terminates the dive and turns 
sharply into the wind (Phase 4), to begin the subsequent windward climb. 

The motion of the bird, relative to a stationary observer, is one 
which involves continuous acceleration. In the windward climb, the bird 
starts out with a high velocity (relative to earth), but this diminishes as 
the bird climbs. During the turn to leeward, the bird picks up a large 
amount of speed, and still more during the leeward glide. At the termina­
tion of the glide the bird has attained its maximum absolute velocity. 
Turning to windward at low altitude, the bird loses some velocity even 
before beginning the next climb (as a result of the finite wind velocity 
existing near the surface), and continues to decelerate throughout the 
climb of the subsequent cycle. 

The fact that the albatross is in a continuous state of acceleration 
introduces considerable complexity into the aerodynamic analysis of the 
flight phases. However, as will be shown later, it is only by means of 
such velocity fluctuations and momentum changes that the bird can extract 
the wind energy necessary for its amazing endurance flights. 

ANALYSIS OF THE BA.SIC CYCLE 

The analysis of the basic dynamic soaring cycle will be accomplished 
by considering the aerodynamics of each of the four primary phases 
separately at first, and the results will then be integrated to obtain the 
mechanics of the complete cycle. 

Properties of the Shear Layer 

As a prelude to the discussion of the flight mechanics, it is 
desirable to consider briefly the general nature and more important :proper­
ties of ocean shear layers. The properties of the shear layer play a 
critical role in dynamic soaring flight, for it is only by virtue of the 
difference in wind speed existing between the top and bottom of this layer 
that useful eynamic soaring is rendered possible. For brevity, we shall 
discuss only those properties of shear layers which.are essential for the 
following flight analyses. 

Aerodynamic Boundary Layers.- ~en air flows over a flat surface, the 
random motion of the molecules results in continuous collisions with the 
surface and most molecules rebound with less velocity (or momentum) in the 
flow direction than they had prior to the collision. These slower-moving 
molecules subsequently collide with other molecules farther above the 
surface, and consequently reduce the stream.wise momentum of the more distant 
flow. As a result of the migration or diffusion of the low-speed (in free­
stream direction) molecules away from the surface, a "boundary layer" of 
slowly moving air is created. Within this layer, the velocity increases 
from a value of zero at the surface to the value of the free flow above 
the layer. The effects of this molecular migration (viscous effects) are 
generally confined to the vicinity of the surface for fluids such as air 
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which have small viscosity values. The layers of air within the boundary 
flow slide smoothly over one another, and each exerts a retarding shear 
stress on the one above it. This viscous stress is the result of the low­
momentum molecules of the lower layer migrating into the upper layer and 
slowing it by impact. Above the boundary layer, the velocity is constant 
with height and no shearing stresses exist. We shall not be concerned here 
with the nature of the viscous stresses, but only with the resulting varia­
tion of velocity in the flow direction with height. 

The thickness of the aerodynamic boundary layer increases with distance 
in the direction of flow, as the mass of air which has been slowed down by 
the viscous stresses accumulates. For a laminar boundary layer, such as 
described above, the boundary layer thickness 6 at any distance x from 
the leading edge of the surface is given by 

where 

p = density of the air 
µ=viscosity of the air 

( ) 

1/2 1/2 
60: J±... X 

pV {-1) 

V = ~peed of flow outside the boundary layer 

r Turbulent 

- Laminar 

8 

Fig. 3 

Eq. (1) is valid until x exceeds a 
certain critical distance; the smooth 
laminar flow within the boundary layer 
then becomes unstable and breaks up. 
The flow becomes very turbulent and 6 
increases considerably. In the turbu­
lent layer, continuous mixing of the 
flow occurs and momentum transfer is 
accomplished by relatively large 
masses of air being transported up and 
down by turbulent eddies, instead of 
by the simple migration of independent 
molecules as in the laminar layer. The 
average velocity (in the flow direc~ 
tion) has a considerably different 
distribution in the turbulent boundary 

_ layer than in the laminar layer. Fig. 3 
shows, schematically, the difference 
in the velocity profiles for the two 
cases. The turbulent layer has a much 
fuller profile near the surface due to 
the transport of high-velocity air from the 
free flow down into the lower portions of 
the layer, thus energizing it. In general, 
any mechanism which tends to induce 
turbulence or mixing in the boundary 
layer will result in fuller velocity 
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profiles near the surface. Due to the extremely large scale and surface 
roughness involved in the flow of wind over earth surfaces, earth boundary 
layers will generally be similar in form to turbulent aerodynamic boundary 
layers. 

Large-Scale Boundary Layers Over Land. - The discussion of the small­
scale aero<3¥namic boundary layer given above may be qualitatively applied 
to the large-scale boundary layers or shear layers generated by the natural 
wind in moving over land surfaces. In the case of earth boundary layers, 
however, the flow conditions are somewhat different in that very large 
obstructions protrude above the surface proper, and the relative degree of 
surface roughness is therefore very large. The air flow around trees, 
buildings, hills, and other surface obstructions generates heavy turbulence 
and the momentum of the air near the surface is greatly reduced; this 
momentum loss occurs in addition to that produced by the simple frictional 
retardation. The mixing of this low-velocity surface-air with the higher 
air strata is increased by thermal convections originating at the surface, 
and boundary layers of relatively great thicknesses are formed. The 
complexity of the variables governing the properties of land boundary layers 
generally precludes an accurate analytical treatment, and the quantitative 
properties of such flows are usually determined by experimental means. 

A large number of experimental investigations have been carried out in 
past years on land boundary layers, primarily be~ause of the need to know 
the wind velocity profiles for use in estimating wind loads in the design 
of buildings and other structures. As a result of these studies, it has 
been found that the wind profile Vw( z) ( wind speed Vw as a function of 
altitude z) within the boundary layer can be fairly well represented by 
the relation 

1.j J~'\.P 
V 1" \Z., w 

(2) 

where Vw* is the value of Vw at the altitude z* ( essentially the upper 
limit of the boundary layer) • In general, p and z* depend very much on 
the roughness of the terrain and on the turbulence of the air (which in 
turn depends upon the convective stability of the lower atmosphere). When 
the atmosphere is very unstable, the low-speed air near the surface is 
rapidly.transported upward and mixed with the faster moving air of the free 
flow. Fast-moving air descends to replace the surface air and thus ener­
gizes the boundary layer. The value of p in such cases tends toward z•ro 
and the boundary layer becomes very full near the surface. For smooth, · 
stable airflows, p tends toward 1.0, and the velocity profile (z) 
becomes linear. 

Fig. 4 shows a plot of the wind profiles given by eq. (2) for three 
types of terrain for which p and z* were experimentally determined 
from a large number of actual wind profile measurements.11 For purl)oses of 
comparison, the wind speed is expressed as a fraction of the wind speed 
existing at z = z*. The profiles of Fig. 4 reveal some interesting facts. 
The boundary layer thickness z* decreases as the surface roughness 
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decreases. The decrease in z* is approximately proportional to the 
decrease in relative roughness. For the roughest terrain, z* = 1700 feet, 
whereas for flat open land the layer is only about 900 feet thick. 

Vw(z*) 

p= .L 
2 

Vw(z*) 

p= _I 
3.5 

Vw(z*) 

p=..L 
7 

0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 

Center of large city Rough, wooded country Smooth, flat land 

Vw (z) 

Vw(z *) 

Fig. 4 

The exponent p also decreases with decreasing roughness, so that the wind 
profiles for the smoother terrain are much fuller near the ground. In fact, 
the wind speed over open grassland attains 75 per cent of its maximum value 
at z* within the first 12.5 per cent of the boundary layer. This leads 
to very large wind gradients dV.,jdz near the surface. The expression for 
the wind gradient, obtained by differentiating eq. (2), is 

1.0 
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dV-w* dVw* p-1 
--=p-z 

dz z~ 
(3) 

The profiles of Fig. 4 are for neutrally stable atmospheric conditions 
(i.e. the lapse rate is adiabatic). For unstable conditions, p would 
decrease and each of the profiles would become f'uller at the lower levels. 

Large Scale Boundary Layers Over Water. - Experimental data for wind­
generated boundary layers over water are relatively scarce, probably due to 
the fact that little practical need has existed for ·such data in the past. 
However, some idea of the nature of ocean boundary layers, or shear layers 
as we shall call them, can be obtained by extrapolating the trends given by 
data for land conditions. By comparing the profiles of Fig. 4, it can be 
expected that the wind profile for smooth water surfaces will be similar to 
that for smooth land, but with still smaller values for p and z*. The 
ocean shear layer will then possess a f'uller velocity profile with very 
large gradients dVw/dz near the surface. It may also be expected that, 
under certain sea conditions,* the air near the water surface will be some­
what unstable due to its water vapor content, and this will lead to still 
smaller values of p, f'uller profiles, and larger wind gradients. Thus, it 
would appear that for moderate wind speeds Ww* ::;. 35 to 4o miles per hour), 
z* will be small, say on the order of a hundred feet or so, while the 
velocity reaches almost the maximum value of the free wind within a fraction 
of this distance, say 20 to 50 feet. These values are based on extrapola­
tions of data for land surfaces, but they appear realistic in view of the 
data presently available for water shear layers (p = 0.095)11 and from the 
observational data on actual flight characteristics of the albatross. These 
values of p and z* lead to relatively high shear rates d"Vw/dz near the 
surface [eq. (3)]. 

A fundamental difference exists, however, between land and water 
surfaces in r~ard to the action of' the wi. nd. On land, the surface shape 
and roughness texcept for sand deserts) e.re independent of the wind speed 
Vw; but on water, the surface is unstable under shear and the wind generates 
wave patterns which react with the adjacent airflow to change its pattern. 
The surface distortion and altered airflow react with one another until, 
for a given wind speed, some equilibrium condition between surface shape 
and air-flow pattern is established. At low to moderate wind speeds, the 
water surface may be considered as essentially planar, and the shear layer 
profiles will be similar to those for smoot:q. land. This condition will in 
all probability be the usual case existing for the normal range of wind 
speeds used by the albatross. It should be noted, however, that the waves 
themselves extract energy from the wind and thus reduce its momentum; this 

*lt 'is assumed here that the water temperature is equal to or greater 
than the air temperature. If the water is colder than the air, the 
boundary layer will of course be stabilized. The air-water temperature 
ratio may possibly exert a strong influence on just where the albatross can 
soar, as a result of its effect on the structure of the shear l~er. 
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action is equivalent of course to increasing the surface roughness so far 
as the shear layer profile is concerned. 

As the wind increases to higher speeds, larger waves are produced. 
These larger wave forms are approximately symmetrical, however, and have 
relatively gentle curvatures so that the air glides smoothly over them; 
the shear layer is still but slightly affected. (Fig. 5). When the wind 
becomes very strong, the airflow ultimately separates on the leeward side 
of the waves, the reverse airflow on this side causing them to develop a 
sharp crest, and the whole flow becomes extremely turbulent (Fig. 6) • The 
air is filled with spindri~ and spray torn from the wave crests. Under 
these conditions, the surface roughness would be relatively large and the 
high degree of turbulence would make dynamic soaring very difficult. 

Vw 

Fig. 5 Fig. 6 

The interactions between the water surface shape and the associated 
airflow would appear to have only minor effects on the soaring of alba­
trosses under normal conditions. In very high winds, however, the expected 
turbulence in the shear layer region would impose definite limits on the 
bird's soaring capability. Certain details of the surface wave - airflow 
interactions will be discussed later in this section. We shall assume in 
our present analyees that the wind profiles existing are those for rela­
tively smooth water, or moderate wind speeds. 

The Windward Climb 

From an aeroeyna.mic standpoint, the windward climb is perhaps the most 
complex of the f'our basic flight phases. The primary function of the wind­
ward climb is to carry the bird from the region of low velocity near the 
surface to the region of high wind velocity at the top of the shear layer. 
Although same energy is taken from the wind during the climb, this phase 
does not provide the principal energy supply for eyna.mic soaring. 

Formulation ot the Equations of Motion. - Let us first ,consider the 
force and velocity systems associated with the windward climb. For this 
purpose we employ a set of orthogonal space coordinates x, z with origin 
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at the water surface and with axes oriented normal and parallel to the 
surface, as shown in Fig. 7. The flight path generated by the climb is 
assumed to lie in the x, z plane. The positive direction of the x-axis 
is taken to the right. The bird is represented in Fig. 7 as a point at 
altitude z above the surface, and moving to the left and upward with 
absolute velocity components (i.e. relative to earth) of u and w. All 
vectors (force and velocity) are taken as positive in the positive direction 
of the coordinate axes. Thus, if the horizontal velocity relative to earth 
is denoted in Fig. 7 by the vector u, then the magnitude u of this vector 
is a negative quantity. Since the vector u is directed to the left during 
the climb, u = ax/ dt :i,.,.s negative. The wind velocity relative to earth is 
denoted by the vector Vw and is positive as sh9..wn in Fig. 7. The wind 
velocity is an increasing function of altitude Vw ( z) w1 thin the shear 
layer (0 ~ z :5 z*), and maintains a constant value Vw (z*) above the shear· 
layer (z-,. z*). The velocity profile Vw (z) is assumed to be independent 
of x, and is thus identical at all stations along the x-axis. 

A The bird is acted upon by two forces: the resultant aerod¥namic force 
R due to the air pressure and frictio~al stress diatributions over its 
wings and boccy-, and the weight force W due to gravity. The weight force 
vector is constant in magnitude and direction, always acting in the negative 
direction of the z-axis. The aerodyp.amic force R, ho~ever, depends upon 
the magnitude and direction of the resultant xelocity VR of the air rela­
tive to the bird. The aerodynamic velocity VR is given vectorially by 

(4) 

z z 

Vw(z) 

z* 

w (+) 

~ 
u (-) X 

X 

Fig. 7 Fig. 8 
A 

Fig. 8 shows the various vector relationships. The aerodynamic force R 
is composed of the lift L and drag D of the bird. 
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A A A 

R = L + D (5) 

As is customary,£ ·and D ~re taken as the force components normal and 
~arallel, respectively, to VR. Referring to Fig. 8, it will be noted that 
VR is inclined to the x-axis by an angle ~' due to the fact that the bird 
is climbing with the velocity w. Thus, the lift vector will be inclined 
to the z-axis by the same angle, resulting in a component of the lift 
acting along the x-axis. This component of lift acts to decelerate the bird 
in the horizontal direction. The drag vector will have a component acting 
in the negative direction of the z-axis. 

For purposes of analysis, it is convenient to resolve the resultant 
aerodynamic force R into the components jx and Fz along the x- and 
z-axes, respectively. Thus, we have, using the unit vectors i and k 
for the x- and z-directions, 

Fx = (R :t) 1 = [(£ + fi) i] i 

Fz = (R · k) £ = [(£ + n) · £J k 

The magnitudes of these components are therefore given by 

Fx = L sin~+ D cos~ 

F = L cos~ - D sin~ z 

(6) 

(7) 

(8) 

(9) 

Equating the net force components to their respective time rates of change 
of momentum (Newton's second law) we obtain 

W du 
Fx = g dt = (L sin~+ D cos~) (10) 

W dw 
Fz - W = g dt = (L cos~ - D sin~ - W) (11) 

where W is the bird's weight, g is the gravitational acceleration, and 
t denotes time. W/g is of course the m~ss of the bird. The positive 
terms in eq. (10) denote that the force F is positive when du/dt is 
positive, that is, when u is increasing (positively) with time. 

Equations (10) and (11) involve time as the independent variable, but 
since the wind speed is a function of altitude z, it is desirable to 
express these equations as functions of z also. Using the definition of 
the climbing speed 

dz 
w = dt (12) 
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we obtain 

~~ = ~ (L sin cp + D cos cp) w-1 (13) 

dw r:r ( D - W) w-1 ~ = ..5i? L cos cp - sin cp 
dz w (14) 

These constitute the exact equations of motion for the bird during the 
climb phase. The trigonometric functions in these equations can of course 
be replaced by their equivalent forms 

where 

w 
sin cp = VR 

Equations (13) and (14) can be reduced to a simpler and more useful 
form by making use of the fact that w is small relative to the airspeed 
during the climb, that is 

w << (Vw - u) (15) 

Thus, since 
cp = tan-1 w vw - u 

(16) 

the inequality of relation (15) is equivalent to stating that cp is a very 
small angle, and hence we can take 

w w 
cp = tan cp = sin cp = VR = V 

cos cp = 1 

"' 

(17) 

(18) 

Here V = Vw - u is the magnitude of the aeroeynamic velocity VR, to the 
above order of approximation. Using these relations and the fact that 
D << L for the aerodynamically efficient albatross, the linearized forms 
of eqs. (13) and (14) become 

dw = ~ (L - W) w-1 
dz w 

(19) 

(20) 
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Further reduction of these equations to coefficient form, using the conven­
tional expressions for lift and drag 

yields 

L = CL 1/2 p V2 S 

D = en 1/2 P v2 s 

du g (,. w ) / v2 
dz :::: w ~D + CL V l 2 p w/s 

dw g ~ / v2 ) - = - CL 1 2 p t.i"'7ci'" - 1 dz w W1S 

(21) 

(22) 

(23) 

(24) 

Here CL and Cn are the lift and drag coefficients, respectively, and 
S is the wing area of the bird. Equations (23) and (24) constitute the 
linearized equations of motion for the windward climb. 

These differential equations are still somewhat complex. They are 
nonlinear and mathematically coupled in both independent variables (u and 
w appear in both equations; lul is contained in V, since V = Vw - u). 
The complexity of these equations becomes evident when we note that the 
accelerations at any altitude z depend upon both the velocities u and 
w which coexist at that altitude and hence upon the entire acceleration 
history of the bird ~P to the given altitude. The accelerations also 
depend upon the velocity distribution Vw(z) of the wind in the shear layer. 
In addition, the drag coefficient Cn is a function of the lift coefficient 
CL, and the bird can vary CL at will merely by adjusting its aerodynamic 
control geometry (i.e., its wing and tail surfaces, and also the surfaces 
of its large webbed feet which are used for control) so as to trim at the 
desired angle of attack. Thus CL and Cn, in general, are also functions 
of altitude: CL= CL(z), Cn = Cn(CL). Finally, we note that since the 
bird is capable of altering the shape and effective area of its wings, w/s 
can also be varied with altitude as the bird desires.* 

Before considering the general solutions of eqs. (23) and (24) or the 
exact eqs. (13) and (14), it is instructive to examine the physical signi­
ficance of these expressions. By making use of certain basic observations 
on the nature of the bird's flight path during the climb, it is possible to 
simplify eqs. (23) and (24) considerably, and to arrive at a single equa­
tion whose interpretation yields some valuable information about the bird's 
aerodynamic characteristics and gives us a useful picture of the complex 
relationships which exist among the principal variables. 

Analysis of the Equations of Motion. - It is a fact of observation 
that the vertical rise of the albatross during the greater part of the 

*It will be shown later that the ability of the albatross to vary its 
wing loading w/s plays an important role in the leeward glide phase. 
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windward climb is essentially \1.D.if'orm, that is, the velocity w is 
practically constant except f'or a brief' period at the beginning of' the 
climb during which the bird accelerates vertically to the climbing speed 
w. Under the condition w = constant, eq. (24) reduces to 

dw = 0 dz 
(25) 

for the major part of the climb. It then follows from eq. (24) Cor more 
directly from eq. (20)] that 

L = W (26) 

during the climb (in the linear equations). Eq. (26) expressed in coeffi­
cient form becomes 

c1 1/2 p V2 S = W (27) 

which, upon rearrangement, yields 

1 y2 
c = 1/ 2 P w/s L . 

Substituting this relation in eq. (23) we obtain 

du= ~ocn + ~) 
dz w c-1 V 

Then solving eq. (27) for velocity V, 

V='~ v~ 
and substituting in Eq. (29), we arrive at the single relation 

(28) 

(29) 

(30) 

~ = g ~/n ~ +~) (31) 

This form of the equation of motion is particul~rly suitable for 
analysis since the primary variables are expressed in terms of the conven­
tional aerodynamic parameters L/D, w/s, c1 , and the climbing velocity w. 
The lift-drag ratio L/D is an indication of' the aeroccynamic efficiency of 
the bird, and is a function of the lift coefficient C1. The variation of 
L/D with CL is obtained from the so-called drag polar diagram for the 
bird. Such a. diagram is shown schematically in Fig. 9, assuming the wing 
to be rigid in shape.* The wing loading w/s is the bird•s weight divided 

*In reality, the bird possesses a whole series of drag polars, one 
for each configuration, or shape, of its wing, since the wing shape can be 
varied by the bird at will. This subject will be discussed in more detail 
in the section on the leeward glide phase. ( continued at bottom of next page) 
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determines the required magnitude of the 
lift coefficient for a given air speed 
[see eq. (27)]. The lift coefficient 
CL is a function of the angle of attack 
~ (Fig. 10) and depends on the geometry, 
that is, the thickness and camber, of the 
wing sections. The point denoted by 
CLma.x in Fig. 10 corresponds to the 
maximum attainable value of the lift 
coefficient. If ~ is increased beyond 
this point, the wing stalls; and a rapid 
loss of lift results. 

The ·analysis of eq. (31) is based 
upon the fact that the bird must be able 
to attain a small minimum value of 
du/ dz in climbing flight. This in turn, 
requires that the magnitudes of the · 
various parameters on the right hand side 
of eq. (31) must simultaneously have 
values that result in a small minimum 
value for the expression in parentheses. 
Analysis of the parameters in the light 
of this requirement allows us to explain 
the physical factors underlying the 
particular form and flight characteris­
tics of the albatross. To see why the 
minimum value of du/dz must be small, 
however, we must first examine the 
physical significance of this derivative. 

Consider the bird at a point just 
above the surface and beginning the wind­
ward climb. At this instant the bird's 
horizontal speed u has some d.efini te 
value, say u = Uo; the absolute value 
of u will continuously decrease as the 
bird rises due to the decelerating action 
of Fx. If the wind speed Vw(z) does 
not increase as rapidly as u decreases, 
the aerodynamic velocity V = (Vw - u)* 

For the climbing phase, the wings are held rigidly outstretched so that a 
single drag polar applies. This polar will undoubtedly be very similar to 
those of modern high-aspec~ -ratio sailplanes. However, during the climb 
the flow field behind the albatross' wing may not be steady since the bird 
is decelerating (that is, CL may be changing), so that the induced drag 
may not be the same as would be measured in steady flow, as in the wind­
tunnel. The induced drag relationships for a decelerating wing are 
developed in ref. 13. 

*Note here that .u has a negative value so that V = Vw - u = Vw + fuf. 
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will decrease and the bird must increase CL in order to maintain L = W. 
Ultimately, at some altitude zr, u will decrease to a limiting value ur 
such that the velocity becomes so small that the bird's wing stalls, that 
is, CL has reached its maximum value CLmax according to the relation 

W = CLmax 1/2 p (Vw - Uf) 2 s (32) 

The altitude zf at which this condition occurs will depend of course on 
the wind-speed profile Vw(z). If Vw were large enough, Uf could even 
have the same direction as the wind, without wing stall; the bird would 
then be moving "backward" relative to the earth. In general, however, the 
bird will not climb to the point of wing stall, since it must reserve a 
margin of CL to allow execution of the subsequent turn to leeward, as 
will be discussed in more detail later on. Hence, if we set some maximum 
allowable limit on C1, say CLf, where CLf < C!aa.x, then Uf will 
correspond to the condition where the airspeed V satisfied this value of 
CL, that is, 

W = CLf 1/2 p (Vw - uf)2 S (33) 

The altitude Zf at which Uf occurs obviously depends upon the rate at 
which Vw increases with z as well as the rate at which u decreases. 

Now if du/dz is large at all points of the climb, the change in u, 
Lm ( = u2 - u1), will be large for any small altitude rise Az. = z2 - zi, 
since the absolute velocity decrease ~ is given by 

(34) 

Thus, since Vw increases with altitude, for a given velocity decreases 
~, the aerodynamic velocity V (= Vw - u) will be less if du/dz is 
large, because the altitude gain .J!,.z needed to produce ~ will be 

du 
dz ,mall 

Fla. II 

correspondingly small. The value of CL 
must therefore be larger at each point 
in the climb. Hence, · for a specified 
maximum limiting value of CL, CLf, the 
minimum allowable absolute value of u, 
U:f', will be reached at a lower.value of 
altitude Zf if du/dz is large. It is 
a.lear, thez-efore, t;hat the magnitude of 
du/d:z determines, :upon integration, how 
high the albatross can rise in the 'Wind­
wrd climb for any- given wind profile 
Vw( z) and initial horizontal component 
-of absolute velocity Uo• These rela­
tions are illustrated in Fig. 11. 

If the derivative du/dz were too 
large, the albatross could not rise to 
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any appreciable altitude in the shear layer. Hence, even though the wind 
might be quite strong at the upper limit of the shear layer (z = z*), the 
bird could not gain sufficient altitude in the climb to make the ensuing 
turns necessary to complete the cycle. But even if the altitude reached 
were sufficient to allow the turn to leeward to be completed, the bird still 
may not possess enough x-momentum after the turn to windward to continue 
the cycling process. This condition arises because of the implicit effect 
of the altitude gained in a given climb on the initial horizontal velocity 
u0 available at the beginning of the succeeding climb. As will be dis­
cussed in detail in the subsequent section on the leeward turn, the primary 
energy input to the bird in dynamic soaring comes from the high altitude 
turn to leeward, and the amount of energy gained depends upon the wind speed 
Vw at the altitude where the turn to leeward is accomplished. If the turn 
to leeward cannot be made at a sufficiently high altitude (where Vw is 
large enough), the gain in energy may be insufficient to allow the next 
cycle to be completed. 

On the other hand, if du/dz is sufficiently small that the bird can 
reach the upper limit of the shear layer z* with an airspeed Vw(z*) -
u ( z*) which is equal to or greater than the limiting value imposed by 
CLf, that is if 

(35) 

then the bird can attain maximum energy from the turn to leeward and hence 
a maximum value of Uo for the succeeding climb. 

It is interesting to note that it would not be advantageous for the 
bird to climb to altitudes greater than z*, even if du/dz were suffi­
ciently small to permit this. Above z* V no longer increases, while 
lul can only decrease. Hence upon turning lo leeward at altitudes greater 
than z*, the absolute velocity of the bird would be less than if the turn 
had been made at z*. This appears to be one of the principal reasons why 
the flight of the albatross is confined to the narrow altitude range of 
the shear layer; flight is most efficient in this region. 

It is obvious that the practical significance of the magnitude of 
du/dz ultimately depends upon the magnitude and shape of the wind profile 
Vw(z). If the wind is strong and dVw/dz is large through an appreciable 
depth of the shear layer, then tu/dz can also be relatively large without 
adversely affecting the bird's ~c soaring ability. Even though lul 
may decrease rapidly with altitude in such a case, the increase in Vw 
could be sufficient to prevent a net decrease in the aerodynamic velocity 
until an adequate altitude has been reached. If' the wind is weak, however, 
it is obvious that du/dz must be correspondingly small if. the necessary 
altitude is to be gained. It thus appears that the aerodynamic parameters 
of the albatross must be such as to p~oduce values of du/d:z. sufficiently 
small to allow soaring in wea.k or moderate winds. The lower limit of usable 
wind speed ( which actually determines the minimum value of du/ dz required) 
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must be small enough that the frequency of occurrence of this and all higher 
wind speeds is sufficiently great to guarantee the bird an adequate flight 
capability for its travel needs. 

A very small minimum value of du/dz is quite desirable in that it 
would guarantee the bird's soaring ability over a wide range of wind condi­
tions, but the minimum value actually required depends upon the average 
oceanic wind conditions. As will be shown later the aerodynamic properties 
required. for the attainment of !!:IZ low values of du/dz are incompatible 
with those for other important aerodynamic operations such as the take-off 
and landing, and hence some compromise must be made. In any event, we may 
be quite certain that the compromise of aerodynamic characteristics which 
the albatross has arrived at through the process of evolution quite 
adequately balances all the demands of its present oceanic environment. 

Having now established the physical significance of du/dz and. the 
requirement that it have a small minimum value, the various factors in the 
right hand side of eq. (31)1can be considered. The desired condition is 
that the value of the expression 

1 1 IQ fci: 
L/n; + v2 Jef/s 

be small. For this to be true it is necessary that, from a relative 
standpoint, 

(1) L/D be large 

(2) w be large 

(3) CL be small 

(4) w/s be large 

as can be seen by inspection. The factor Jp/2 is of course taken as 
constant over the small altitude range used by the albatross. 

(36) 

The requirement of a large value for L/D [condi~ion (1)] is well 
satisfied by the bird's aerodynamic design. The albatross has a form which, 
by all conventional aerodynamic standards, should. be most efficient. The 
bird is superbly streamlined and the wings are faired smoothly into the· 
body. The body feathers produce an exceptionally smooth surface as do the 
wing coverts. The wing has a relatively high aspect ratio A ( = b2/s ), 
approximately 13, and as is well known in aeronautical design a wing of 
large aspect ratio is one of the prime requirements for obtaining large 
values of L/D. The wing sections of the bird are very thin and moderately 
cambered, thus meeting another basic requirement for high aerodynamic 
efficiency. 

As mentioned previously, L/D is a function of the lift coefficient 
CL. To satisfy conditions (1) and (3) simultaneously it is thus necessary 
that the maximum value of L/D occur at relatively small values of C1. 
Aerodynamic data indeed indicate that a high aspect ratio wing composed of 
thin, cambered wing sections has precisely ~his property. It is thus clear 
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why the long, narrow wing of the albatross, so characteristic of the oceanic 
soarers, takes the p~rticular form it does. 

Condition (2) states that the rate of climb w should be large. How­
ever, w cannot take on arbitrarily large values, since it implicitly affects 
CL, L/D, and w/s. To examine this complex relationship, let us consider the 
bird at the end of its low altitude turn to windward, where w = o and 
u = Ui· In order to accelerate to the (constant) ciimbing speed w, the bird 
must increase its angle of attack such that the lift becomes greater than 
the weight; vertical acceleration then follows according to eq. (24). During 
this period of vertical acceleration, L will be large and consequently so 
will D. The action of the aerodynamic forces during this period will cause 
u to decrease ( in absolute value), as will be discussed in d.etail in the 
subsequent section on the energy interchange mechanisms of the climb 
(page 34). Thus, if w is large, u at the start of the climb (that is, 
when w has attained its constant value) will be correspondingly reduced in 
absolute value and the aerodynamic velocity will be less at each altitude. 
If V is small, then CL must be large, according to the relation 

2 2W 
CL V = - -p s (37) 

This effect is contrary to condition (3). If CL becomes excessively large, 
L/D will decrease. This is contrary to the requirements of condition (1). 
Finally, if w/s is large, in accord with condition (4), it is evident from 
eq. (37) that CL must be very large if w is large, leading to even 
greater adverse effects. It is clear that the climbing velocity w cannot 
be unduly large, but must approach some optimum value where the integrated 
effects involving CL, L/D, and W/S will make expression (36) take on a 
sufficiently small value. The magnitude of this optimum value of w is of 
course dependent on the nature and strength of the wind. velocity profile 
Vw(z). The relative magnitudes of L/D, CL, and w must be such as to 
allow the bird use of an adequate range of wind speeds for satisfying its 
soaring needs. 

Condition (3), as already discussed, is intimately connected with the 
other three conditions. The requirement of a large value of L/D at a 
small value of CL is quite compatible with the type of wing possessed by 
the albatross. From eq. (37), however, CL must vary proportional to 1/v2 
as the bird rises. In the general case, the aerodynamic velocity V 
probably varies somewhat with altitude z, [V(z) = Vw(z) - u(z)J, and hence 
CL must vary (assuming w/s to remain constant during the climb).* This 
variation of CL will cause L/D to change according to the function of 
L/D (CL). Hence, it would appear highly desirable for the L/D (CL) curve 
of the bird to be very flat near L/Dmax· The velocity V would usually be 
expected to decrease with altitude, since lul is decreasing. However, if 
dVw/dz is greater than du/dz, it is entirely possible that V could even 
increase, temporarily, with altitude, or remain constant. This would 
require that CL decrease or remain constant. The variation of CL with z 

*This assumption is supported by observations of the climb, where the 
wings are held fully extended and rigid. 
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is of course entirely under the control of the bird, through regulation of 
its angle of attack. Undoubtedly, the bird instinctively uses the optimum 
variation of CL for the particular wind conditions encountered at any 
given time. 

Condition (4) indicates that the albatross should possess a high wing 
loading w/s. But, as is evident from eq. (37), w/s cannot become too large, 
or else CL will be increased to detrimental proportions. In reality, the 
albatross does possess a relatively high wing loading (2.5 lb/ft2 for 
Diomedea exulans) as compared to that of the land soarers (0.78 lb/ft2 for 
Cathartes ~ and 1.23 lb/ft2 for Coragyps atratus). This value is 
apparently an optimum one for the dynamic soaring requirements of the alba­
tross; it obviously allows a small enough value of du/dz to permit dynamic 
soaring in such weak winds as the bird may have to use. 

To summarize the results of this section, it has been shown that 
eq. (31) clearly explains why the albatross possesses the exceptional 
streamlining, high aspect ratio wing, and high wing loading which charac­
terize the dynamic soaring birds of the ocean. It has been shown also that 
the primary variables L/D, w, CL, and w/s are rather complexly related, 
aerodynamically, and that their interactions are intimately connected with 
the properties of the wind profile, Vw(z) and d.Vw/dz. The general rela­
tionship of these variables can be summarized schematically as follows 

w 
Ui Vw S 

/i L/i L 
W--+Uo--+-V--+CL~n (38) 

The bird, by control of its angle of attack, accelerates to the vertical 
velocity w at the start of the climb. Simultaneously, however, the 
initial x-component of velocity Uj_ is decreased to u0 , by an amount that 
depends on the final magnitude of w. The value of u0 in turn, combines 
with the value of the wind speed Vw near the surface to determine the 
initial aerodynamic velocity V. Then V, in combination with the wing 
loading w/s, determines the lift coefficient and associated L/D. The 
particular value of w used under given wind conditions of Vw(z) and 
dVw/dz, in conjunction with w/s, thus sets the subsequent functions CL(z) 
and du/dz which ultimately determine the altitude which the bird will 
gain in the climb. 

Solution of the Equations of Motion. - The preceding analysis yielded 
a useful picture of the interactions existins between the aerodynamic 
parameters involved in the windward climb. In order to describe the climb 
in exact detail, however, it is necessary to obtain the solution of the 
equations for actual flight conditions. 

From a mathematical standpoint, the solution of eqs. (19) and (20) 
[or of eqs. (13) and (14)] for u(z) and w(z) is a straightforward process 
and can be carried out by numerical integration when the functions Vw(z), 
CL(z), and L/D (C1), along with w/s, are specified. In the case of the 
actual albatross flight, however, direct solutions cannot be obtained since 
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the pertinent functions appearing in the equations are not known. That is, the 
wind profile Vw(z) and the aerodynamic efficiency L/D (CL) are unknown, in 
general, and the function CL(z) is undetermined, being subject to arbitrary 
control by the bird. While Vw(z) could probably be measured without great 
difficulty, direct experimental measurement of L/D (CL) for the albatross 
would be almost impossible. Thus, solutions of eqs. (19) and (20) can be 
obtained only when Vw(z), CL(z), and L/D (CL) are assumed or otherwise 
specified. 

By using special :functions in the general solution, however, it becomes 
possible to investigate in detail the individual effects of any of the basic 
parameters on the efficiency of the windward climb, especially those of 
different wind profiles, and the general solution procedure thus becomes a 
useful tool for analytical studies of the climb aerodynamics. The general 
method of solution of the basic differential equations is consequently 
developed in section "a" below. 

On the other hand, if du/dz, dw/dz, u, and w were known at a sufficient 
number of points in the shear layer, the equations could alternately be solved 
for two of the three unknown functions Vw(z), CL(z), and L/D (CL). If Vw(z) 
were determined independently by experimental means, the CL(z) and L/D (CL) 
for the albatross could be determined. It is shown in section "b" below that 
it is possible by means of a simple photographic analysis of the climb to 
determine not only CL(z) and L/D (CL), but also Vw(z) (when an additional 
equation is used) for actual flight paths of the albatross. 

a. The general solution 

The most general form of the linearized equations of motion is given by 
eqs. (19) and (20) 

du 
-= dz (39) 

dw 
-= dz 

( 4o) 

Using the relation V = Vw - u and the coefficient forms for the aerodynamic 
forces, eqs. (39) and (40) become 

du ( 1 1 1 ) 
dz = g LfD • w + Vw u ( 41) 

(42) 



- 29 -

These equations contain no restrictions except those imposed by the 
linearization process,* that is, w << Vw - u. In particular, no restrictions 
have been imposed on w, and this velocity is free to vary with altitude, 
w = w(z) 

The solution of these simultaneous equations consists in determination of 
the velocity patterns u(z) and w(z) for the entire·windward climb. The 
nonlinearity of the equations precludes a direct solution in terms of simple 
functions and we must resort therefore to numerical methods of solution. This 
consists of a step by step integration of eqs. (41) and (42) and proceeds as" 
follows. 

We assume that during the entire climb, w/s is constant. The justifica­
tion of this assumption has been given previously. We also assume that the 
wind velocity profile Vw(z) within the shear layer (0 ~ z ~ z*) is known from 
experimental data. Above z*, the upper limit of the· shear layer, Vw assumes 
the constant value Vw(z*). The variation of CL with z is entirely at the 
bird's disposal. The only limit is that C~ cannot exceed CL.max, where the 
wing stalls. The lift-drag ratio L/D = CL/Cn is a function only of CL, as 
previously noted. The values of the gravitational acceleration constant g 
and the air mass density p are of course taken as constants. 

To begin the integration we must specify the initial values of z0 , u0 , 

w0 , Vw
0

, and CLo, respectively. The value of (L/D) 0 is determined by the 
value of CLo· In general, the integration may be commenced at any altitude, 
that is, for z0 > 0 and w0 > o, provided the other initial conditions are 
also known at this altitude. It is of more general interest, however, to 
begin the integration at z0 = 0 (i.e. at the surface) and with w0 = 0 so 
as to obtain the entire flight path of the bird, including the period of 
initial vertical acceleration. Unfortunately, this procedure leads to diffi­
culty in that the factor 1/w in the equations takes the meaningless form 
1/0 for w0 - 0 at z.o. This difficulty requires special treatment, and will 
be considered.in detail subsequently. For the present we shall assume that 
z0 is a small, but finite value, and that w0 is also finite. Under these 
conditions the integration can proceed smoothly. 

The first step is to insert all the initial values and constants into 
eqs. (41) and (42) and thus determine the initial values of du/dz and dw/dz 
denoted by (du/dz) 0 and (dw/dz) 0 , respectively. Then, choosing an arbitrary, 
but small, increment of altitude (Az)1, we determine the velocity values at 
altitude z1, where 

(43) 

by means of the relations 

(44) 

*The exact equations (13) and (14) can be treated by the same procedure 
as is outlined here for the linearized equations. 
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(45) 

We now have u and w at the new altitude z1. Vw at z1 is also known 
from the wind profile equation Vw( z). The value of CL at z1 is generally 
arbitrary, however, since the bird can vary CL at will, independently of all 
other variables, merely by trimming at the appropriate angle of attack. Hence, 
unless we know the CL(z) function actually used by the bird from experimental 
data,* we must assume the functional relation between CL and z for-the 
integration to proceed. The resulting velocity histories u(z) and w(z) will 
of course be heavily influenced by the nature of the function CL(z). For 
general studies of the climb mechanics the arbitrariness of CL(z) allows us 
to examine the effects of this parameter in detail, by comparing the results 
obtained for u(z) and w(z) as the form of CL(z) is varied. With a specified 
function CL(z) (experimental or assumed), the corresponding function L/D (CL) 
is determined by means of the drag polar Cn (CL), so that all values on the 
right sides of eqs. (41) and (42) are BBO:Wll at z1. 

We merely repeat the same procedure used above [eqs. (44) and (45)], 
substituting the values of the variables at z1 for the new "initial" condi­
tions. Thus we obtain from eqs. (41) and (42) 

where u, w1 , CL1 , and Vw1 indicate the values of the functions at z1 , 

u1 = u(z1) 

w1 = w(z1) 

CL1 = CL(z1) 

Vw1 = Vw(z1) 

Then the velocity values at the new altitude 

*Such data can be determined by photographic recordings, as will be 
discussed in section "b". 

(48) 

(49) 
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are obtained from the relations 

~ = u(z2) = u1 + (~)2 = u1 + ({~t (&)2 (50) 

(51) 

Repeating the process, using a very small value for !Yz. increments, the func­
tions u(z) and w(z) can be tabulated and plotted for any desired lift coeffi­
cient variation CL(z). 

It should be noted that the accuracy of the integration depends upon the 
magnitude of the t::.z interval ( or intervals) used. A check on the accuracy 
is obtained by comparing the plots (or tabulated values) of u(z) and w(z) 
for a given value of t::.z, against the same functions obtained by using a 
smaller value of &. When the plots no longer change appreciably as the 
magnitude of l::.z is decreased, the curves have approached the exact solution 
as closely as is necessary for computational purposes. 

The simple integration procedure outlined here is equivalent to using 
Taylor series integration, retaining only first order terms. Any of the more 
sophisticated methods of numerical integration, such as the Adams or Kutta­
Runge methods, could of course be used. If sufficiently small values of flz 
are employed, however, the Taylor series method is suitably accurate. 

In general investi·gations of the effects of the function CL( z), the 
integration would be c·arried only to some limiting value of CL which is 
imposed by physical restrictions. For example, one such restriction might be 
the wing stall. That is, when CLmax is exceeded, the wing stalls and lift is 
lost. The value of z at which the angle of attack exceeds that for CLma.x 
will therefore set the approximate maximum value of z attained, for then w 
rapidly becomes negative and the bird falls. If ~ is not allowed to exceed 
that for CLmax, the bird will continue to climb, assuming that Vw - u is 
sufficient throughout the climb to maintain a positive value of w up to and 
beyond the altitude where CLip.al occurs. It may indeed happen, however, that 
Vw - u, for the specified CL{zJ, is not sufficient to maintain Fz ~ W up to 
the altitude specified for C1ma.x; hence the bird will decelerate vertically 
(dw/dz will become negative) once Fz becomes less than w, and will lose 
altitude after w becomes negative. In this case, only a part of the specified 
CL(z) curve will be possible, since a maximum val~e of z has occurred; the 
maximum altitude gain will always correspond to the point where w becomes 
zero. 

By using various CL(z) functions [and corresponding L/D (CL) rela.tions] 
in the solution of the equations of motion, and comparing the results, it is 
possible to learn a gre_at deal about the relative effectiveness of these 
functions in allowing altitude gain during the climb phase, for given wind 
conditions Vw(z). The effects of varying the wind profile function Vw(z) 
can also be investigated. By programming the integrations of eqs. (41) and (42) 
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on an electronic computer, solutions can be rapidly and simply obtained for any 
desired inputs of CL(z), L/D (CL), and Vw(z). 

Let us now consider the case where the solution is desired starting from 
the initial conditions z0 ~ O and w0 = O. It is immediately apparent that 
eqs. (41) and (42) will involve the undefined factor 1/w0 = 1/0 for the 
calculation of (du/dz) 0 and (dw/dz)0 • This condition arises because of the 
use of relation (12) 

dz 
- - w dt -

to eliminate dt in the basic eqs. (10) and (11). 

To proceed with the integration in this case, we replace eqs. (41) and (42) 
with the forms 

du ( 1 w ) 
dt = g L/D + Vw - u 

1 ( 2 1 
CL 2 P Vw - u) w/s (52) 

(53) 

Inserting the initial values u , w O = 0, CL0 , Vw0 , and ( L/D) 0 in the-se 
equations, we can obtain (du/dt)0 and (dw/dt) 0 as before. Then choosing an 
arbitrary, small time increment .6t, we can determine u1 and w1 from 

(54) 

(55) 

where w = 0. Now, to find what value of 6z corresponds to the time incre­
ment (~t~1 , we use the relation 

(56) 

(57) 

Thus we have u1, w1, and z1. These values may now be substituted directly in 
eqs. (46) and (47) and the integration carried out in terms of 6z as before. 
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The numerical integration of eqs. (41) and (42) "/JJB.y be used to investigate 
the effect of the climbing velocity w on the horizontal velocity u. The 
nature of this effect was mentioned previously on page 26, in connection with 
condition (2). If the bird is considered to have the initial conditions 
z0 =. o, w~ = o, (dw/dz) 0 = o, and u = Uj_, the condition L0 = W = CL0 1/2 p 
(Vw

0 
- U1J2 S must exist. If then CL is increased, dw/dz will become 

positive and w will increase. Simultaneously, u will decrease by an amount 
which depends on the manner in which CL was varied during the period of 
vertical acceleration and, of course, on the wind profile Vw(z). If the 
vertical acceleration is subsequently reduced to zero (by regulation of CL) 
after some desired value of w is attained, the bird will climb at a constant 
rate. The value of u, say u0 , at this altitude where w becomes constant 
will then ultimately determine how high the bird can rise in the shear layer. 
Under the condition dw/dz = o, L = W (~ Fz = W), and eqs. (41) and (42) 
reduce to 

du _ (_ l . _! + l ) 
dz - g ~/D w Vw - u (58) 

for the part of the climb during which w is constant. Then CL at each 
value of z is no longer arbitrary, but is uniquely determined by the condi­
tion CL= W/S • 2/p • (Vw - u)-2 up to the maximum value of z at Cr..max. 
Thus it is possible to determine quantitatively how w affects Uo and the 
maximum altitude attainable when various CL(z) functions are used during the 
initial vertical acceleration period. 

b. Solution for the aerodynamic characteristics 

If an accurate record is obtained of the bird's flight path (relative to 
earth) during the climb by photographic or other means such as theodolite 
triangulation, it is possible to solve the equations of motion for the values 
of the unknown parameters CL(z) and L/D(z). To obtain an accurate photo­
graphic record, the camera must be mounted perpendicular to and at a consider­
able distance from the plane of the flight path so as to avoid errors due to 
parallax. The camera must be fixed relative to earth during the recording and 
a fixed reference point must appear in the photograph. By ma.king multiple 
exposures at known time intervals (or equivalently, by using a motion picture 
camera with known film speed), the entire flight path of the bird during the 
climb can be recorded. 

The -resulting flight path thus obtained can be converted to actual full­
scale dimensions by using a known characteristic length (say the body length) 
of the bird. If the body length of the bird were known to be 2.2 feet, for 
example, and the corresponding length in the photograph (or its projection) is 
1.3 centimeters, then the actual dimensions of the flight path in feet are 
obtained by multiplying all distances on the photograph (measured in centi­
meters) by the scale factor 2.2 ft/1.3 cm or 1.69. Using this procedure, a 
plot of the full scale flight path can be constructed, using time as a para­
meter. Such a plot is shown schematically in Fig. 12, where the points on the 
curve denote the known time intervals. Alternately, more involved triangulation 
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methods, such as used in aircraft and balloon tracking systems, could also be 
used under proper conditions to establish the flight path. 

z 

From this plot of the actual flight path, the functions z(t) and x(t) 
can be determined and plotted as shown in Fig. 13. These plots will in turn 
allow the determination of w(z) = dz/dt and u(t) = dx/dt, and subsequently 
dw/dz and du/dz. In order to determine the functions CL(z) and L/D(z) 
used by the bird, we make use of eq. (24) for the vertical acceleration 

dw f7 (, 1 2 1 ) 
dz = ~ \_CL 2 P (Vw - u) w/s - 1 (59) 

We assume that Vw(z) is known. Since dw/dz, w, and u are now also known 
functions of z and w/s is a known constant, eq. (59) can be solved for 
CL(z) directly. Then, using eq. (23) for the horizontal acceleration 

du G 1 1 1 ~ .e. (Vw - u)2 
dz = g Lf D w + V w - uj CL 2 W / S (60) 

the function L/D(z), or L/D (CL), can be determined. Thus, by means of the 
known actual solutions w(z) and u(z) (as determined by experimental measure­
ment), the equations of motion allow us to determine two very important aero­
dynamic characteristics of the albatross, CL(z) and L/D (CL). 

In order to obtain the above solutions it was necessary that the wind 
profile Vw(z) existing at the time of the photographic recording be known. 
In lieu of actual wind profile measurements (which would not be too difficult 
to obtain over a 70-foot altitude layer), a theoretical or approximation func­
tion would have to be used for Vw(z). On the other hand, it is possible to 
determine Vw(z) from the photographic recordings, provided we assume the 
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function L/D (C1) to be known with sufficient accuracy. In all probability, 
the relation between L/D and C1 for the albatross will be quite similar to 
that for modern high performance sailplanes having laminar-flow airfoils and an 
aspect ratio equivalent to that of the bird. In this case, eq. (59) can be 
solved for (Vw - u) in terms of C1. Substitution for (Vw - u) in eq. (6o) then 
yields a relation from which the function C1(z) can be determined using the 
known L/D (C1) relation. With C1(z) determined, eq. (59) can be solved for 
(Vw - u) as a function of z, from which Vw(z) follows, since u(z) is 
known. In the foregoing procedures, the fact that the functions w(z) and 
u(z) are in graphical form requires, of course, that the calculations be 
carried out for a series of individual values of the altitude z. 

If another simultaneous equation involving Vw, CL, and L/D were 
available in addition to eqs. (59) and (60), it would be possible to determine 
all three functions Vw(z), C1(z), and L/D (C1) directly from single photo­
graphic pr other record of the flight path. Such an equation is given by the 
energy-balance relations which are developed in the following section. It is 
indicated at the close of that section how the simultaneous solutions for 
Vw(z), CL(z), and L/D(z) can all be obtained from a single flight path record. 

Energy Analysis of the Windward Climb. - At the beginning of the climb, the 
bird is moving directly into the wind, just above the surface z = z0 , with 
u = u0 and w = w0 = 0. Thus the bird possesses an initial supply of kinetic 
energy in the amount of 1/2 w/g Uo2· As the bird begins its climb and rises 
through the shear layer, energy is extracted from the wind. Simultaneously, 
energy is being dissipated by the action of the aerodynamic drag force and is 
being supplied to increase the bird's kinetic energy and potential energy by 
1/2 w/g w2 and W (z - z0 ). It is of interest to investigate the details of 
this energy interchange process. 

Let us first consider the energy required to accomodate the aerodynamic 
drag force D. This energy is transferred directly to the air in such a manner 
that it is ultimately dissipated into heat by viscous action. This energy will 
be called the dissipation energy a~d denoted by the symbol 6Ed. It is equal 
~o the working of the drag force D relative to the total aerodynamic velocity 
VR, 

(61) 

Here t1 - t 0 denotes an arbitrary interval of time and AEd the dissipation 
energy expended during this interval. Since, from eq. (4), 

eq. (61) can be written as 

<vw - u - w) dt (62) 
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Expanding eq. (62) we obtain 

Jt1 A 

u dt + D • - w dt 
to 

(63) 

The last two integrals have positive values as can be seen from the vector 
sketch of Fig. 14. All vector operations are carried out in the positive sense 
herein so that confusion with signs is avoided in the resulting scalar equa­
tions. Hence 

.... 
u 

w 

Fig. 14 

~ 

-u 

Eq. (63) shows that the dissipation 
energy is supplied both by the wind and the 
absolute velocity or the bird. The energy 
is extracted from these sources in exact 
proportion to the relative magnitudes of 
the velocities. In particular, it is noted 
that the vertical velocity w of the bird 

x causes an increase in the dissipation 
-+ energy. 
D 

Let us now consider what happens to 
the original kinetic energy supply 
1/2 W/g 11o2 of the bird during the climb. 
The work done by the bird in moving with 

A A 

the velocity u against the force Fx in 
the time interval t1 - t 0 is 

1 t1 A 1 t1 w dA 1 w 
F • u dt = - _E: • u dt = - - - ( u 2 - u 12) 

X g dt 2 g O 
to to 

(64) 

The left integ~l of this equation can also be written in terms of the 
components of Fx, 

l tl 1t1 1t1 
Fx • u dt = D cos~ i · u dt + L sin~ i • u dt 

t 0 t 0 t 0 

(65) 

or 

1t1 A A 1t1 1t1 
Fx • u dt = D cos~ u dt + L sin~ u dt 

t 0 · t 0 t 0 

(65a) 
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Combining eqs. (64) and (65a) we obtain 

1
t1 1t1 . . 1 w 

- D cos cp u dt - L sin cp u dt = 2 g ( Uo 2 - uJ?) 
to to . 

(66) 

This equation shows that the initial kinetic energy possessed by the bird is 
used in two ways: (1) to provide a part of the ·dissipation energy, as indicated 
by the first integral on the left and (2) to provide the energy for work done 
by the force L sin cp. Eq. (63a) shows that th~ force L sin cp is n<;>t 
involved in the dissipation energy and hence mu.st be concerned with the poten­
tial energy increase W (z1 - z0 ), and kinetic energy increase 1/2 W/g w2. 

"' The work done by the vertical force Fz is given by 

1 t1 "' 1 t1 "' 1 t1 "' Fz · w dt = L cos cp j · w dt - D sin cp j 
to to to 

. w dt (67) 

or 

Also, 

1t1 (w dw "') -- - w t g dt 
0 

• w dt (68) 

or 

1 tl "' "' 1 Wl W J zl J. W . F z • w dt = -- w dw + W dz = 2 - (w12 - w0 2) + W ( z1 - z0 ) 
t

0 
w g z g 

0 0 

(69) 

Thus, equating eqs. (67a) and (69) we obtain 

1 w 1t1 1t1 
2 - (w12 - w0 2) + W(z1 - z0 ) = L w cos cp dt - D w sin cp dt 

g to to 
(70) 

The terms on the left represent the kinetic energy of the vertical motion and 
tha gain in potential energy of the bird, respectively. 

By combining eqs. (66) and (70) we obtain the general expression for the 
overall energy balance 
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l w 1t1 1t1 = 2 g (u.a2 - u12) + Lu sin cp dt + L w cos cp dt 
to to 

(71) 

1 t1 
Then adding D Vw cos cp,dt to each side of eq. (71) and using eq. (63a), 
we obtain · t 0 

J t1 1t1 
+ Lu sin cp dt + D Vw cos cp dt 

to to 

Now applying the exact relations 

Vw - u 
cos cp = VR 

. w 
sin cp = VR 

we obtain the final (exact) expression for the energy equation 

1: ~ (w 2 - w 2) + W (z1 - z
0

) + 6Ed = 2 g 1 0 

\ -,~ ) ~ \-.,-) 
K.E. increase P.E. increase Dissi­

pation 
Energy 

1: ~ ( u 2 - ul2) + 2 g 0 

~ ) . 'Y"" 

K.E. decrease 

Energy from wind 

Here VR has the value [(Vw - u)2 + w2] 1/ 2 • 

(72) 

(72a) 

(73) 
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To summarize the results obtained above, we note that the change in 
kinetic energy 1/2 W/g (u0 2 - u12) associated with the horizontal motion of 
the bird provides all that portion of the dissipation drag expressed by 

1t1 A 

D • u dt and a part of the kinetic and potential energies 1/2 W/g 

(w1~0
- wa2) and W(z1 - z0 ). It also supplies a part of the dissipation energy 

f"t1 
for the term j D • w dt. The remainder of the energy requirements are 

to 
furnished by the wind, according to the last two integrals on the right side 
of eq. (73). It is seen that the energy for increasing the kinetic energy of 
vertical motion and potential energy, plus the dissipation energy associated 
with w, is supplied by both the ~1nd and the initial kinetic energy of hori­
zontal motion of the bird, in dire:ct proportion to the velocities Vw and u, 
respectively. 

i t1 A A 

The dissipation energy D · Vw dt is never really taken from the air; 
to 

the ordered motion of the wind Vw is merely converted to the "random" motion 
associated with the dissipation processes (vortex and viscous wakes). 

Eq. (73} can be ~erived more directly, of course, by treating both force 
C5?mponents Fx and Fz simultaneously in one equation. Thus, denoting by 
EF the sum of all forces acting on the bird at any instant, we have by Newton's 
second law 

A 

where Va is the absolute velocity of the bird. Then taking the scalar product 
A 

of each side of the above equation with Va, the working of all forces is 
obtained: 

1t1 1ir . v..1. dt = ~ f· t1 d v, . v dt 
t C g .. t dt a 

0 0 

Expanding this relation we obtain 

1t1 A A A w1t1 d 
(L + n + w) • (u + w) dt = ~ - (u + w) • (u + w) at 

to g to dt 

1 A A A A A A A A A A A A 

( L • u + L • w + D • u + D • w+ W. u + W • w) dt = ! ~ (u12 - u 2) + ! ~ (wi2 - wa2) J
t 

to '---v--' ~ \.v-' 
2 g O 2 g \, _______ ) 

'V"" 

Dissipation • 0 P~E .. K.E. 

The terms L · U (=Lu sin~= L w/vR u{ and L · W (= L w cos~= L Yyv; 11.w) 

reduce to L w/vR Vw, so that adding~ 
1 D. Vw dt to each side and 

expanding the products yields eqs. (73) ~dentically. 
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In a preceding section (page 26), it was stated that the horizontal 
velocity component u and the vertical velocity component w are not indepen­
dent, and that if w is made large, as a result of the vertical acceleration, 
the value of u will correspondingly decrease, assuming the conditions prior 
to the acceleration to be u = Ui, w = o, z = zi. This relationship between 
u and w during the vertical acceleration, for a given initial value of Ui, 
can be developed in an approximate form by using the preceding energy relations. 
Using eq. (66) and the expression dt = dz/w we have 

Jzl Jzl 1 W 
- D ; cos cp dz - L ; dz = 2 - ( ui 2 - Uo2 ) 

Zi Zi R g 
(74) 

During the vertical acceleration period at the beginning of the climb, that is, at very 
low altitude, Vw << u and hence we can take -u = VR aplroximately. The integral 

~ J zo D ; cos q:, dz can be expressed in the f'orm n J O 
L dz as f'ollows. 

-if 

and 

zi Zi 

-+ 
z L 

R 

X 

From Fig. 15 we have 

R cos ( 900 - ( cp + a ) ) = - L ~ D cos cp ( 75) 

Assuming L = R, eq. (75) becomes 

L sin ( cp + a ) + L ~ = D cos cp ( 76) 
u 

Now let a= ncp where n gives an 
average or effective value of a 
(or L/D) during the vertical accelera­
tion period. 

Then 

L[sin (cp(l+ n)) + ~] = D cos cp (77) 

Fig. 15 
But since cp and 9 are both small 
angles (9 must be small for large 
values of L/D since 9 = tan-1 D/L), 
we have 

sin [cp (1 + n)J = - ~ (1 + n) u 

D cos cp = - L !. (1 + n - 1) = - n L ~ 
u u 

-Jz0 Jz0 
D cos cp; dz= n L dz 

zi z1 

(78) 

(79) 

(Bo) 
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The constant n gives the effective value of L/D for the entire vertical 
acceleration period in terms of the angle ~- Using eq. (Bo) in eq. (74) we 
obtain 

The lift L can be written as 

so that 

W dw L=W+-w­g dz 

L dz= W dz+ - wl dwl J z0 Jw w 
Z• 0 g 

l. 

Thus eq. (81) becomes 

(81) 

(82) 

(83) 

(84) 

The factor n in this equation accounts for the dissipation energy lost during 
the acceleration up to the vertical velocity w. Eq. (84) can be written as 

lW 2 
- - Ui 2 g (85) 

This equation gives the explicit relation between u0 and w and clearly 
shows that u 0 will decrease as w increases for given values of u1 and n. 
Since n is inherently positive, a part of the available kinetic energy 
1/2 W/g (ui2 - u0 2) is dissipated by the drag experienced during the accelera­
tion while the remainder goes to increase the kinetic energy of the vertical 
motion and the potential energy. It is clearly desirable to have n as small 
as possible and he~ce a large value of L/D is necessary. 

It is possible, of course, to determine the relationship between u and 
w exactly when Vw(z), CL(z), and L/D (C1) are given, by direct integration 
of the equations of motion as discussed previously in "Solution of the Equa­
tions of Motion" on page 27. 

. It was stated in the preceding part "b" {page -'3) that the energy equation 
would allow the simultaneous determination of Vw(z), CL(z), and L/D (CL) 
from photographic data. To indicate how this solution is obtained, we must 
develop the energy equation in a form which lends itself to this purpose. We 
first rewrite eq. (73) in the form 
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1 w lt lt 1 w - - (w2- w0 2) + W(z- z0 )- Du cos cp dt+ D w sin cp dt= - - (u0 2 - u2) 
2g t •t 2g 

· 0 0 

+jt L .!.. Vw dt (86) 
to VR 

Differentiating both sides of this equation with respect to t we obtain 

~ w dw + W dz - Du cos cp + D w sin cp 
g dt dt 

W du w 
=--u-+L-V 

g dt VR w 

In terms of dz, eq. (87) becomes 

Since 

!! w2 dw + Ww - Du cos cp + D w sin cp = 
g dz 

W du w 
--uw-+L-V g dz VR w 

Vw - u 
cos cp = 

VR 
and sin cp = v:, eq. (87a) can be rewritten as 

W 9 dw Vw - u w2 W du w 
g w- dz + Ww - D u VR + D V R = - g u w dz + L V R V w 

(87a) 

(88) 

This equation is exact, that is, it has not been linearized in any way. For use 
with the flight path data, the quantities w, u, dw/dz, and W are known. The 
unknown variables are D, L, and Vw. The velocity VR = [(Vw - u)2 + w2Jl/2 
contains Vw implicitly. 

Eq. (88) can be linearized by applying the assumptions cos cp = 1, 
VR = Vw - u, and sin cp = w/(Vw - u). Thus we obtain 

W 2 dw -w -+Ww 
g dz 

w2 
Du+DV 

w - u 
= - !i u w du+ L wYw 

g dz Vw - u 

for the linearized form of the energy equation. 

In order to solve for the unknown variables we use eqs. (19) and (20) 

du=~ (n + 1 w ) w-1 
dz W Vw - u 

dw = _g (L - W) w-1 
dz W 

(89) 

(19) 

(20) 
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along with eq. (89). (All of these equations are of the linearized form for 
simplicity; however, eqs. (13) and (14) along with eq. (88) could be used to 
obtain the exact solutions if desired.) To determine V¥(z), L(z), and D(z), 
we solve the three simultaneous eqs. (19), (20), -and (89J over a range of values 
of z for which the flight path data are available. To cite one procedure, we 
solve eq. (20) for L. Substituting this value of L in eqs. (19) and (89), 
we obtain two equations in D and V. Solving eq. (19) for D in terms of 
Vw and substituting for D in eq. (~9), we can finally obtain the value of 
Vw. Then from eq. (19) we can obtain the value of D. 

Obtaining the solutions for several values of z, the unknown funct!ons D, 
L, and Vw can be constructed. The coefficients Cn, CL, and er.Jen ---ean be 
determined from the relations Cn = D/[p/2(Vw - u)2 S] and CL= L/[p/2(Vw -u)2 S] 
if desired. Thus from experimental measurement of the flight path, all the 
major functions which govern the albatross' motion during the windward climb 
can be quantitatively determined. 

Vw 

The High Altitude Turn to Leeward 
-+ 

__ ..... 2~~~~~~u_2 The high altitude turn to leeward 

Fig. 16 

is perhaps the most importan~ phase of 
the basic soaring cycle, since it 
furnishes the primary energy supply for 
dynamic soaring by the albatross. Yet, 
aerodynamically, it is probably the 
simplest phase of all. By execbting a 
simple 1Boo gliding turn from windward 
to leeward near the top of the shear 
layer, the albatross extracts from the 
horizontal wind the energy necessary 
to power its amazing endurance flights. 

The Kinetic Energy Gain of the Leeward Turn.- Consider the bird at the end 
of the windward climb, when it has reached its maximum altitude z = Zf near 
the top of th~ shear layer and is moving upwind with an absolute velocity u 
(it is assumed that the vertical velocity component bas decreased to zero at 
zf, w = 0). The bird banks its wings and commences a turn toward. the leeward 
direction. We shall assume that this turn is accomplished at essentially 
constant altitude z = zf; in reality it is actually a gliding turn in which 
the bird loses some slight amount of altitude, but we can neglect this fact in 
our present analysis. We employ a set of x, y coordinate axes to describe 
the turn, and all vector quantities are taken as positive in the positive 
direction of the coordinate axes. Under the assumption of constant altitude, 
the wind speed Vwr = Vw(zf) is constant at all points in the plane of the turn. 
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At the beginning of the turn (point 1 in Fig. 16), the bird possesses an 
aerodynamic velocity Ve= u1 - Vwf·* The absolute speed u1 of the bird is 
therefore, 

(90) 

Here Ve has a negative value; eq. (90) can be written alternately as 
u1 = Ve - Vwf• The bird maintains a constant airspeed Ve throughout the 

turn; hence the absolute velocity u2 at the end of the turn (point 2 in 
Fig. 16) has the magnitude 

where both Ve and Vwf are positive; fu2J = 1Vcl + Vwf· Corresponding to 
these two absolute velocities, the bird possesses kinetic energy of 

(91) 

(92) 

Here Ve denotes the (constant) absolute value of the airspeed. From eq. (92) 
it is seen that the bird has gained kinetic energy in turning from point 1 to 
point 2 in the amount 

or 
w 

~1,2 = 2 g Ve Vwf 

(93) 

(94) 

This kinetic energy supply may be used as the bird desires for various 
flight purposes, such as distance travel in a particular direction. Two basic 
restrictions are placed upon the use of this energy, however. First, enough 
of it must be saved to allow the subsequent windward climb to proceed, and 
second, all turns and partial turns made subsequent to the completion of the 
leeward turn must be made at very low altitudes, near the water surface. The 
reason for the first restriction we have already discussed in the preceding 
section on the windward climb; the reason for the second one will be discussed 
in the following section on the low altitude turn to windward. 

The gain in kinetic energy as given by eq. (94) is seen to be proportional 
to the product of the airspeed in the turn and the wind speed at the altitude of 
the turn. It is clear that, for maximum energy gain, the turn must be made at 

*In reality Ve is the horizontal component of the aerodynamic velocity; 
under the present assumption w = o, it becomes the total aerodynamic velocity. 
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the altitude where Ve Vw-r is a maximum. Since Ve= lull + Vw-r, maximum 
energy gain may well occur at altitudes below the top of the shear layer, if' 
I ul decreases too rapidly with altitude (~, du/dz large). The maximum 
attainable energy gain in such cases may be rel.atiyely small. In order to 
obtain the largest gain, with regard to the-maximum allowed by the wind speed 
available, it is necessary that the decrease in lul with altitude be suffi• 
ciently small that Ve ( = lu1I + Vw-r) reaches its maximum value at or above the 
top of the shear layer (where Vw is also maximum). 

Eq. (94), written in terms of lu1I becomes 

(95) 

This relation shows the importance of the bird having a small value for ldu/dzf 
for use of weak winds, as discussed previously in "Analysis of the Equations 
of Motion", page 20. For large energy gains, it is desirable that lu1I be 
large when Vw-r is essentially equal to Vw*; when the wind is weak, fdu/dzl 
must be very small if any useful amount of kinetic energy is to be obtained, 
since then even Vw* becomes small. 

It should be noted that lull depends not only on du/dz but also on Uo, 
the horizontal velocity at the beginning of the windward climb, since 

(96) 

The magnitude of u is, in turn, implicitly dependent upon the velocity (or 
energy) gained in tge preceding leeward turn. Thus, if the gain in lul during 
the turn ( lu2I - luv) is small, Uo will be small, and may not be sufficient 
for the requirements of the succeeding windward climb. From eq. (95) it is 
clear that even if ldu/dzl is relatively small, as the wind speed decreases the 
gain in kinetic energy will decrease, and ultimately will become less than 
that required for sustained soaring. 

Mechanisms of the Energy Gain. - The preceding discussion was based upon 
the simple kinematic relationship between the initial and final absolute velo­
cities of the bird in the turn. It is of interest, however, to consider the 
dynamics of the turn as well, in order to examine more explicitly the process 
by which the bird extracts its flight energy from the horizontal wind. 

Before considering the actual leeward turn conditions, it will be helpful 
to examine the aerodynamic relations existing during a turn in still. 'air, that 
is, a turn in which the wind speed is zero, since the aerodynamic forces and 
velocities in the leeward turn (with wind) are exactly the same as in a still­
air turn. The more complex absolute motion of the actual leeward turn (wit~ 
wind) can then be simply obtained by vectorially adding the wind velocity Vwr 
to the aerodynamic velocity Ve of the still-air case. 
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.. 

Vw= o 

-+ 
Ve 

Fig. 18 

"~ / r 

Consider a bird at the start of a gliding turn in still air (Vw = 0) with 
an airspeed ~c (where the sinking velocity w is assumed negligible). The 
initial absolute velocity u of the bird at the beginning of the turn is then 
equal to ~c (Fig. 17). The bird executes a 1800 turn by banking its wings so 
that a component Fe of the lift acts horizontally to pu!l the bird around the 
turn, and since there is no wind, the absolute vxlocity Va of the bird* atA 
any point is equal to the aerodynamic velocity Ve. The centripetal force Fe 
produces a constant radial acceleration according to the relation 

A W Vc2"' 
F =---r 

C g r2 (97) 

where r is the radius of the resulting turn (Fig. 18). The position vector 
r connects the bird and the center of the turn, and is positive in the direc­
tion of the center. The angle e in Fig. 18 denotes the angular displacement 
of the vector r from its initial "vertical" position (e = o0 ). Thus, as the 
bird turns from point 1 to point 2 it generates a smooth semicircle of radius 
r; Ve and Fe remain perpendicular to one another and rotate through 1800. 
The bird completes the turn (e = 1800) with the same absolute speed it started 
with; no energy gain has occurred. 

A 

*The vector Va denotes the absolute velocity of the bird. It has the 
components u and v parallel to the x and y coordinate axes, respec­
tively. At the beginning and end of the turn, Va= u since v = O at these 
points (see Fig. 19). 
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Now consider the actual case of 
the leeward turn as previously discussed 
where a wind of magnitude Vwf exists 
at the altitude of the turn. This 
actual case can be obtained directly 
from the still-air case described in the 
preceding paragraph by superposing on 
both the air and the bird an absolute 
velocity Vwf· ThisAresults in the 
creation of a wind Vwf, and the condi­
tions then become as shown in Fig. 19; 
the absolute velocity a .of the bird 
has been decreased by the amo~t Vwf, 
but the aerodynamic velocity Ve 
remains unchanged since both air and 
bird recxived the same absolute velocity 
change Vwf• Since the aerodynamic 
velocity is the same in both cases, it 
follows that the motion of the bird 
relative to the air, and the aerodynamic 

force Fe will also be unaltered. The vectors Ve and Fe will again rotate 
at a uniform angular rate through 1800 as the bird turns from windward to lee­
ward. The flight path relative to earth will be different from the still-air 
case, however since now Va= Ve+ Vwf instead of simply "'ta= Ve. It is 
clear that in the actual leeward turn a gain in kinetic energy will occur. 

The gain in kinetic energy experienced d~ing the leeward turn is equal to 
the work wk done by the centripetal force Fe on the bird during the turn. 
Using the relations of Fig. 20, the rate at which this work is done is given by 

FiQ. 20 

or 

The centripetal force is given by 
eq. ( 97). Thus, 

"" "" 

(98) 

(100) 

since Fe· Ve= O. The vector r is 
positive between points 1 and 2 so that 
eq. (100) gives the rate at which the 
bird is receiving energy. Physically, 
this means that the bird, in order to 
turn in the leeward direction, must 
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impart momentum to the air in a direction opposite to that of the wind. Since 
the air is moving with an initial absolute speed Vwr, this reductj_on in the 
x-momentum of the air corresponds to a loss in its kinetic energy. The energy 
lost by the air is transferred to the bird. 

The total work done by the centripetal force during the turn from point 1 
to point 2 is obtained by integrating the instantaneous power being supplied 
[eq. (100)] over the time required to make the turn. Thus 

1t2 WV 2 
wk

1 2 
= - ......£._ Vwf sin 9 dt 

, t1 g r 
(101) 

Let 9 = wt where m is the constant angular vel9city of rotation of the bird 
in the turn, 

Then 

and 

(a) 

(c) 

Fig. 21 

Ve 
m = -r (102) 

dt = de = .!_ d8 
m Ve (103) 

(b) 

(d) 

w 
2 - Ve Vwr g 

(104) 

The total work done by Fe is thus 
equal to the kinetic energy gained by 
the bird during the turn [eq. (94)]. 

The nature of the kinetic energy 
gain can be seen by examining the force­
velocity relationship at various points 
(various e values) along the turn 
path. Fig. 21(a) shows the conditions 
at the point where e = 30° or just 
after the turn has commenced. The 
absolute velocity ~a has increased 
relative to its initial value u1 at 
the beginning of the turn (9 = oo). 
Hence the bird has already gained 
kinetic energy, although it is still 
moving with a component of its absolute 
velocity in the upwind direction (i.e., 
u is still negative). The fact that 
a component of the force Fe is acting 
in the direction of Va means, of 
course, that the bird is accelerating 
(and thus gaining kinetic energy) in 
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the direction of motion. It will be shown in the next paragraph tbat tl:i.e bird 
retains all its initial kinetic energy due to u1 and that the total energy at 
f!..llY' other point is equal to this initial energy plus that due to the work of 
Fe. At e = 90° [Fig. 21(b)] the bird has gained evenAmore absolute speed and 
kinetic energy and is now moving with a component of Va in the downwind 

direction (u positive). The value of 8 for 
which u = 0 is clearly less than 900; thi~ 
value is obtained for the condition where Va 
lies along the y-axis. The bird *s still 
accelerating in the direction of Va· Near 
the end of the turn [Fig. 21( c)] , Va is 
!apid*7 a~roa.ching its maximum value 
Va= Ve+ Vwr. The force component acting 
along ta has now decreased to a small value, 
however, and the acceleration is rapidly 
approaching zero. By comparing the diagrams 

Fe of Fig. 21 1 t can be easily seen that the 
absolute velocity of the bird, and hence the 
kinetic energy, increases continuously through­
out the turn. The accelerating force, on the 

FIQ. 22 other hand, increases from zero at 8 = oo up 
to a maximum, and then decreases again to zero 
at 9 = 1800. 

At the start of the turn, the bird possesses an amount of kinetic energy 
1/2 W/g u12 due to its absolute speed u1 in the upwind direction. As the 
bird turns it retains all of this energy even though the value of lul is 
continuously decreasing during the first half of the turn. The additional 
increase in kinetic energy above the initial value, at any point of the turn, 
is equal to the work done by the wind on the bird. This is easily shown by 
consideration of Fig. 21(d)A which gives the vector diagram for the point 
e = 8a, where u = 0 and Va lies along the y-axis. The condition we wish to 
verify is that 

1 w 2 1 w 2 J9
a w - - V - - - u = - V V sin 8 d9 2 g a 2 g l g C wf 

0 

(105) 

Expanding the left side of this equation, we obtain 

since from Fig. 21(d), Va2 = (u1 + Vwr)2 - Vwr2 • Evaluating the right side of 
eq. (105) we obtain 

Jea w w 
- Ve Vwr sin 8 d8 = -g Ve Vwr (1 - cos 8a) 

0 g 
(107) 
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From Fig. 21(d) 

(108) 

and the right side of.eq. (105) becomes 

W [u1 + Vwf - Vwf] W g (u1 + Vwf) Vwf u1 + Vwr = u1 Vwf g (109) 

'8= 180° 

f):QO 

Flo. 23 

Fig. 24 

Thus eq. (105) is proved for the point ea; 
it is equally true for all values of e. 

From the diagr~ of Fig. 22, it is 
evident that o~ Vwf bas a component in the 
direction of F0 and consequently all work 
done on the bird comes from the energy of the 
horizontal wind. As can be seen in Fig. 23, 
~wf has a component in the direction of Fe 
for the entire region e0 ~ e ~ 1Boo. 

Geometry of the Flight Path. - The 
flight path generated by the leeward turn is, 
mathematically, a segment of a trochoid. A 
trochoid is the curve generated by the tip of 

Fig. 25 



- 51 -

a radial line segment extending from the center of a circle, as the circle rolls 
along the x-axis, (Fig. 24). In the present case, the bird is making a semi­
circle of radius r relative to the air, while the air is moving with speed 
Vwf relative to the earth. From the trochoid geometry shown in Fig. 25, the 
radius of the corresponding trochoid circie is thus seen to be 

(110) 

A simple analysis of the trochoid geometry yields the equations of the leeward 
turn in terms of the parameter e 

x Vwr 
- = ~ 8 - sin 0 
r Ve 

- cos e 

Here e denotes angular displacement of the radius r as the bird turns. 

Since 8 is related to the time t by 

Ve e =mt..=-t r 

~qs. (111) and (112) can be written as follows 

Ve 
X = Vwr t - r sin r t 

Vwr Ve 
y = - r - r cos - t 

Ve r 

(111) 

(112) 

(113) 

(114) 

(ll5) 

The velocity components u and v of the absolute motion are then obtained 
directly by time differentiation of eq. (114) and (ll5) 

dx Ve 
u = dt = Vvr - V C cos r t 

~ Ve 
v = dt = Ve sin-:;- t 

The total speed Va is then obtained f'rom the relation 

Va= (u2 + v2)1/2 

whence 

(116) 

(117) 

(118) 

(119) 
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The acceleration components ax and ay are obtained by a second differentia­
tion of eqs. (114) and (115) 

d2y Vc2 Ve 
a..= = - cos - t 
~ dt2 r r 

The total acceleration is thus given by 

Vc2 
a= --r 

(120) 

(121) 

(122) 

This is, of course, the centripetal acceleration produced by the aerodynamic 
force component Fe. It is possible to determine the acceleration components 
direct:cy- from the centripetal force equation. Using Newton's second law, we 
have 

A A W Vc2 W d2x 
F c • i = - -- sin a - - --g r - g dt2 

A A w Vc2 _ ~ d2y 
Fe • j = - -- cos 0 -

g r g dt2 

(123) 

(124) 

where t and j are unit vectors along the x and y axes, respectively. 
Since (Vc/r)t = a, the acceleration components given by eqs. (123) and (124) 
are identical with those of eqs. (120) and (121). 

During the leeward turn the bird will actually be sinking with a constant 
vertical velocity w. The flight path during the turn will thus be a segment 
of a spiral trochoid. The sinking speed of the bird results in a loss of 
potential energy; this energy- furnishes the power needed to acco:rmnodate the 
aerodynamic drag. This is the reason, of course, why it wasApossible in the 
preceding analysis to assume that the aerodynamic velocity Ve was of constant 
magnitude. 

The altitude lost during the turn is given by 

f
t' 

& = w dt 
0 

where t' is the time required to make the turn, 

l( 

t' = v r 
C 

(125) 

(126) 
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At the end of, the leeward turn, the bird is at an altitude Zf - &, where zf' 
is the initia~altitude at the commencement of' the turn. For efficient energy 
extraction it is obviously desirable that 1::,,z (or y) be small so that the wind 
speed Vwr at the terminal altitude will be large. This requires that the 
bird's L/D in \the turn be large. Thus, the high aspect ratio of the albatross 
is seen to satisfy another basic requirement for efficient dynamic soaring. In 
general, optimum.values of wing bank angle and flight speed (or CL) exist :for 
each radius of t1.irn, which will make w a minimum. The rather complex relation 
between w, CL, dn, Ve, and r in a spiral turn_ has been treated in consider­
able detail in previous papers by the author,,12 and therefore will not be 
discussed here,. 

The high altitude turn to leeward leaves the bird with an energy supply in 
the form of a large velocity relative to earth. From this supply the bird draws 
the energy needed to perform all flight maneuvers, up through the windward climb 
of the succeeding cycle. Further consideration of how much energy the bird 
obtains from the leeward turn and how this energy is subsequently used will be 
given in a following section on the complete flight cycle ( page 64) • The 
mechanics of the leeward turn of the albatross are exactly the same as for the 
circling flight of land soaring birds.3 Only the albatross, however, can 
extract energy from the horizontal wind; this is made possible by the existence 
of the shear layer with its velocity difference. 

The Leeward Glide 

At the completion of the high altitude turn to leeward, the albatross has 
acquired considerable energy, but so long as the bird remains near the top of 
the shear layer this energy is unavailable for practical use. To see why this 
is so, let us consider what happens when the bird attempts tot~ from the 
leeward dlrection. As shown in Fig. 26, the centripetal force Fe will then 

y 

X 

Fig. 26 

have a component acti~g in a direction 
opposite to that of Vwr, and the bird 
will be doing work on the air. Hence, 
the bird will lose speed and kinetic 
energy. In fact, upon turning a full 
1Boo back to the windward direction, it 
will have lost exactly the same amount 
of energy that it initially gained in 
the leeward turn. The net energy gain 
in making a complete 3600 turn is there­
fore zero. Thus, it is clearly impossi­
ble for the bird to extract energy from 
the uniform horizontal wind by any type 
of circling maneuver. This results 
from the fact that all turns must be 
made relative to the air. 

If, however, the bird were able to 
reach the lower region of the shear 
layer with a high absolute speed, a turn 
from the leeward direction could be made 
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vi th only a small loss of kinetic energy, since then Vw would be small. Con-
sequently, following a 900 or 1Boo turn from leeward at low altitude, the bird 
would still possess a la,rge part of the kinetic energy gained in the high 
altitude turn, and could use this energy for coasting flight across or even 
directly into the wind, reserving enough momentum for the next climb, of course. 
The purpose of the leeward glide, therefore, is to get the bird down through the 
shear layer to the region of low wind velocity where turns can be made without 
great loss of useful kinetic energy. It is clear that only by virtue of the 
d1fferenc~ in wind speed between the top and bottom of the shear layer is it 
possible for the albatrose! to extract useful ,energy from the horizontal wind. 

In performing the leeward glide, it is obviously desirable that the alba­
tross reach the lower level of the shear layer with as large an absolute 
velocity as possible, so that the useful quotas of kinetic energy and momentum 
will be large. Were it not for the variation of wind speed within the shear 
layer, the leeward glide could be easily and efficiently accomplished by a 
simple equilibrium glide down to the surface. The wind speed variation Vw(z) 
which does exist, however, greatly complicates the aerodynamics of the glide 
and poses some difficult requirements which the bird must meet if maximum 
kinetic energy and momentum are to be obtained. The details of these require­
ments and the bird's solution are discussed in this section. It is shown that 
the analysis predicts and explains an important and commonly observed feature 
of 'the leeward glide, namely, the "reefing-in" or flexing of the wings. 

Velocity and Energy Relations of the Leeward Glide. - At the end of the 
leeward turn, the albatross is at some altitude z2 nea! the top of the shear 
layer ~nd is movi~g downwind with aerodynamic velocity Ve and absolute velo­
city Va, where Va= Ve+ Vw(z2). In performing the leeward glide, it seems 
logical that the bird would have one of two general purposes to accomplish. 
First, it may endeavor to reach the lower level of the shear layer with as much 
kinetic energy as possible so that it will have a maximum energy supply for performing 
such secondary flight maneuvers as coasting crosswind or upwind; or secondly, it may 
desire to make as much progress to leeward as possible during the glide. The basic 
flight requirements for either of these two endeavors are essentially the same. 
In either case it is obviously desirable for the bird to make the most efficient 
use of its potential energy of altitude in accomplishing its intended purpose. 

In order to analyze the mechanics of the leeward glide, it is convenient 
and instructive to make use of the gliding diagram shown in Fig. 27. This 
diagram is simply a plot of the horizontal and vertical components u and w 
of the equilibrium aerodynamic gliding velocity V for a range of values of 
the angle of attack a (or lift coefficient CL). The diagram is constructed 
by using the drag polar Cn (CL) and wing loading w/s of the bird.* 

*It can be assumed, purely for purposes of illustration, that the polar 
CD (CL) is obtained experimentally by holding the wing shape rigid while 
rotating the wing through the angle of attack range in an airstream and measur­
ing the forces; w/s is then constant for this given wing shape for a given 
bird. From a realistic standpoint, of course, such a procedure would be 
extremely difficult to accomplish with a live bird. 
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From Fig. 28, which shows the conditions existing in an equilibrium glide, it 
follows that 

u = VcL) l/2 m l/2 
3/2 

cos r (127) 

( 
2 ) 1/2 (w) 1/2 1/2 

W = P CL S . cos 'Y sin r (128) 

where the aerodynamic gliding angle r is a function only of CL, 

r = ctn-l ~ = ctn-l ~ (129) 

For a given wing loading, u and w will vary as the angle of attack (or .CL) 
is varied, and a curve of ~he type illustrated in Fig. 27 will be generated. 
The length of the vector V drawn from the origin to any point on the cµ.rve 
thus gives the gliding speed directly, and the angle r of the vector gives 
the aerodynamic glide inclination (relative to the air) for the particular 
angle of attack ~ (or CL) corresponding to that point. The longest vector 
which can be drawn gives the maximum possible equilibrium gliding velocity 
attainable with the given wing loading. The minimum gliding angle Ymin 
corresponds to the tangent line to the curve and gives the maximum value of L/D. 

A 

The gliding diagram thus gives the velocity V of the bird relative to the 
air for each trimmed value of ~, or CL, so that in the case of a glide in 
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still air it gives also the absolute velocity Ava. When a wind Vw exists, the 
gliding diagram allows the absolute velocity Va to be obtained quite simply 
by vector addition directly on the diagram. To obtain ~a in both magnitude 
and direction, the wind vector Vw is added to the aerodynamic velocity V, as 
shown in Fig. 29. The angle Ye then gives the inclination of the resultant 

u u 

w w 
(a) (b) 

Fig. 29 

flight path relative to earth. (In our present analysis, ~w is always 
parallel to the u-axis, but in general it may have any orientation so far as 
the use of the gliding diagram is concerned, since Vw is, in the general case, 
the velocity of the air relative to the earth.) 

If we assume, for the moment, that the gliding diagram of Fig. 27 corre­
sponds to that of a rigid wing aircraft (such as a sailplane or glider), where 
the wing area and shape remain permanently fixed, the wing loading w/s may be 
increased by increasing the weight W of the craft. Since the shape and size 
of the era~ have not been altered by this weight addition, the aerodynamic 
characteristics [CL(a), Cn (C1)] will remain exactly the same. From eqs. (127) 
and (128), it is evident that the only ch~ge in the gliding diagram will be 
an increase in the. length of the vector V, since V is proportional to 
(w/s)l/2. Thus, for a rigid aircraft, a family of curves can be drawn, each 
curve corresponding to a particular value of the wing loading w/s, as shown 
in Fig. 30. Since the value of w/s is constant during flight for a given 
aircraft (or glider), only a single curve on the gliding diagram applies, and 
this sets the only possible flight speeds and directions which the craft can 
attain in a.Ii equilibrium glide, under given wind conditions. 
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In the case of the bird, the flight 
conditions are much more flexible. 
Although the bird's weight W is essen­
tially constant during a given glide, 
the wing shape, area, and aerodynamic 
characteristics can be varied in flight 
due to the bird's voluntary control over 
the geometry of the wing. The bird can 
alter its wing loading w/s at will by 
so adjusting the wing shape that the 
effective lifting area S is increased 
or decreased. The maximum lifting area 
is obtained when the wings are held 
horizontal and fully extended; w/s is 
then a minimum. As the wings are 
flexed,* or drawn in, the effective area 
producing~ is decreased and w/s 
is therefore eff'eeti vely increased. As 
the wing is smoothly "reefed-in" from 
the fully extended position to the 
highly flexed condition, w/s increases 
from a minimum to a maximum. 

If it is assumed that the bird is rotated through an angle of attack range 
in an airstream and CL and Cn are measured while holding the wing shape 
rigid, and this procedure repeated for small successive shape changes as the 
wing is progressively flexed, a series of curves will be obtained for the 
gliding diagram, one for each constant shape of the wing (with its correspond­
ing value of w/s), as shown in~Fig. 31.** Due to the change in wing shape, 
however, successive curves may no longer be obtained by a simple increase in 
vector length, as for the rigid wing case, since the aerodynamic parameters 
CL, Cn, and L/n may be somewhat different functions of a for each successive 
curve(~ each stage of the flexi.Jlg or wing deformation process). Due to the 
ability of the albatross to vary W/S in flight, the successive curves for 
increasing values of w/s will generate a continuous region of usable flight 
conditions in the u-w plane, and thus greatly expand the range of flight 
speeds and directions which the bird can attain under given wing conditions, as 
compared to a rigid wing aircraft (which can use oJU.y a single curve on the 
diagram). In particular, the variable wing geometry of the bird allows it to 
fly any of a broad range of speed and direction combinations, even under condi­
tions where Vw is continuously changing. 

*A description of the flexing process,'together with a discussion of its 
aerodynamic significance, is presented later (page 61). 

**The angle of attack range covered by each curve is, of course, determined 
by the requirement that the bird must be able to trim (i.e., to attain a zero 
value for the pitching moment, Cm e 0) at each a value within the range. 
Unless the bird can attain trim by suitable deflection of the feet, tail, and 
wing surfaces, equilibrium flight is not possible since the required constant 
angle a cannot be mainiained. 
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u It is not possible, of' course, to ~-----------------~ construct the actual gliding diagrams 

Fio. 31 
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for the successive wing shapes generated 
by the flexing process. Such polars 
would be extremely difficult, if' not 
impossible, to obtain with live birds, 
and it is questionable if' wind tunnel 
tests with mounted specimens would yield 
data of' sufficient accuracy, although 
such tests might be very valuable in 
revealing general trends in the varia­
tion of CL,· CD, L/D, and W/S with 
wing flexing. The schematic curves of' 
the present gliding diagrams are, there­
fore, intended only to represent the 
general effects introduced by the 
ability of the bird to vary the ef'f.ec­
ti ve value of W /s in flight. The 
exact relations for the albatross may 
be somewhat different from the curves 
shown in the figures, but the general 
features are expected to be similar. 
It is clear that any really quantitative 
analysis of' the leeward glide must be 
based upon an actual experimental glid­
ing diagram for the albatross. 

In order to visualize the flight 
conditions necessary for the albatross 
to reach the surface with maximum 
kinetic energy, we make use of the 
gliding diagram shown in Fig. 32. At 
the end of the leeward turn the bird 
possesses a relatively larse absolute 
velocity component ~ (= Vw + Ve) in 
the x-direction, and a small sinking 
velocity w2 . For the present, we 
shall neglect the variation of the wind 
speed with altitude in t~x shear layer 
and, hence, assume that Vw is con­
stant. We shall also assume, for 
purposes of analysis, that the bird 
endeavors during the glide to maintain 
all the initial kinetic energy associ­
ated with u2 and w2 and to convert 
its potential energy of altitude as 
completely as possible into additional 
kinetic energy. To do this, the bird 
must· obviously glide with the aero-

"' dynamic velocity V which, when addeq. 
to the wind velocity will make ~a a 
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maximum for the particular wing loading being used. The value of the wing 
loading should, of cours_e, be that which makes Va,max an absolute maximum. 
(This condition is somewhat altered when the wind variation Vw (zl is ·con­
sidered, as will be shown later.) The maximum absolute velocity Va max is 
obtained by translating the entire gliding curve (corresponding to the optimum 
wing loading) to the right by the amount Vw, and determining the radius of the 
largest circle which will just ·enclose the translated curve. It is obvious 
from this figure that the velocity V for Va max is not necessarily equal to 
Vma,x, as shown; the velocity V corresponding'to Va max depends entirely upon 
the shape of the gliding curve for the optimum wing 16a.ding (or wing shape). 

In order to reach the conditions pictured in Fig. 32, the bird must ~dergo 
a vertical acceleration to attain the sinking speed w corresponding to V; 
most of the potential energy of altitude lost during this period is converted 
into increased A kinetic energy of thx absolute motion. Once the bird has attained 
the airspeed V corresponding to Va max, no further conversion of potential 
energy to kinetic energy is possible.' The remaining potential energy willmerely 
be dissipated in overcoming the aerodynamic drag as the bird glides down. 

This limit placed on the attainable kinetic energy recovery of the bird 
points out an interesting fact in regard to the maximum flight altitude used 
by the albatross in dynamic soaring. In general, the maximum altitude reached 
by the bird in the windward climb is observed to be less than 60 feet. This is 
usually assumed to be the upper limit of the shear layer. But, it is evident 
from the relations just considered that even if the bird could rise much higher 
than 60 feet so that it bad a much larger a.mount of potential energy at the 
start of the leeward glide, it could not convert all of this into useful 
kinetic energy. F~r, once the bird attained the terminal aerodynamic velocity 
xorresponciing to Va max, it would merely glide down with the constant velocity 
Va maxJ all the remaining potential energy would be dissipated in accommodating , 
the aerodynamic drag. Thus we see that, from an energy standpoint, the bird 
has nothing to gain by rising mu.ch above the top of the shear layer (z = ·z*) 
so long as z* is sufficiently large that the bird has adequate time to 
accelerate to its terminal aerodynamic velocity before reaching the surface. 

In the case where the bird endeavors to cover ne.ximum. distance to leeward 
A 

during the glide, it should obviously travel with the velocity V correspond-
ing to maximum L/D, as shown in Fig. 33-* In this ef'fective wing loading is 
such as to make re a minimum. It is clear that the optimum wing loading to 
be used for distance travel to leeward will depend upon the shape of the 
envelope curve of maximum lift-drag ratios generated by the 'Ymin points 
(L/Dmax, points) of the individual gliding curve~ for the various wing shapes. 

On first sight it would appear desirable for the albatro,Js to gain as much 
altitude as possible in the windward climb if the bird is attempting to make 
maximum headway to leeward. By gliding down at re,min, the bird could cover 
more distance by starting at a higher altitude. However in climbing to a high 
altitude, the aero~c speed Ve during the turn will be reduced according 

*'£his is true only when Vw is constant, as we are presently assuming. 
When Vw varies with z other factors enter (see page 61). 
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to eq. (90) and the bird will end the 
turn with a smaller value of '12 in 
the leeward direction. I! u2 is less 
than the u-component of Va for 
(L/D)ma,x, the bird will then have to 
lose altitude in accelerating up to the 
proper gliding speed, and will thus lose 
at least some of the advantage of the 
high initial altitude. If u2 is 
greater than the required u-component, 
then full advantage may be taken of the 
altitude gain since re will be even 
less than the equilibrium glide value, 
during the period of deceleration. 
Which of these two conditions prevails 
will.-depend, of' course, upon the rela-• tive values of Ve and u for 
(L/D)max. It is interesting to note 
that observations show that the bird 
nearly always flies at very low alti­
tudes. In this case, however, the 
bird is usually attempting to follow the 
observer's vessel, and hence is most 
probably trying to get more energy from 
the wind than to gain leeward distance. 

Effects of the Wind Profile.- The fact that in the actual leeward glide 
the bird is sinking through the shear layer, where the wind is continuously 
decreasing, introduces some additional complexities into the mechanics of the 
glide. Consider the bird at some altitude z near the top of the shear layer 
[where the wind speedAis Vw(z)] and gliding down with the aerodynamic and 
absolute velocities v1 and Val, as shown in Fig. 34. After the bird has 
*ost a small amount of altitude, its absolute velocity will still be essentially 
Vav but due to the decrease iri wind speed with altitude loss, the aerodynamic 
velocity will have increased to t2 and will have decreased the angle of attack 
of the bird, as indicated in the figure. Since the bird will then be flying 
at an airspeed greater than its equilibrium gliding speed, it will decelerate, 
and hence will lose kinetic energy. In order that there be no change in the 

A 

vector Va, and hence no c~ange in the kinetic energy, it is necessary that 
the aerodynamic velocity V satisfy the condition 

A A A 

V = Val - Vw(z) (130) 

at each point in the shear layer. Here Val is cbnsta.nt and Vw(z) is the 
profile of the horizontal wind. 

As is obvious from the gliding diagram of Fig. 34, it is im:pos•ible for 
the bird to satisfy eq. (130) with a fixed wing geometry (correspon~ing to a 
single gliding curve), since the bird cannot fly at the values of V required 
to kee~ Va..1 constant. However, since the wing loading of the bird can be 
varied.in flight, it is possible for the bird to fly the entire range of 

1-
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values of V indicated in Fig. 35, merely by continuously varying the value of 
w/s and trimming at the angle of attack corresponding to the proper aerodynamic 
glide angle r {o.r· L/D) at each level in-the shear layer. {The aerodynamic 
forces existing during the glide are assumed to be quasi-steady, of cou;rse, so 
that the statically deter.mined gliding diagram is vali.4..) The varying conditions 
imposed by the shear layer can thus be adequately accommodated by the bird by 
proper variation of the wing loading and angle of attack, and the maximum 

. A 

absolute velocity Va can be maintained throughout the glide. 

The great flight fl.ex1.billty afforded the bird by its ability to vary the 
wing loading is thus clearly shown by the gl.iding diagram. As previously noted, 
since W/S can be controlled as wel.l. as a., the gliding diagram becomes a 
whole surface of equilibrium glide points composed of a continuous series of 
curves of constant W/S. The bird can fly at the equilibrium glide velocity 
denoted by any point on the surface instead of being limited to points on a 
Single curve. 

A 

In the foregoing discussion, it i~ ass~d, of course, that Val is not 
so large that all required values of V, as Vw decreases, lie outside the 
usable region of the gli~ing diagram. Thus, it is desirable that the bird start 
the glide with a value Val somewhat less than the maximum attainable with the 
optimum wing loading; this will allow the wing loading to be increased appropri­
ately as the dive progresses. On the other band, the pos~ibility certainly 
exists that the bird could dive at the maximum value of Val and decelerate to 
some lesser value during the glide. Which procedure results in the smallest 
loss of kinetic energy, and. 'Which procedure the bird actually uses is a matter 
for detailed experimental investigation of the leeward glide by photographic 
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analysis. Also, in practice, the bird may not increase the wing loading 
continuously to accommodate the wind speed at each altitude, but may use some 
relatively constant average increase in W/S which, nevertheless, will allow 
a beneficial gain of kinetic energy in the glide. 

It is an interesting fact of observation that the albatross does indeed 
flex its wings into a shallow W form during the leeward glide - a condition 
clearly predicted by the foregoing analysis. In addition, the glide is usually 
very steep, almost a dive. This is in accord with the gliding diagrams for high 
pe~forma.nce sailplanes which are aerodynamically similar to the alpatross, since 
the aerodynamic velocity for the maximum speed glide is very strongly inclined 
(r large). This observation would tend to indicate that the albatross was 
generally endeavoring to extract maximum energy from the wind rather than in 
proceeding downwind. As noted above, however, this condition may be a result of 
the presence of the observer. 

For the case where the bird desires to proceed to leeward, the same effects 
of the shear layer apply as for the maximum kinetic energy case. In particular, 
it may be npted (Fig. 36) that if re Aof the initial glide path relative to 
earth is too small, corres~onding to V forA(L/D)max, it will be impossible 
for the bird to maintain Val constant as Vw decreases, since all the 
required aerodynamic velocities lie outside the region of equilibrium flight 
conditions attainable by the bird. 

The Effective Wing Loading. - In view of the importance of the variable 
wing loading in the leeward glide mechanics, it is of interest to consider the 
method by which the albatross varies its effective w/s in flight. When the 
wing is held horizontal and fully extended, the elemental lift forces on the 
wing surfaces act in essentially parallel directions, as shown in Fig. 37(a). 
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When the wing is flexed, however, the surfaces assume a nonplanar form like that 
pictured in Fig. 37(b) ("gull wing"), and the elemental force vectors are no 
longer parallel. Only a component of the local force vectors acts to produce 
lift. The lateral force components cancel one another because of the symmetry 
of the wings, and the only resultant force is a reduced lift. The result of 
~lexing the wings, therefore, is a decrease in the effective lift force, or 
equivalently, a decrease in the aerodynamically effective wing area. Sinee W 
is constant, this effectively a.mounts to an increase in w/s. The flexing may 
also cause some overlapping of wing feathers, especially at the wing joints, 
and this further reduces the effective area. The changes in wing geometry 
which result from flexing may be expected to produce appreciable changes in the 
aerodynamic relations CL(a), Cn (CL), L/D (CL), and Cm (CL) for the wing. 

~n defining the aerodynamic coefficients and wing loading w/s for 
variable geometry wings such as the albatross possesses, some question may 
exist as to the proper area S to use. In practice, any reference area may be 
chosen since the gliding diagram as given by eqs. (127) and (128), can be 
constructed without reference to either CL or S. The effective parameter is 
actually the product CL S. Reference to Fig. 28 shows that the basic relation 
governing the gliding velocity is 

L = W cos 7 (131) 

where r depends only on the ratio L/D of the aerodynamic forces. If we 
take a given wing (or entire bird) of given shape, and measure its aerodynamic 
forces as functions of angle of attack~ and airspeed V, we obtain 

(132) 

where k1 is a constant parameter (with regard to velocity V) which depends 
on a) the size of the particular wings, b) the shape or geometry of the wing 
and c) the orientation of the wing relative to the airstream. In the usual 
terminology 

Since L and D 
of a (or k1) is 

(133) 

are measured directly, as :f'unctions of a, r as a :f'unction 
known. Thus eqs. (127) and (128) can be written as 

(_W)l/2 I u =\.kl cos3 2 r (134) 

(.W_\1/2 I 
w = \.kJJ cosl 2 7 sin 7 (135) 

Since k1 and r are known (measured) :f'unctions of a, the gliding diagram 
can therefore be constructed without any explicit reference to any area. In 
this sense, kl might be called the "effective" wing area and shape parameter. 
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From a physical standpoint, it would be logical, of course, to use the 
projected planform of the flexed wing as the reference area, provided CL is 
also defined on this same basis. 

The Low Altitude Turn to Windward 

As the albatross approaches the surface near the end of the leeward glide, 
it is moving with very high absolute velocity and appreciable airspeed, 
especially for the case where it has endeavored to attain maximum kinetic 
energy during the glide. The glide is terminated with a pullup maneuver which 
reduces the sinking speed w to zero and converts all of the bird's momentum 
to the horizontal direction. The bird rolls into a nearly vertical bank and 
turns sharply from the leeward direction. In many instances the turn may be 
initiated simultaneously with the pullout. 

The extent of the turn at this point depends upon the type of fligh\path 
the bird wishes to follow, as will be discussed in a later section. For the 
present ·case of the simple basic cycle, the bird is assumed to complete a full 
1Boo turn to windward, whence it proceeds with the windward climb of the next 
cycle. 

Energy Loss in the Windward Turn.- The turn to windward is made at 
essentially constant altitude very close to the surface, so close in fact that 
the primaries of the lower wing tip at times actually cut the water surface. 
The reason for the extremely low altitude of the turn was briefly indicated in 
a previous section. 

Near the surface the wind speed has some small value Vw(zt) where zt 
is the altitude of the turn. Since the albatross banks nearly 900 in the 
turn, and since the spans of these birds vary from roughly 8 to 11 feet, zt 
will be on the order of 4 to 5 1/2 feet. From the turn diagram of Fig. 38, it 
is obvious that since the bird can only turn relative to the air, it will 
complete the upwind turn with an absolute velocity 

A A A ( ) u =Ve+ Vw zt (136) . 

where Ve is the aerodynamic velocity int~ turn, and is essentially equal 
to the aerodynamic velocity which the bird possesses following the pullout 
maneuver. 

By means of an analysis directly an.alagous to that for the high altitude 
turn to leeward, it is found that the bird loses kinetic energy in the amount 

(137) 

in performing,,.,the windward turn. This is equal to the work which the centr~ 
petal force Fe has done on the air, since Fe. Vw is negative throughout 
the turn. From an energy standpoint, it is clearly desirable to have Vw(zt) 
as small as possible, so the turn must be made as near the surface as is 
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practical. It is particularly advanta­
geous in the case of the windward turn to 
have Vw ( zt) very small, since Ve may be 
rather large. It is often noted that when 
appreciable waves exist, albatrosses often 
perform the turn deep in the troughs of 
the wave trains. The wind speed in the 
troughs is a minimum, as will be discussed 
subsequently. ( See page • ) 

In general the albatross does not 
make a complete 1Boo turn to windward with 
Ve near its maximum. Rather, as will be 
discussed more fully later, it executes 
only a partial turn following the leeward 
glide and then coasts crosswind for some 
distance while Ve decreases. When Ve 
has become relatively small, the bird 
completes the turn. By this procedure, the 
bird loses less kinetic energy to the wind 
in performing the total windward turn. 

The crosswind coast, of course, has enabled the bird to cover distance along its 
desired flight path, as well as decreasing the energy loss of the turn. Using 
eq. (104) and the diagram of Fig. 38, the net energy loss in performing the 
windward turn in two 900 segments is 

where Vc1 is the (high) airspeed of the first segment and Vc2 is the (lower) 
airspeed of the second segment. If Vc2 is expressed as a fraction m of Vc1 

then the energy saved by the two-part turn is 

w 
(1 - m) g Vcl Vw(zt) 

(m < 1.0) (139) 

( 14o) 

Although eq. (14o) indicates that energy can be saved by making the wind­
ward turn in two parts having airspeeds of Vc1 and Vc2 , respectively, the 
bird will complete the two-part turn with less total kinetic energy than if a 
single turn at a constant airspeed of vc1--iiad been used. The final kinetic 
energy possessed at the end of the two-part turn is 1/2 W/g (Vc2 - Vwt)2, while 
that for the single turn is 1/2 W/g (Vc1 - Vwt)2, and since Vc1 > Vc2, the 
latter energy is the greater. This fact may appear contradictory to the 
prediction of eq. (140), but it can be shown that the two-part turn yields more 
total useful energy. To show that this is true, we note that the total kinetic 
energy lost by the bird in the two-part turn is, using eq. (139), 
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or 

The portion of this total energy lost to the wind during the actual turn 
segments is, from eq. (139), 

Thus the net useful energy available from the two-part turn is 

At the completion of the single-segment turn, the bird has available an 
amount 

(l4oa) 

( 14ob) 

(l40c) 

of the kinetic energy more than it would have for the two-part turn. However, 
this amount of useful energy is seen to be less than that of eq. (14-0c) by 
exactly W/g. (1 - m) • Vc1 · Vw(zt), which is identical to the energy saved 
by the two-part turns [eq. (140)]. 

It thus becomes clear why the albatross generally makes a two-segment turn 
instead of a single one; the divided turn furnishes more useful kinetic energy 
and hence allows the bird to cover more ocean surface per cycle. 

In the case of the leeward-glide conditions for maximum leeward distance 
travel, Ve will be relatively small, and the bird would most probably execute 
a full 1800 turn following the glide. 

Steepness of the Turn. - From an aerodynamic standpoint, the windward turn 
could be made using any reasonable bank angle of the wings. It is of interest, 
therefore, to consider the significance of the fact that the bird actually 
uses an almost vertical bank in performing the windward turn. It appears that 
the reason for the extremely sharp bank and turn is to lessen the distance that 
the bird is carried downwind while making the turn. This factor becomes impor­
tant if the bird is attempting to make headway to windward, or to follow some 
special flight path other than directly downwind. It is also important in the 
case where surface waves exist, since the turn would then be made deep in the 
narrow trough region where the wind speed is a minimum (see page 82). 
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To see how the degree of bank influences the leeward displacement of the 
bird, we integrate the x-component of the absolute velocity Va over the time 
required to perform the turn. Since the turn is generally made in two parts, 
with different aerodynamic velocities,* separate integrations are carried out 
for each of the two turn segments. Using the diagram of Fig. 38, we have 

1t1 A 4" 

x1 = Va• 1 dt 
0 

(141) 

where x1 is the leeward displacement during the first part of the turn and 

Thus, using eq. (141), 

(142) 

1~12 1~12 
Xl = r COS 9 d9 + 

0 0 

(143) 

or 

(144) 

Similarly, upon integrating over the second part of the turn we obtain 

(145) 

The net displacement to leeward, x, for the complete turn is therefore 

(146) 

This shows that x is directly proportional to the radius of turn (relative 
to the air) for given values of Vw( zt), V c1,, and V c2 • 

The relation between the radius of turn r and the angle of bank ~ 

is given by3,12 

*This is especially true when an observer's vessel is present and the bird 
is regulating its flight path so as to follow the ship. 
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r = W 2 csc @ 
S pg CL (147) 

Thus, for given values of CL and w/s, r 
range o0 ~ ~ ~ 90°, r assumes the values 
the minimum radius of turn 

varies directly as csc ~. For the 
oo ~ r >: w/s · 2/pg • 1/cL where 

rmin = 
W 2 1 
S pg CLmax 

(148) 

is set by the maximum value of CL, CLmax, and the minimum value of w/s, which 
can be attained by the bird. 

From eqs. (146) and (147), it is evident that for given wind speed and 
airspeeds in the turn segments, the downwind distance travelled during the 
complete turn will be a minimum when ~ = 90°, that is, when the bird executes 
a vertical bank in the turn. 

While the steeply banked turn is desirable for minimizing leeward drift, 
it is not efficient from the drag-energy standpoint. To make a small radius 
of turn, CL must be large; then Cn and the drag will also be large. However, 
as noted on page 67, the steep bank is beneficial when waves exist since it 
allows the bird to execute its turn in a region where the wind speed is a 
minimum, so that less kinetic energy is lost in the turn. Apparently, the bird 
finds the steeply banked turn more beneficial, especially when pursuing other 
than a downwind flight path and when soaring over surface waves. Since the 
bird performs the turn near the surface, it has practically no potential energy 
available and nearly all of the energy needed to accommodate the drag must be 
:furnished from the bird's kinetic energy supply. Consequently, the bird is 
continuously decelerating throughout the turn. In fact, from the time the bird 
terminates the leeward glide until it commences the following high altitude 
turn to leeward, it will be in a state of deceleration. For this reason, the 
values of Ve will not be constant as assumed in the analyses of this section, 
but will decrease somewhat during the turn. 

THE COMPLErn CYCLE 

By combining the four basic phases analyzed in the preceding sections in 
such a way that the conditions at the end of one phase coincide with those at 
the beginning of the next, the complete basic soaring cycle of the albatross 
is obtained. This somewhat idealized cycle, devoid of all flapping, is intended 
to make clear the essential features of the energy extraction processes and 
associated flight mechanics involved in true dynamic soaring. In reality, the 
basic cycle described is not usually observed in this simple form. Rather, 
under actual flight conditions its four basic phases are integrated with 
secondary flight modes to yield the host of varied flight patterns character­
istic of albatross flight. Still, despite the complexity and irregularity of 
a given flight pattern, it implicitly contains the four phases of the basic 
cycle, since these phases constitute the primary means whereby the albatross 



- 69 -

can extract useful energy from the steady horizontal wind.* (If the wind is 
unsteady, that is, if it varies with time at a given point, a second type of 
dynamic soaring, gust soaring, is possible, but unsteady wind conditions do not 
appear to be very prevalent at sea. The mechanics of gust soaring are treated 
in Section IV. ) 

The essential features of the basic soaring cycle can be summarized as 
follows. The albatross accomplishes the windward climb by using its large 
initial horizontal momentum to balance the decelerating aerodynamic forces, and 
climbs from the region of very low wind speed near the surface to an altitude 
where the wind speed has essentially reached its full strength. During this 
climb the bird gains potential energy in the form of altitude, but loses 
considerable kinetic energy as it decelerates horizontally. Some energy is 
extracted from the wind as the bird rises, but the larger part of the potential 
energy comes from the initial kinetic energy of the bird itself. In the high 
altitude turn to leeward, the bird accelerates rapidly and extracts a large 
amount of energy from the wind. This energy appears as the increased kinetic 
energy of the bird following the leeward turn. The turn to leeward generally 
provides the principal energy for dynamic soaring flight in shear layers. In 
the leeward glide, the potential energy of altitude is partially converted to 
additional kinetic energy and the bird reaches the region of low wind speed 
near the surface with a very high absolute speed. Here the low altitude turn 
to windward can be accomplished without a very large loss of kinetic energy, 
and the bird can utilize the energy gained in the leeward turn for practi.cal 
purposes. 

It is important to note that, according to the results of the preceding 
sections, the high altitude turn to leeward is the principal means whereby 
energy is extracted for dynamic 'soaring. This fact does not appear to have 
been generally appreciated by most previous investigators with the exception 
of Idrac. The principal energy supply has usually been attributed in the past 
to the potential energy "gained" during the windward climb. This energy was 
supposed to be derived from the wind by virtue of the wind gradient, wherein 
the aerodynamic velocity could be maintained as the bird climbed. The 
potential energy thus gained was then converted to kinetic form. It is 
clearly true that if a wind gradient of sufficient magnitude existed from the 
ocean surface up to great altitudes, correspondingly large amounts of potential 
(and kinetic) energy could indeed be obtained from the wind. However, the 
ocean shear layers are generally not very deep, and the velocity gradients are 
suitably large only in a shallow region near the surface. Hence the practical 
energy which can be extracted by the bird during the windward climb appears to 
be rather small. 

To gain some idea of the relative amounts of energy available from the 
windward climb as opposed to the leeward turn, let us consider the energies 

*In some cases, the leeward glide may be replaced with a lateral glide 
across the wind or even slightly upwind. In such cases, the bird is travelling 
upwind with maximum speed and hence avoids the downwind displacement of the 
leeward glide by gliding transverse to the wind. The gain in kinetic energy 
during the high altitude turn is greatly lessened by this procedure, of course. 
(See Section VI, page 94.) 
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involved in a typical flight cycle. It is assumed that the albatross begins 
the climb from an initial altitude of 5 feet and rises to a maximum altitude 
of 50 feet, where it begins the leeward turn. If the weight of the bird is 
taken as 20 pounds (Diomedea exulans), the corresponding gain of potential 
energy will be 45 feet x 20 lb = 900 ft lb. However, a large part of this 
energy is derived not from the wind but from the initial kinetic energy of the 
bird. Hence the net energy extracted from the wind is considerably less than 
900 ft lb. Actually, the rate at which potential energy is extracted from the wind at 
each point of the climb is proportional to the ratio of the wind speed Vw to the 
total airspeed (Vw - u). Thus a realistic value for the potential energy furnished 
by the wind might be only around 40% of the total, or roughly 360 ft lb. For the lee­
ward turn, it is assumed that the bird begins the turn with an absolute speed of 5mi/hr, 
moving into a wind whose speed is 35 mi/hr. The airspeed of the bird is therefore 
40 mi/hr. The turn to leeward is performed at constant airspeed, and thus completed 
with an absolute speed of 40 + 35 = 75 mi/hr to leeward. The kinetic energy gained in 
the turn is, using eq. (94), 

&<:E = 2 
20 

32.2 (58.6) (51.3) = 374o ft lb (149) 

It is thus evident that the leeward turn results in the extraction of approxi­
mately 10.4 times as much energy from the wind as does the windward climb, 
for this particular case. 

The really essential requirement in dynamic soaring is the availability of 
adjacent air regions having different wind speeds, such as exist at the top and 
bottom of the shear layer. The existence of a continuous gradient of wind speed 
(as actually exists in the shear layer) is not an essential requirement. As 
far as the basic mechanics are concerned, dynamic soaring could be carried out 
just as well if the shear layer were reduced to an j_nfinitely thin surface of 
discontinuity separating the regions of still and moving air. In fact, the 
flight maneuvers of certain phases of the basic soaring cycle might be consider­
ably simplified if the actual shear layer could be replaced by a surface of 
discontinuity. 

It is interesting to note the rather close similarity between the condi­
tions required for dynamic soaring and those for the operation of a Carnot heat 
engine. In the case of soaring, a region of relatively low wind speed must 
exist which the bird can enter, before any practical use can be made of the 
kinetic energy gained in the region of high wind speed. In the case of the 
Carnot engine, there must exist a region of relatively low temperature into 
which the heat can flow before any practical use can be made of the energy 
associated with the region of high temperature. 

ADVANCED FLIGHT PATTERNS OF THE ALBATROSS 

The four phases of the basic soaring cycle constitute the means by which 
the albatross is able to extract its flight energy from the wind. This simple 
cycle does not, in itself, provide a means for practical utilization of the 
energy gained. By suitably spacing and varying the length of the basic phases 
and properly interspersing certain secondary flight maneuvers, however, the 
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bird is able to construct an almost infinite variety of advanced flight 
patterns which enable it to travel in practically any desired direction over 
the water. Under adequate wind conditions, the albatross can proceed upwind, 
crosswind, and downwind with ease, and can follow a ship for hours or even 
days, regardless of the vessel's course and speed. 

Flight Paths 

Despite the variety and complexity of the advanced flight patterns, all 
appear to be based on the same general principle. Under sufficient wind 
conditions, the bird gains more energy in the leeward turn than is required 
for maintaining the basic cycle; this excess energy is used to extend the 
duration of the basic phases or to provide power for additional periods of 
coasting flight. By use of such additional or secondary flight segments, the 

g 
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bird is able to regulate quite precisely 
its net travel, or displacement, rela­
tive to earth. The manner in which this 
is accomplished is most readily illus­
trated by means of simple plan view 
diagrams of possible flight patterns. 

In the diagrams, the flight path 
segments corresponding to the four 
phases of the basic cycle are denoted 
by c, 1, g, and Wk for the windward 
climb, high altitude turn to leeward, 
leeward glide, and low altitude turn to 
windward, respectively. The secondary 
skimming or coasting segments are 
denoted by s. 

Fig. 39 shows one complete cycle 
Fig. 39 of a possible pattern which results in 

a net travel directly to windward. 
Following the glide g and turn wk, 

the bird merely coasts (with continuous deceleration) at essentially constant 
altitude while covering distance to windward. The coast or skim s is made at 
a low altitude just above the water, where the wind speed is very low. The 
duration of the skim s is under the control of the bird, but must be termi­
nated with sufficient kinetic energy remaining to meet the requirements of the 
windward climb. Thus, for each given wind condition, there exists a maximum 
for s which cannot be exceeded. For net travel to windward, the distance 
s + c must be greater than the glide distance g plus the leeward displace­
ment due to the turns 1 and Wk· In order to progress directiy upwind, all 
turns must be made in the same direction (i.e., all turns are either clockwise 
or counterclockwise); otherwise a lateral displacement will occur for each 
cycle. 

A 

The net displacement of the bird is defined as the vector D 

A 1t1 A A A A A A 

D = [(Va • i) i + (Va. j) j] dt 
to 

(150) 
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where Va is the absolute velocity of the bird and t 0 and t1 are the 
times corresponding to the start and finish of a cycle, that is, t1 - t 0 is 
the period of the cycle. The vector TI is obtained by connecting corresponding 
points of successive cycles, as shown in Fig. 39 by the dashed vector. The 
magnitude of the displacement vector, s0 , is the straight line distance between 
any two successive, corresponding points. 

The net displacement velocity is defined using eq. (150), 

(151) 
A 

It thus has the same direction as D, but a magnitude of s0 /(t1 - t 0 ). The 
net displacement velocity is the important factor in determining the direction 
and rate of travel of the albatross. The vector Vw denotes the wind direction 
relative to the·flight path. 

Vw .. For direct downwind travel, "tbe 
same procedure as for the windward case 
can be used, only the skim is ma.de 
following the leeward glide, as shown 
in Fig. 4o. As noted previously, the 
glide g can be made rather steeply, 
as for gaining maximum kinetic energy, 
or it can be made at the minimum 
inclination angle r, so as to cover 

·the most leeward distance in the glide. 
The particular type of glide which the 
bird uses in a given case will, of 
course, affect the relative lengths of 
the segments g and s. Which glide 

Fig. 40 procedure gives a maximum value for 
g + s (and hence maximum leeward 

travel) for a given altitude loss can be established only when the aerodynamic 
characteristics of the albatross have been quantitatively determined. 

By banking in opposite directions on the leeward and windward turns, the 
direct upwind and downwind paths discussed above can be converted to the 
diagonal trajectories shown in Figs. 41 and 42. The direction of travel can 
be varied by adjusting the length of the skim path s (or other path segments). 
In the limiting case shown in Fig. 43, the bird's displacement velocity is 
perpendicular to the wind direction, since g + s ~ C. Alternately, of course, 
the skim could be divided between the upwind and downwind legs.such that 
g + s1 ~ C + s2. 

A 

The lateral component of the displacement D per cycle can be appreci-
ably increased by adding lateral skim sewnents as shown in Fig. 44. This 
figure shows the particular case where D has a downwind component. The low 
altitude skim can be made exceptionally efficient if the waves are large by 
coasting along the lee side of a wave crest, since then additional static 
energy can be derived from the declivity air currents generated by the wind in 
moving up the back of the wave. The mechanics of this process will be consid­
ered in more detail subsequently (page 78). 
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The lateral skim segment can also be divided into two (or more) parts to 

yield additional variations to the resultant flight path. Pictured in Fig. 45 
is the flight path used by the albatross in following a ship which is moving 
perpendicular to the wind direction. The bird adjusts the length of the various 
flight segments according to the wind strength so as to effect a resultant 
flight path which periodically brings it directly over the vessel's wake, which 
it carefully examines for any edible refuse. 
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Using suitable combinations and variations of the flight patterns discussed 
above, the albatross can travel in any desired direction relative to the wind, 
and with a range of displacement speeds, provided the wind speed lies within 
proper limits. The restrictions imposed on the travel capabilities.of the 
albatross by wind conditions are discussed below. 

Limiting Flight Conditions 

It is obvious that since the albatross extracts.its soaring power from 
the energy of the wind, dynamic soaring must cease when the wind speed drops 
below that required to supply the minimum energy demands of the basic cycle. 
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As the wind speed (above the shear 
layer) decreases, the kinetic energy 
available from the leeward turn also 
decreases, according to eq. (94). 
On the other hand, the energy 
requirements which the bird must· 
satisfy from its kine~ic energy 
supply increase in the windward 
climb. This is because the bird 
must move faster (into a decreased 
wind) to attain a given aerodynamic 
velocity and hence will furnish a 
greater part of the energy required 
for overcoming the dissipation drag 
and for doing work in raising the 
weight of the bird during the climb 
(i.e. for increasing the potential 
energy) • When the wind speed has 
decreased to such an extent that 
the net kinetic energy of the bird 
after the windward turn is less than 
that needed to raise it to the top 
of the shear layer, the maximum 
altitude which can be reached in 

each succeeding cycle will continuously decrease and the bird will ultimately 
come to rest, unless it resorts to flapping flight to supply the energy 
deficiency. Long before this limiting energy condition is reached, however, 
the advanced flight patterns available to the bird will have been greatly 
reduced in range and scope. Travel in arbitrary directions will therefore 
become quite limited. In particular, all patterns depending upon a coasting 
segment will have been eliminated. 

The same type of limiting effects are imposed by very high wind speeds. 
Strong winds generate large waves and rough seas which tend to introduce severe 
turbulence in the lower air layers, making flight difficult. In addition, as 
the wind speed increases, the wave forms generated have a pronounced effect on 
the -airflow and the velocity profile Vw(z) becomes very distorted near the 
surface. The net kinetic energy available from the wind will then decrease as 
the wind increases, since the difference in wind speed at the respective levels 
of" the leeward and windward turns becomes smaller. The same energy deficiency 



effects as appear in the case of low wind speeds would then occur. In high 
wind speeds the bird could still perform the leeward glide; it might not, 
however, be able to gain any distance to Windward. In fact, above a certain 
wind speed, the bird would necessarily be carried downwind, regardless of its 
desires or attempts to proceed otherwise; it might still be able to continue 
the basic cycle, however, and remain airborne. In winds of sufficiently high 
speed, albatrosses are indeed observed to be swept away to leeward. For a 
rational investigation and evaluation of these wind speed effects, more 
exact information must be obtained on how z* and p vary with Vw(z*) in 
eq. (2) for the wind profile. That is, it must be ascertained how the shape 
of the velocity distribution profile Vw(z) and. shear layer depth z* vary 
(over water) as the wind speed far above the surface increases to large values. 

AUXILIARY FLIGHT MODES 

Landing and Take-Off 

In addition to meeting the highly specialized aerodynamic requirements of 
the basic and advanced cycles of dynamic soaring flight, the albatross must 
also be able to perform the importBllt maneuvers of landing and take-off. 
Unfortunately, the requirements for efficient dynamic soaring are quite incom­
patible with those for safe and easy landings and take-offs. But so critical, 
apparently, is . the ne.ed for efficient soaring capability to the survival of 
the albatross that the bird's present form has evolved almost entirely to 

· maximize the soaring performance, even to the extent of making the landing and 
take-off process a marginal and o~en dangerous undertaking. 

Landing. - The albatross must be able to "land" upon both water and land 
surfaces. In general, the water landing is practiced much more frequently, 
for the bird must alight on the surface each time it feeds. During the nesting 
season, however, frequent landings must also be made on land. It is this 
latter case which, in the absence of wind., poses the primary landing 
difficulties. 

The results of the foregoing dynamic soaring analysis showed that a 
relatively high value of the wing loading W/S is necessary for efficient 
soaring; this requirement gives rise to the prialary landing {and take-off) 
problems of the albatross. For safety in landjng, the bird must approach the 
surface (either land or water) with a snall sinking speed w and small absolute 
velocity. ta (relative to earth). If fa is small, the impact forces generated 
when the bird contacts the surface will be correspondingly small. 

In order that w be small, the bird must be moving eesentially parallel 
to the landing surface at touch-down. This requires that the condition 

or 

L=W=CL~pV2s 

W 1 2 -=-pCLV S 2· 

(152) 

(153) 
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be satisfied. The ~erodyna.mic velocity V depends upon the wind Vw and 
absolute velocity Va of the bird, 

A A A 

V = Va - Vw (154) 

Hence, since W/SA is constantAfor the landing conditions, it is necessary that 
CL be large if V, and thus Va, is to be small. It is also obvious from 
eq. (154) that the landings must be made directly into the wind in order to 

A . 

minimize Va• The maximum attainable value of CL, C1max, is set by wing stall, 
so that the minimum absolute speed (Va)min with which the bird can land is 
given by 

(155) 

Eq. (155) clearly shows the factors which govern the landing of the 
albatross, and which determine the relative difficulty of the process. For 
given values of w/s and c1m~, it is clear that (Va)min is set by the wind 
speed Vw. If Vw is small, tVa)min will be correspondingly large. For the 
case Vw = o, the bird must land with a minimum absolute speed of 

(
w 2 "y-/2 

(Va)m1n = S P CLmax) (156) 

which is equal to the aerodynamic stalling speed Vs, 

V = (~ - 2 )1/2 
s SP CLmax (157) 

If the wind speed is large, (Va)min can be correspondingly reduced. In fact, 
when 

_ (~ 2 )1/2 
Vw - S C . p Lmax 

(158) 

A 

the bird will have no absolute velocity, Va = 0, and can alight smoothly and 
gently by unloading its wing when close to the surface. 

Because the basic wing loading of the albatross is relatively large.for 
the value of Cimax which can be attained, Vs [eq. (157)] is large and the 
landing mu.st be accomplished at this high speed in the absence of wind. The 
observed value of Vs is on the order of 30 to 35 miles per hour for the alba­
tross, a dangerous~ high landing speed for so heavy a bird with such slender, 
fragile wings. When alighting on water under weak wind conditions, the alba­
tross uses its enormous webbed feet as hydrOJ?lanes and brakes in order to lessen 
the shock of the landing impact. On land, this auxiliary deceleration tech­
nique is not possible and the bird endeavors to absorb some of' the landing 
shock by pitching forward onto its well patted breast. In such cases the bi~s 
may do complete sanersaul.ts before coming to rest. Under such adverse condi­
tions, :maJor bones are often broken and :fa tali ties sometimes occur. DIii to the 
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extreme span of its wing (another consequence of specialized adaptation for 
efficient soaring), the albatross cannot effectively utilize the conventional 
wing-flapping techniques used by most other birds to kill off excess speed 
during the landing maneuver. 

Thus, in the same manner that the albatross cannot soar without sufficient 
wind, it cannot safely land without it. At sea, as the wind speed decreases, 
the albatross is observed to alight less and less frequently, due to the diffi­
culties involved in the landing and subsequent take off. Indeed, the uncer­
tainty of the final landing spot under marginal wind conditions would make the 
capture of living prey most difficult, if not entirely futile. On land, 
nesting sites are always chosen where the wind is strong and constant, and 
nests are located on the windward side of the islands to facilitate landing 
and take off. Some albatross colonies are located on cliff faces and ledges 
in order to alleviate the landing and take off problems as much as possible. 
Such nest locations afford the bird considerably more room for use of its wings 
as a speed brake in landing; they are even more important for the take off 
simplification they offer, since the bird merely pitches forward into flight. 

Take Off. - The high wing loading of the albatross imposes the same 
difficulties on the take off, in weak winds, as it does in the landing case. 
Actually, the take off difficulties are even more severe, since then the bird 
must supply energy insteady of merely dissipating it. In the take off case, 
eqs. (155), (156), (157), and (158) still apply, so that the existence of a 
wind is exceedingly helpful in reducing the ground speed (and hence the kinetic 
energy) which the bird must attain before becoming airborne. Since the alba­
tross can make no real use of its wings for propulsive action prior to lift 
off, all energy required to accelerate the bird to take off speed must come 
from its own leg muscles. 

On water, the albatross literally runs across the surface using its hugh 
webbed feet as paddles to propel it along. In many instances when the wind 
speed is low, some 300 feet or more of run are needed before the bird becomes 
fully airborne. Since the wind speed right at the water surface is relatively 
low, the bird must gain considerable absolute speed before it can get up into 
the faster moving region of the shear layer. On land, the take off is more 
difficult yet, since the bird's feet are not at all adapted to fast running 
over solid surfaces. In the usual case, the bird climbs to the top of some 
small hill or incline and, gaining speed as it rushes down the windward slope, 
launches itself into the air. If a sufficient wind is blowing, however, the 
take off process, as well as the landing, becomes greatly simplified and the 
lift off is accomplished with relatively little effort. The albatross takes 
great care on land, therefore, to select nesting areas which are fully accessi­
ble to strong winds. At sea, when winds are brisk, the upcurrents on the back 
side of waves are used to give the bird an extra boost as it takes off to 
windward from the crest of a wave. 
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Flight Along Wave Fronts 

The primary flight mode of the albatross is dynamic soaring, but the bird 
appears to make full use of a limited source of static soaring energy* made 
available by the wave fronts generated during periods of strong winds. This 
same phenomenon of static soaring along waves is observed in a number of other 
sea and shore birds, such as the shearwaters and pelicans. The energy obtained 
in this manner, while of only minor importance to the albatross, appears to 
constitute a very substantial part of the total flight energy of the latter 
birds. In view, therefore, of the apparently general applicability of this type 
of soaring, the subject is treated in this section in some detail. Other 
interesting, although relatively unimportant, examples of the use of static 
soaring by the albatross are briefly mentioned. 

Static Soaring Along Waves. - When the wind at sea is strong, relatively 
large surface waves are generated and the air moving over these forms creates 
areas of appreciable upflow on their windward sides, much like the hill­
generated declivity currents on land (Fig. 46). By soaring parallel to such 
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a wave form and keeping within the region of strongest upflow, the albatross is 
able to decrease its sinking velocity during the cross-wind coasting segments 
of its flight cycles. This enables it to conserve its basic kinetic energy 
supply for use in other parts of the flight pattern, and thus allows it a 
greater travel range per flight cycle. The amount of energy which can be 
derived from the upflow depends, of course, on the magnitude of the maximum 
vertical velocity generated by the wave. Even when the upflow is not suffi­
ciently strong to reduce the bird's sinking speed (relative to earth) to zero 
during the coast, useful energy can still be taken from the air and the length 
of the coasting segment correspondingly increased. 

*A brief discussion of static soaring is presented in Appendix A-4. 
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In general, the wave form is itself moving to leeward, but more slowly than 
the wind. Thus, in order to fly parallel to the wave, the albatross must move 
downwind with the same absolute speed as the wave. The velocity regime neces­
sary to accomplish.this is pictured in Fig. 47 where 

Ow = x-component of velocity of air relative to wave form 
A 

V = velocity of bird relative to air 

A. 

Vbw = velocity of bird relative to wave form 
A 

Vw = velocity of wave form relative to earth 

rhe bird must move relatixe to the air in such a manner that the x-component of 
V cancels""the velocity Uw of the air relative to the wave. The absolute 
velocity Va of the bird as seen by a stationary observer is shown in Fig. 48. 
The bird will be carried downwind Vw feet for every Vbw feet it travels 
parallel to the wave. 

Fig. 48 

All the while the bird is moving along the 
wave front, it will be sinking relative to the 
air with a speed Wb· If the upflow speed Ww 
(see Fig. 46) is equal to wb, the bird will 
move along the wave at constant altitude with all 
of its flight energy being provided by the air 
and, consequently, there will be no deceleration 
of the bird. If Wb > ww, however, the extra 
energy needed to maintain constant altitude must 
come from the basic kinetic energy supply and tpe 
bird will decelerate. The relative magnitudes 
of wb and Ww thus govern the length of the 
glide segment along the wave front. 

For the albatross, with its high wing load-
ing, wb is probably much larger than the value 

of ww usually available, and hence the waves provide only a minor contribution 
to the bird's overall flight energy. For other birds, however, it may be much 
more significant, especially for pelagic and coastal species having smaller 
wing loadings. In this latter case, it is possible that ww can exceed Wb 
over a considerable region on the windwa.?"d side of the waves and the birds can 
soar for relatively long distances without flapping. Pelicans, for example, 
although large, have low wing loadings and can be routinely observed soaring 
along waves of coastal waters. The upflow is apparently not sufficient to 
support them entirely, however, and the birds must flap periodically to main­
tain their momentum. Still, the length of their coasting glide is considerably 
extended by the existence of the upflow and the flight energy required of the 
bird itself must be appreciably reduced. 

Mechanics of the Airflow Over Waves. - Since the strength of the vertical 
velocity field Ww over waves determines the practical use which can be ma.de 
of wave soaring by such birds as the albatross, pelican, and shearwater, it is 
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desirable to obtain some-means for estimating the upflow field strength in 
relation to wave size and speed, and to wind speed. Although the shear layer 
introduces a gradient in the air speed above the wave surface, the effect of 
the wave form on the external airflow pattern decreases very rapidly with 
distance above the wave. Thus, the higher-velocity air above the waves would 
have only a slight effect on the velocity field very near the wave surfaces. 
For purposes of estimating the magnitude of the vertical velocity field very 
near the waves, it would appear acceptable, therefore, to neglect the velocity 
variations asso·ciated with the shear layer and to use some "average" or 
"effective" wind speed (relative to the wave form) for calculating the velocity 
field in the vicinity of the waves. With this assumption we shall now derive 
the vertical and horizontal velocity fields generated by the wind moving over 
wave forms. 

The wave form is assumed to be a sine function 

X 
z = A sin 211: ~ (159) 

where A is the amplitude and A the length of the waves, as shown in Fig. 49. 
The velocity fields uw(x,z) and ww(x,z) are determined by first finding the 
perturbation velocity potential ~ of the flow which satisfies Laplace's 
equation 

z 

x=A 
X 

and the boundary condi-tions 

(160) 

(161) 

(162) 

where Vw1 is the "effective" velocity 
of the air relative to the wave. The 

Fig. 49 flow above the wave is assumed to be 
"effectively" irrotational, although 
the shear layer is itself rotational, 

of course. The field velocities are given by ww = crp/oz, uw = Vw1 + uw1 
where, uwl is the perturbation velocity satisfying eq. (160), that is, 
uwl = crp/ox. 

The solution of eq. (160) is obtained by separation of variables as 
follows. The solution is assumed to have the form 

~ (x,z) = F (x) • G (z) (163) 
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Differentiating eq. (163) and substituting in eq. (160) they yield 

1 d2F 1 d2G --+--= 0 
F a.x2 G dz2 

(164) 

or 

(165) 

(166) 

where k is a constant. Solution of these two differential equations yields 

F(x) = A1 sin kx + A2 cos kx (167) 

and 

(168) 

Applying the boundary conditions of eqs. (161) and (162), we have 

(169) 

whence 

Hence 

~ (x,z) = - Vwl A e-2'r z/A cos 2~ f (171) 

and 
(172) 

(173) 

It thus appears that ww is a maximum at the wave surface (z = 0) and midway 
up the windward side (x = O), or at the origin in Fig. 49 where it has the 
value ~•A/A • Vwl• 
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Eqs. ( 172) and ( 173) show that the local velocities are proportional to 
the wind speed Vw1 relative to the wave form and to the amplitude-wave 
length ratio A/}... These equations may be put in a more convenient nondimen­
sional form by use of the definitions 

Thus 

f = 2,r ~ ,.. 

A 
R=21c-

" 

V
uw = R e-11 sin f + 1 ( O ~ 11 ~ R) 
wl 

Ww ~ ~ 
V
~ = R e-11 cos s (o - s - 21c) 

wl 

and eq~ (159) for the wave surface becomes 

11 = R sins 

(174) 

(175) 

(176) 

(177) 

Eqs. (175) and (176) give the horizontal and vertical velocity fields uw and 
ww for all wave forms and wind conditions. Figures 50(a) and 50(b) present 
plots of uw'/Vw1 and ww/Vw1 for an amplitude ratio of R = 1~0, for constant 
values of 11• For other amplitude ratios, chart values of ww/Vwl are 
multiplied by the actual value of R. With R = 1, eqs. (175) and (176) yield 
simple sine and cosine waves, respectively, of amplitude e-11. The local 
velocity disturbances caused by the wave surface thus decrease very rapidly 
with altitude. This rapid decrease in ww with altitude is the primary reason 
why wave-soaring birds must fly very close to the surface, especially in cases 
where Vwl is relatively small in value. The smaller petrels, with very low 
wing loadings, are well adapted to this type of soaring. It should be noted 
that the horizontal perturbation velocity uw' is negative in the wave trough 
region. Thus the absolute velocity of the air is a minimum in the trough, and 
the bird can make its windward turn most efficiently in this region, as 
previously discussed. 

As a practical example, let us determine the vertical velocity at the 
origin (x = o, z = 0) of a wave with "= 300 feet and A= 15 feet, for 
Vwl = 20 feet/second. This is probably a relatively strong wind compared to 
the average which occurs with waves of this size, except in storms. From 
eq. (174) 

Q_ _ 2L 
R = 2~ • 300 - 10 
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Thus 

Ww 1C --·=-w = Vw1 10 w 
6.28 ft 

sec (178) 

For the point x = o, z = 1/2, A= 7.5 feet, we bave ; = o, ~ = R/2 = 1'/20. 
Thus, from Fig. 50, or from eq. (176) 

WW= (20) 
1( 

10 
5.4o .fl_ 

sec (179) 

At present, direct experimental measurements must be relied upon to 
furnish the necessary data for practical use of eqs. (175) and (176). Thus 
by measuring the effective absolute wind speed Vw(z') and the wave speed Viw, 
the effective relative airspeed Vw1 is obtained as Vw(z') -vw. Estimation 
of A and A for the waves then provides the data needed for calculating the 
velocity fields Uw and ww. The "effective" values of Vw(z') and Vw1 
could be estimated by measuring Uw and calculating the corresponding value 
of Vwl, using eq. (175), for actual sea conditions. In any event, eqs. (175) 
and (176) allow us to make some reasonable prediction of the magnitude of the 
vertical (and horizontal) flow velocities near waves of various sizes, so that 
an approximate quanitiative analysis of wave soaring by various birds can be 
carried out when sufficient experimental data on the wave and bird charac­
teristics are available. 

Two possible cases of wave soaring are of interest, although only one 
appears to have any practical significance. These cases are pictured in 
Fig. 51. The first [case (a)] is that just discussed, where the wind speed is 
greater than the wave speed vw and hence the relative airspeed Vw1 has ~ 

positive value. The second [case (b)] 

Vw,I 
• 

...... -+ -+ 
Vw,I= Vw - Vw 

(a) 

~ -+ -+ 
Vw,l=-vw, Vw=O 

(b) 

Flo. 51 

is that where a swell generated by 
distant winds, or a previous day's storm, 
~aves th~ough still air. In this case, 
Vw1 = - vw. Aerodynamically, conditions 
are exactly as for (a) as regards wave 
soaring. However, the upcurrent region 
will now appear on the front face of the 
wave, rather than on the rear side. The 
flight forces on a bird using such waves 
are directly analagous to those acting 
on a surf board riding the face of a 
large breaker. Since only the wave form 
(not the water itself) is moving relatI've 
to the air, there will be no significant 
boundary layer generated in this case. 

In the special case where the wave 
and wind speeds are equal, no relative 
air motion Vw1 is developed and hence 
uw = ww = O. Thus, static soaring is 
impossible, even though both wind and 
waves are present. 



- 86 -

Other Examples of Static Soaring by Albatrosses. - It does not, in 
general, appear that thermal air currents of a size, strength, and distribution 
sufficient to support continuous static soaring by the albatross (or by other 
sea birds) occur over the ocean. This may be due to a number of causes, among 
them being the fact that the incident sunlight which strikes the ocean is 
absorbed and converted to heat over a considerable depth of water, instead of 
being concentrated and producing a high temperature at the surface, as is the 
case on land. Only in the vicinity of islands and over other bodies of land do 
useful thermal currents arise. It is interesting to note, however, that 
despite the fact that dynamic soaring is the principal flight mode of the 
albatross, the bird is still quite adept at static soaring, even under complex 
and rather artificial conditions. Balancing itself in some adequate upflow, 
the albatross is able to maintain almost perfect aerodynamic equilibrium, and 
sails along with the vessel for amazingly long periods of time. This static 
soaring characteristic of the albatross has enabled observers to make a number 
of excellent close-up photographs of these birds. It is an impressive indica­
tion of the albatross' versatile flight powers that it can, after months of 
continuous dynamic soaring, immediately upon encountering a ship, find and 
balance itself in the limited upflow regions. 

Albatrosses can, and sometimes ao, circle to enormous heights in thermal 
currents over their nesting islands. The high wing loading of the bird, 
however, requires very strong and extensive currents to carry it to any 
appreciable altitude since both the radius of turn and aerodynamic sinking 
velocity are increasing functions of w/s.3,12 

IV. AEROECOLOGY OF THE ALBA.TROSS 

The preceding section was concerned with development of the aerodynamic 
basis of albatross flight. In the present section, the ecological significance 
of some general observations on albatross behavior will be examined and 
discussed in light of the bird's aerodynamic properties. As in Section II, 
the present discussion applies to albatrosses in general, and to the Wandering 
Albatross in particular. 

"Aeroecology11 we define as that part of the total ecology of a bird (or 
other flying organism) which is governed primarily by the aerodynamic properties 
of the bird, and is concerned with the interaction of these properties with the 
envi~onment. As noted in Section II, the albatross (and other soaring birds) 
is dependent upon its environment not only for food but also for its direct 
means of locomotion. The aeroecology of soaring species, therefore, constitutes 
a most significant part of the total ecology of these birds. 

Unf'ortunately, our present knowledge of the detailed behavior and life patterns 
of albatrosses, especially at sea, is quite insufficient for an adequately comprehen­
sive ecological analysis to be made. Not only are the necessary behavioral data on 
albatrosses lacking, but our understanding of many aspects of the birds' physical envi­
ronment is limited. The critical variations of shear-layer properties with wind speed 
and water conditions, for example, have not yet been investigated in sufficient detail. 

This present scarcity of information is a reflection, no doubt, of the 
great difficulties involved in making comprehensive field studies of pelagic 
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animals and environmental phenomena, especially when the animals are capable of 
such extreme mobility over such vast ranges of sea as are the albatrosses. 
Reasonably complete and accurate ecological analyses of the albatrosses will be 
possible only after a much more complete collection of data has been obtained 
on the birds and their environments by carefully planned and extensive field 
studies. 

Although its basic environment appears deceptively simple, the albatross' 
unique form and flight patterns clearly indicate a very high degree of speciali­
zation for its pelagic existence. Wind and water are the two essential elements 
on which its life depends. The wind provides the energy which allows the bird 
to cover vast stretches of ocean in its search for food, while the ocean waters 
provide the squid, shrimp, and fish of its principal diet. Thus, the alba­
trosses are generally found where belts of strong and continuous winds exist 
in conjunction with fertile ocean currents. It is a significant fact, there­
fore, that of the thirteen species comprising the family Diomedeidae, nine are 
to be found in the southern hemisphere between latitudes 300 and 600 where the 
strong belt of prevailing westerlies overlies the food-rich currents of the 
cold southern oceans. In addition to the prevalence of adequate food and wind 
conditions, the earth's surface in this region is nearly all water thus present­
ing the albatross with a practically unobstructed expanse of ocean completely 
circling the globe. Three of the remaining species are found in the North 
Pacific Ocean where the necessary environmental conditions are also prevalent, 
but with perhaps somewhat less intense wind conditions and a more restricted 
(but still vast) range of open sea. 

The aerodynamic suitability of the albatross for sustained flight in ocean 
shear layers is obvious from the results obtained in the preceding Section III. 
The adequacy of the bird's form for efficient dynamic soaring, under the exist­
ing wind conditions at sea, is clearly evidenced by its a.mazing speed and range 
capabilities. This highly specialized form, however, makes the bird critically 
dependent upon the continued existence of these same wind conditions and also 
upon the constancy of the shear layer profile generated by the wind-water 
interaction.* Any appreciable change in either could prove disasterous unless 
the change occurred over a sufficiently long period of time to allow evolutional 
adaptation to the new conditions. This dependency on sufficient wind is partic­
ularly acute, for the albatross has only very limited flapping-flight endurance 
and is incapable of sustained flight in calm air. 

*In this respect, it should be noted that the relative temperature of the 
air and water may exert a pronounced effect on the stability of the surface 
air and hence on the velocity profile of the shear layer. Thus, the charac­
teristic ranges of particular species of albatrosses may depend in considerable 
measure upon the existence of surface water temperatures compatible with the 
generation of shear layer profiles suited to their aerodynamic characteristics. 
For example, it is noted that certain species of albatrosses cease to follow 
southbound ships in Antarctic water as soon as pack ice is encountered. This 
may be evidence of an adverse change in the shear layer due to the rougher 
surface created by the ice, or to the lower water temperatures encountered. 
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In view of the critical need of the albatross for continuous winds, an 
extended period of calm conditions at sea could conceivably dest,roy a large 
number of birds. However, at least two major factors act to prevent this. 
First, and most important, the albatross is generally a solitary bird when at 
sea and the population is dispersed over relatively vast areas. The concen­
tration of albatrosses in the southern oceans is estimated to be on the order 
of one bird per 100 square miles, on the average. This distribution charac­
teristic of the albatross not only lessens the competition for food, but also 
insures that localized calms will at most affect only a relatively few birds; 
the probability of calm conditions existing over an extremely large part of the 
ocean surface for any extended period is practically nil, as the continued 
survival of the large albatross populations in their highly specialized forms 
clearly proves. The ability of the albatross to cover such vast areas of 
ocean is, of course, the result of its specialized aerodynamic capabilities, 
which in turn permit it to utilize the shear-layer energy for its flight needs. 
In regard to the second factor, the young of most albatrosses remain at the 
nest for long periods during which time they are alternately fed by the parents, 
so that the chances of all three birds being overtaken by disaster at any one 
time are also relatively remote. The breeding islands of many species of 
albatrosses are spread out over a large geographical range.* 

Perhaps an even more important factor, from a survival standpoint, than 
periods of absolute calm are extended periods of low wind speed, for the 
possibility of this latter condition occurring is much greater. A period of 
low wind speed results in a reduction in soaring capability, and flapping 
flight must be used as an auxiliary power source to keep the albatross air­
borne. This frequent wing flapping leads to an increased need for food, due 
to the expenditure of muscular energy. However, simultaneous with this need 
comes a decrease in the bird's ability to locate and secure its prey. This 
results from the fact that the travel ability is greatly reduced since very 
little "excess" energy is available in low speed winds for use in the auxiliary 
travel-flight patterns, and hence the bird cannot reconnoiter the necessary 
surface areas to locate sufficient food. In addition, a low wind speed 
adversely affects the albatross' ability to catch its prey once it has been 
sighted. The bird feeds primarily on live marine animals; these animals are 
generally capable of rapid motion to escape predators. The success of the 
albatross in snaring its prey depends, therefore, upon a swift and accurate 
initial attack. Since the albatross does not dive for its prey,** it must 

*This fact may possibly be of some significance in the Pacific and 
Indian Oceans where the relatively frequent tsunamis could destroy entire nest­
ing colonies. In this respect it would be interesting to note the nature of 
the ocean floor in the vicinity of the actual nesting islands used by the 
various albatrosses, since the local destructiveness of the tsunamis depends in 
considerable measure on the slope of the local ocean floor. The suitability of 
certain islands for albatross nesting may depend, among other factors, upon a 
relative immunity to tidal wave damage. 

**It appears that the tube-like nostrils of the albatross may be a signi­
ficant reason why these birds do not dive from altitude for prey. High speed 
dives such as performed by terns and pelicans would be quite dangerous. The 
tube-noses of the albatross open directly (continued at bottom of next page} 
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alight on the surface at a precise location or else make a quick seizure of its 
quarry while still on the wing, and then alight to devour its meal. When the 
wind speed is low, the bird must possess a relatively high absolute speed upon 
alighting or when seizing its prey on the wing, even when moving directly into 
the wind, and the ease and accuracy of the landing or seizure will be reduced. 
More important, the extreme difficulties attending the subsequent take-off in 
low winds require vigorous leg and wing action and a large amount of energy 
must be expended by the bird. 

Thus, under the conditions of decreasing wind speed, the muscular energy 
required of the bird to secure its food mounts rapidly, while the basic ability 
to catch its prey is reduced. At a sufficiently low wind speed the energy out­
put required exceeds the possible gains and the bird conserves its energy by 
either resting on the surface or by continuing its basic orbit with only 
infrequent attempts at catching prey. It is a fact of observation that the 
frequency with which the albatross alights to feed decreases rapidly as the 
wind speed decreases, and the bird ultimately settles on the surface to await 
a freshening of the wind. 

It appears probable that the average wind speed at sea is the primary 
environmental factor which has determined the presently existing form of the 
albatross. The present form of the bird, although very efficient, is such 
that additional gains in dynamic soaring effeciency might be attained in high 
winds by further aerodynamic refinements of structure such as increased wing 
loading, higher aspect ratio, larger span, and generally higher L/D. Such 
refinements would, however, result in a detrimental reduction in flight capa­
bilities at the lower wind speeds. Although such a highly specialized bird 
might be capable of magnificent soaring performances in strong winds, it would 
be almost completely helpless in the lower range of wind speeds used by the 
existing albatrosses. Such a bird would quickly perish if the average frequency 
of occurrence of very strong winds ever became insufficient to meet its flight 
needs. Such evolutional forces are no doubt actively at work today, eliminat­
ing any grossly overspecialized birds which may be produced as mutants. The 
present form clearly represents an adequate balance of all existing environ­
mental forces. When more complete data become available on albatross aero­
dynamic characteristics (such as L/D), it should become possible to draw some 
inferences as to the nature of the "average" or "effective" wind conditions at 
sea. 

forward and (if they are directly connected with the lungs) the very high 
impact pressure generated when the bird entered the water from a high speed 
dive would certainly force an appreciable amount of water into the bird's 
lungs. Diving birds like the pelicans, on the other hand, have no external 
nostrils and are thus exempt from this danger. 

The shape and forward orientation of the tube-noses of albatrosses is 
quite suggestive of the pitot-static tube used in aircraft to determine the 
airspeed. In view of the importance of a knowledge of the airspeed in dynamic 
soaring, as evidenced by the preceding analyses, it is possible that the tube­
noses of albatrosses could actually function as an airspeed monitoring device. 
This, of course, is a subject for more detailed investigation. 
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It does not appear that the albatross is placed in any great jeopardy by 
its intimate dependency on the sea wind and its vagaries, for the bird through 
natural selection is well adapted to such conditions. The present properties 
of ocean winds have existed and will no doubt continue to exist for vast 
periods of time. The weakest link in the bird's survival chain appears to be 
the fact that albatrosses nearly always return to the same islands to breed. 
Apparently, they have been using these islands for vast periods of time, for 
the urge to return to specific locations to nest is instinctive. Attempts to 
resettle certain colonies of North Pacific albatrosses from their home island 
to one with equal or superior environment for nesting have been unsuccessf'ul. 
Fortunately, most albatross species have representative colonies on several 
different islands, so that gross molestation of the nesting birds on any one 
island would not have totally disasterous effects on the population as a whole. 
It does appear, however, that the most immediate threat to albatross survival 
(on an evolutional scale), as with many other birds, is man, either directly 
or through the unnatural predators he introduces on the breeding islands. The 
species Diomedea albatrus, once enormously abundant, is now on the verge of 
complete extinc~ion as a result of the merciless slaughter of the nesting 
birds for their feathers on their principal breeding island of Torishima. 

The relatively unique ability of the albatross to travel "upwind" is a 
very important property, especially during the breeding season when the parent 
birds must return to the nesting islands after traveling appreciable distances 
to secure food. Since the albatross inhabits areas where prevailing winds are 
strong and constant, such as in the southern latitudes, it is quite necessary 
that the bird be able to travel upwind. For, without this capability, parent 
birds could return to their nests only by making a complete circle around the 
globe with the wind; otherwise, they would have to await a complete reversal of 
the wind's direction in order to reach their islands. Very few birds are 
capable of making sustained progress into a headwind, even with extensive use 
of flapping power.* 

The ability of the albatross to locate with unerring accuracy its rela­
tively tiny nesting islands after traveling over many thousands of miles of 
open sea indicates that its powers of navigation are acutely developed. 
Although still totally unexplained, the manner in which the albatross navigates 
is, in all probability, similar to that used by other birds which travel long 
distances over water in their seasonal migrations (for example, the arctic 
tern). The navigating faculties of the albatross are much more frequently used, 
however, than those of the migrating species since the albatross is constantly 
ranging out to sea and returning, under all weather conditions, during its 
breeding season. 

Some additional ecological factors concerning albatrosses are discussed 
in the following section. 

*Gulls are, however, often observed taking advantage of the relatively low 
wind speed near the surface of the ocean during periods of high wind. The birds 
are able, ~y flying within the shear layer, to make rapid progress to windward 
when this would be impossible at higher altitudes. 
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V. ECOLOOICAL COMPARISONS OF OCEAN AND LAND SOARERS 

The structural form and characteristic action_s of birds in their natural 
surroundings are the result of a carefully balanced compromise to best satisfy 
the complex of existing environmental forces. Thus the particular forms and 
functions evolved by many birds are direct indications of the presence and 
active influence of very specific environmental conditions. In general, the 
more highly differentiated and specialized the structure, the more intimately 
adapted is the bird to exploit some beneficial factor in its surroundings. 

In the case of soaring birds such as the albatross and the vulture, one is 
i:rmnediately impressed by the unique ability of each to perform sustained flight 
without flapping. It is obvious that these birds have acquired the remarkable 
power to extract their flight energy from the air through which they fly, with­
out having to resort to the laborious flapping so characteristic of most 
species of birds. At the same time, however, one is also impressed by the 
great differences in the structure and flight habits of the albatross and 
vulture. Since both birds are masters of soaring flight, these differences 
suggest that the nature of their environmental energy sources and, indeed, of 
their total environments must be quite different. It is of interest, there­
fore, to compare briefly some of the more outstanding differences of these two 
birds, and to ascertain the ecological reasons for these differencea. 

The primary advantage of soaring flight is that it enables a bird to 
remain airborne for extensive periods of time in order to examine vast areas 
of surface in its continuous search for food. Such sustained flight is possible 
only because the extensive flight energy required is made available to the 
bird from the air itself, and does not have to be supplied from internal 
muscular energy by flapping. It is obvious, therefore, that the nature and 
structure of the particular atmospheric energy source used by each type of 
soaring bird will exert a dominating influence on the resultant characteristics 
of the bird. Thus the aerodynamic factors which govern soaring flight under 
the various meteorological conditions come to dictate the form of soaring 
birds. 

The ability to perform certain and efficient soaring flight is not the 
only requirement the soaring bird must meet, however. Once food has been 
sighted, the bird must alight to claim it. Thus arises the need to perform 
safe and accurate landings, along with the subsequent take-offs. The physical 
requirements of these maneuvers are in turn governed by the nature of the 
terrain· over which the bird operates; these requirements are generally incom­
patible with those for efficient soaring so that some compromise is necessary. 
The resultant form of the bird is therefore governed not only by the meteoro­
logical conditions of the atmosphere, but also by the particular terrain of the 
environment. The existing forms, attained through evolutional development, 
quite adequately balance all the essential demands of t~e environment as is 
evidenced by the birds' continued survival. Other secondary, but important, 
requirements are imposed by such factors as nesting, roosting, migration, and 
the like. 
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The aerodynamic requirements for efficient static soaring by the vulture 
in thermal convections over land have been discussed in previous studies by the 
author;l,2,3 the requirements for dynamic soaring by the albatross in ocean 
shear layers have been established in the preceding sections of the present 
study. These requirements establish the basic properties the birds must possess 
in order to effectively exploit the meteorological conditions of their partic­
\l,lar environments. The essential aerodynamic factors may be summarized as 
follows. 

The albatross, in order to perform continuous dynamic soaring in ocean 
shear layers, must possess a high aerodynamic efficiency (L/D) and a high wing 
loading w/s. These requirements can be met by increasing the aspect ratio A 
to a large value by means of a large wing span b. That the albatross indeed 
meets these requirements is easily verified by the characteristically large 
span, aspect ratio, and wing loading of the bird. The albatross operates 
almost exclusively over the ocean where it is free of all surface obstructions, 
and hence can alight and take off without danger to its fragile, large-span 
wings, under sufficient wind conditions. The great span of the wings precludes 
the possibility of using strong flapping to aid in the take-off (or landing) 
but, on the other hand, the bird has complete freedom to "run" for long 
distances over the water to effect a take-off, much like a conventional air­
plane. In addition, over the open sea strong winds are nearly always available 
to lessen the burden of the take-off and to increase the ease and accuracy of 
the landing. Thus, the free, open surface of the sea not only provides the 
wind conditions needed for dynamic soaring, but is also well suited to the type 
of landing and take-off the albatross must use. On land during the breeding 
season, however, the albatross must choose its nesting locations with care, so 
as to adequately provide for its restricted low-speed aerodynamic capabilities, 
as was discussed in Section III. 

The vulture, on the other hand, engages primarily in static soaring and its 
aerodynamic characteristics are quite different from those of the albatross. 
In order to perform efficient static soaring by circling within the relatively 
confined upflow regions of thermal shells, the vulture must possess a very low 
value of W/S and a low sinking speed w = dz/ dt. While a large value of L/D 
is desirable, it is the low value of w which is more important in static 
soaring. The attainment of a low value of W/S is incompatible with a large 
value of A unless the wing span is also large. In the case of the vulture, 
however, which generally has to operate from very rough, forested terrain, 
take-offs and landings must be made in narrow, restricted areas by direct ascent 
or descent, making full use of all available flapping power. Under such condi­
tions, large span wings like those of the albatross would not only be useless 
but very dangerous. The vulture must therefore have a relatively short wing 
span ( compared to body length); for a low wing loading this leads to a corres­
pondingly small value for A. The vulture indeed possesses a very low wing 
loading, a relatively small span, and a low aspect ratio. 

The low aspect ratio of the vulture would, in general, lead to a rather 
low aerodynamic efficiency in circling flight and hence to a detrimental 
increase in the sinking speed. However, the bird has evolved an ingenious 
means for attaining a relatively high aerodynamic efficiency with a very light 



wing of small geometrical span and aspect ratio by use of' the slotted wing tip. 
The ema.rginated pinions of the vulture's wing are an excellent example of the 
extent to which environmental forces can stimul.ate the development of' highly 
specialized aerodynamic structures in birds. The mechanics of this device have 
been discussed in previous papersl,2,12 and.will not be considered here. The 
aerodynamic theory of the slotted wing tip and other multiplane systems has 
been covered in detail in reference 14. The theory and experimental verifica­
tions of this reference provide proof' that the primary purpose of the slotted 
wing tip is to lower the induced drag of' the wing. 

The wing span of' vultures actually varies over a rather wide range, from 
5 feet for the Black Vulture to over 10 feet for the condors, so that in reality 
the condor possess.es a much larger span than most albatrosses. With such a 
large span, however, the condor's range becomes limited to relatively open 
terrain, free of' close vegetation and obstacles, much like that of' the alba­
tross. The Black Vulture, on the other hanll, with its 5-f'oot span is able to 
land and take of'f' from very thick vegetation as well as from open areas and 
hence is much more widely distributed than the condor. Yet, despite its 
absolute size, the condor's wing span is not nearly so large in relation to 
the bird's body height (above ground) as is that of' the albatross, and the 
condor is still capable of' strong flapping flight during take-off' and landing, 
under normal circumstances. Under conditions of' low wind speed, however, the 
condor must use the same technique as the albatross, and an appreciable ground 
run prior to lif't-of'f is required. 

An interesting example of' adaptation to effect the most useful balance of 
ecological factors is afforded by the relationship between the types of' food 
and the relative soaring altitudes of' the albatross and vulture. As mentioned 
in the preceding sections, the albatross is limited to flight within the shear 
layer, and thus remains close to the surface throughout its soaring cycle. By 
contrast., the vulture nearly always soars at relatively high altitudes, on the 
order of' 1000 to 5000 feet, where the thermal shells are well developed. The 
albatross feeds, in general, on live marine animals such as squid, shrimp, and 
fish, and in order to capture its mobi1e prey the bird mu.st be ab1e $0 move 
swiftly and surely. The high-speed, low-altitude flight thus greatly enhances 
its success in procuring food. The vulture feeds on immobile carrion, which 
it can easily detect :from high altitudes. From such altitudes the bird' s 
f'i.eld of' vision, and consequently its scanning efficiency, is greatly increased. 
Thus, the food types of' the two birds are precisely those which can best be 
located and taken in a manner perfectly compatible with the basic flight 
patterns required f'or efficient soaring flight. 

An important point of' similarity exists between the vulture and the 
albatross in that both use the same wing-flexing technique to increase the 
effective wing loading. Wing-flexing is frequently used by vultures during 
glides into the wind, where an increase in the wing loading is necessary for 
an increased a.peed over the ground. Turkef Vultures and gulls make important 
use of wing-fl.exing in gust soaring. The use of wing-flexing by the albatross 
in the leeward glide is exactly analagous to that of' the vulture and allows the 
bird to maintain a high absolute velocity in the leeward glide. 
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VI. THE MECHANICS OF GUST SOARING 

The preceding discussions have been concerned with dynamic soaring in which 
the variation of the wind speed with altitude, that is, the shear layer, made 
possible the extraction of useful energy by the albatross. In this case, the 
wind speed is a steady function of the altitude z; that is, the wind profile 
Vw(z) does not change with time at a given point. A second type of dynamic 
soaring is also possible, however, which does not depend upon the variation of 
Vw with altitude, but rather upon the direct variation with time. This 
second type will be referred to as gust soaring. 

It does not appear, in general, .that gust soaring is a significant mode 
of flight for true oceanic birds, since the wind conditions at sea are rela­
tively steady. Over land, horizontal gusts generated by turbulence and local 
air instabilities (due to nonuniform heating of the surface) are more prevalent, 
and are used to a limited extent by such soaring birds as the Turkey Vulture 
and gull. The very erratic and uncertain nature of such gusts, however, 
precludes their general use for practical soaring. 

WIND VARIATIONS 

In the general case, the variations in wind speed which a bird encounters 
at any given instant can come from two sources: that due to the change in Vw 
with time at the local position of the bird and that due to the bird's motion 
in taking it to a new position where the wind speed is different. Mathemati­
cally, the variation in Vw experienced by the bird is given by the total 
derivative 

DVw = oVw + ~ + v tx + w f 11: Dt dt u z (18o) 

where "oVw/ot is the "local" derivative and the remaining three terms comprise 
the "convective" derivative. Here u, v, and w are the magnitudes of the 
orthogonal velocity components of the bird relative to earth. 

In the steady shear layer previously considered, 

oVw 
dt = 0 

since the x-axis is taken parallel to the wind vector, Vw = Vw(z) i. 
have 

DVw - dVw 
Dt - w dz 

(181) 

Hence we 

(182) 
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which yields the time-altitude relation 

dz w =-dt 

In the case of pure gust soaring, we have 

DVw = ~ = d.Vw 
Dt - dt 

(183) 

(184) 

assuming, of course, that the wi~d increases simultaneously at every point 
according to the same function Vw(t) throughout a sufficiently large region 
surrounding the bird. For the most general case, where the wind velocity field 
is varying with time and position, eq. (18o) must be used. An example of such 
a situation is a shear layer in which the wind above the layer is rapidly 
changing with time, and thus causing changes in the wind profile. This section 
considers primarily the case wherein eq. (184) applies, that is, the case of 
pure gust soaring. 

EQUATIONS OF MOTION IN GUST SOARING 

Consider a bird at altitude z0 at time t = o, moving with the hori­
zontal absolute velocity u directly into a wind of uniform speed · fJwo, that 
is, the wind speed is everywhere equal to Vwo in a large region surrounding 
the bird. If now the wind increases uniformly according to some function 
Vw(t) throughout the region, the bird will accelerate vertically and begin 
to climb if the strength of the gust is sufficient (that is, if Fz > W). The 
motion during the climb is governed by exactly the same differential equations 
as for the shear layer [eqs. (23) and (24)]. Since Vw is now an explicit 
function of time, however, it is desirable to state the linearized forms of 
these equations in terms of t rather than z. Thus we obtain 

du (c w ) 1 (Yw; - u)
2 

cit= g D + CL Vw - u 2 P w/s (185) 

dw - fr !. (V-w - u)2 
dt - g \cL 2 P w/s - ~ (186) 

where CL, Cn, and Vw are functions of time. These equations may be solved 
in exactly the same manner as for the shear layer case to yield u(t) and 
w(t). Alternately, if the functions x(t) and z(t) are obtained from a photo­
graphic record of the gust flight path, the functions C1(t), L/D(t), and 
Vw(t) can be calculated. 

The exact relationship of the equations of motion for gust and shear layer 
soaring is clearly brought out by the fact that any flight path produced by a 
windward climb in a shear layer can be duplicated exactly by a correpsonding 
gust function Vw(t). Let us suppose that a photographic analysis of a climb 
in a shear layer has been obtained and has yielded the flight path functions 
u(z), w(z), C1(z), L/D (C1), and Vw(z). The analysis also gives the basic 
time-altitude relation z(t). Then by relating z in Vw(z) to its equivalent 
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time by z(t), the appropriate gust function Vw(t) is obtained. In the same 
manner, the corresponding funqtions u(t), w(t), and CL(t) are obtained. It 
is clear that the increase in wind speed with time will then produce exactly 
the same wind speed at each altitude as does the shear layer, and flight condi­
tions in the two cases will be identical. If the gust were of long enough 
duration, the bird could also gain useful kinetic energy by executing a leeward 
turn when the gust had reached its maximum strength. 

The analogy can obviously be extended so that a complete basic cycle in 
the shear layer can be reproduced by the corresponding gust function. To 
duplicate the basic cycle, the gust function Vw(t) would have the general form 
sho'WD. in Fig 52. The segments 1, 2, 3, and 4 of the gust correspond respectively 

z 

2 
3 

4 

t X 

Fig. 52 Fig. 53 

to the windward climb, leeward turn, leeward glide, and windward turn in the 
shear layer. If a gust function of this type actually existed in the atmos­
phere and were periodic, useful gust soaring directly analagous to shear layer 
soaring would be possible. The flight path would have the additional benefi­
cial feature (at least for vultures) that it need be no longer restricted to a 
narrow region near the surface, but could be generated at relatively high 
altitudes. Unfortunately, gusts of such highly specialized structure are not 
observed in nature to any extent, and soaring birds are therefore unable to 
realize the large kinetic energy gains which would otherwise be available from 
use of such wind variations. 

In the general case of gust soaring, the only energy obtained is the 
potential energy gained during the climb. For example, Fig. 53 shows a flight 
path which might result from gust soaring. The bird climbs during the period 
of the gust, and extracts some energy from the wind. This energy is stored in 
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the potential form. Then, upon subsidence of the gust, the bird commences a 
glide until another gust is encountered. As in the case of the analagous wind­
ward climb in shear layers, the f'unctions CL(t) and L/D (CL) as well as the 
wing loading, play an important part in determining the efficiency of the climb. 

The analysis of the equations of motion for the windward climb in shear 
layer soaring indicated that a large value of the wing loading was desirable 
for an efficient gain of altitude. Thus it appears that a high wing loading 
is also desirable for gust soaring. It is interesting to note, therefore, that 
land birds such as the Turkey Vulture and the gull, which have vecy low basic 
wing loadings, but which frequently soar in gusty weather, fly under such 
conditions with their wings vecy strongly flexed so as to gain a favorable 
increase in wing loading. 

VII. CONCLUDING REMARKS 

The intent of this study has been to develop on as rational and as 
quantitative a basis as possible the fundamental aerodynamic principles under­
lying the dynamic soaring flight of albatrosses in ocean shear layers. With 
the aerodynamic basis of albatross flight firmly established, the ecological 
significance of many aspects of the bird's characteristic form and behavior 
becomes clear. Not only can many qualitative deductions be made, but the 
quantitative nature of the aerodynamic analyses allow the actual numerical 
investigation and correlation of many ecological factors when adequate field 
data are available. 

This paper, being primarily concerned with the analysis of the flight 
dynamics, has not endeavored to carry out any detailed numerical correlation 
of albatross ecological factors. However, with the availability of adequate 
quanititative data on specific albatross flight paths and travel patterns, 
combined with adequate oceanographic and meteorological information on the 
specific environments, it should become possible to describe the primary eco­
systems of the various species of albatrosses to a highly quantitative degree. 

With the availability of accurate recordings of flight paths, it will 
become possible to determine the exact aerodynamic properties of the alba­
trosses, that is the flight speeds, L/D (CL), Cn (CL), and CL(z), by use of 
the general equations of motion. The direct determination of such information 
by experimental measurement would be practically impossible. The flight path 
recordings can, when used with the equations of motion and energy, be used to 
determine the actual wind shear profiles Vw(z) over the oceans. Once the 
aerodynamic capabilities of the various albatrosses have been quanitiatively 
determined, it should be possible to relate many factors of basic ecological 
importance, such as the speeds and directions of travel with regard to wind 
strength and direction, the density patterns of distribution at sea, the total 
range distribution, seasonal speeds and directions of movements, and distances 
covered in forages at sea during the nesting season. 

When quanitiative data on the aerodyil;B,mic characteristics of several 
different but associated species become available, it should be possible to 



establish the reasons for the most significant aeroecological differences 
between the various species on the basis of their differences in structural 
form and flight capabilities. 

In order to bring out the essential aerodynamic features of the flight 
processes, attention has been devoted primarily to the idealized basic soaring 
cycle. Although observations indicate that the basic cycle as treated herein 
is the primary mode of dynamic soaring used by the albatross, the equations 
of motion and energy developed in the study bring to light possibilities of 
other soaring modes which should be looked for in field studies. For example, 
the energy balance given by eq. (86) suggests that an albatross may be able to 
proceed directly to windward by a simple series of windward climbs and dives, 
without performing any leeward or windward turns. The condition necessary for 
this to be possible is 

-4 D w sin cp dt - -4 D u cos cp dt "[, -4 L Vw sin cp dt 

where T is the period of the climb-dive cycle. Indeed, the aerodynamic 
results of the present paper present a whole new set of questions calling for 
a great amount of careful and accurate field observations on the albatrosses. 

Finally, the general relations developed in the analyses of albatross 
soaring in shear layers and land bird soaring in gusts can be utilized to 
investigate the feasibility of dynamic soaring by man in areas where meteoro­
logical conditions appear favorable. The unsteady character of such flight, 
together with the need for great maneuverability, however, will make dynamic 
soaring in aircraft a very difficult task, even under adequate wind conditions. 

Gloucester Point, Virginia 
17 April 1964 
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A-2. SYMBOLS 

The following list includes definitions of the principal symbols used in 
the paper; symbols which are infrequently used and which are adequately defined 
within the text are not repeated here. 

a 

A 

b 

D 

fi 

g 

!,j,R 

K.E. 

L 

p 

P.E. 

r 

R 

s 

t 

u,v,w 

V 

acceleration 

aspect ratio 

span 

drag coefficient 

lift coefficient 

drag 

displacement vector 

dissipation energy 

centripetal force 

horizontal component of aerodynamic force 

vertical component of aerodynamic force 

gravitational acceleration constant 

orthogonal unit vectors 

kinetic energy 

lift 

wind profile exponent 

potential energy 

radius of turn 

resultant aerodynamic force magnitude 

wing area 

time 

orthogonal components of absolute speed 

aerodynamic speed (linearized) 



Va 

w 

x,y,z 

Cl, 

13 

y 

8 

~ 

e 

p 

I 
cp 

ll.) 

absolute speed 

aerodynamic speed in turns 

aerodynamic speed (exact) 

wind speed 

work 

weight 
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orthogonal space coordinates 

angle of attack 

angle of bank 

glide inclination angle 

boundary layer thickness 

incre1'.lent (prefix) 

tan-1 D/L 

density of air 

summation (prefix) 

"" inclination of VR to x-axis 

angular velocity 

Superscripts 

* 
"" 

condition at top of shear layer 

vector quantity 

Subscripts 

max maximum 

min minimum 
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A-3. CLASSIFICATION OF NATURAL SOARING FLIGHT 

Birdflight in which the wings remain stationary or rigid may be divided 
into two types. In gliding flight the bird glides through the air with a 
continuous loss of altitude, and ultimately comes to earth. In soaring flight 
the bird is able to fly a level course or even gain altitude by using the energy 
of the moving air. 

The principles of fluid dynamics allow us to state the two atmospheric 
conditions necessary for a bird to remain in the air without flapping its wings. 
One of the following must be true for sustained soaring: 

(1) the air must have a vertical component of velocity, or otherwise 

(2) the motion of the air must not be of uniform speed with regard to 
space and/or time. 

These two requirements form the basis for the classification of soaring 
flight. Soaring which is based on the utilization of the vertical motions of 
the air is called static soaring. It is almost exclusively the form used by 
land soaring birds. Soaring using the non-uniformities of the wind is called 
dynamic soaring. This form is occasionally practiced by land birds in gusty or 
stormy weather, but the available evidence indicates that this form is of much 
less importance than static soaring to land birds. For sea soarers such as the 
albatross, dynamic soaring is used almost exclusively. 

Static soaring may be subclassed according to the manner in which the 
vertical air velocity is produced. These are (1) declivity winds and (2) 
thermals. 

Declivity currents arise when the wind moving parallel to the earth 
encounters an obstacle, such as a hill. The air is forced upward as it 
approaches and passes over the obstacle thus producing a vertical velocity 
component that can be utilized by the birds. It is obvious that in order to 
have declivities of sufficient strength to support soaring, we must have 
strong surface winds and/or very large obstacles. Declivity winds are thus so 
restricted that they are in general of small value to soaring birds, whose 
primary reason for flight is to cover large areas of land in search of food. 

Thermals occur when surface layers of air become so warmed and/or 
moisture-laden by contact with the sun-heated earth that they are less dense 
than the layers above them and tend to overturn, forming rising bodies or 
bubbles of air. The formation of thermals depends only on the presence of 
sufficient sunshine and thus their distribution is universal over all land 
areas. Due to their wide and continuous distribution, thermals appear to offer 
the sustaining means necessary for practically useful soaring flight. The year 
round availability of thermals is the reason why the highest degree of soaring 
is observed in temperate and tropic regions. It is because of the availability 
of thermals that soaring is possible over broad flat plains in a form equal or 
superior to that observed in mountainous country where declivities are always 
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available. (It is interesting to note that even in mountainous country, 
thermal soaring is quite as widely used as is declivity soaring - hills are 
excellent thermal producers.) 

This availability of thermals is the condition upon which the very exis­
tence of the large soaring birds such as the vultures depends. This is the 
only atmospheric condition which will pennit them to travel so effortlessly 
over such wide areas in search of food, and they have adapted themselves to 
exploit it to the fullest extent. 

Dynamic soaring may be subclassified as shear-layer soaring and gust 
soaring. In shear-layer soaring the bird uses the difference in wind speeds 
which exists between the top and bottom of the shear layer to provide the 
energy for its flight. In gust soaring the bird uses the differences in wind 
speed which occur with time. Both types of dynamic soaring are treated in 
detail within the present paper. 

A-4. AERODYNAMICS OF NATURAL SOARING FLIGHT 

As a bird. flies through the air, it experiences a resultant force due to 
the air pressure and frictional stress distributions over its wings and body. 
The component of this force normal to the flight direction is called lift, 
while the component opposite to the flight direction is called drag." (Note 
that li~ need not always act normal to the horizon.) If the bird is flying a 
straight course at a constant speed, the sum of all forces acting on it must 
be zero. Hence, it is necessary that the resultant aerodynamic force be equal 
to the bird's weight. When the forces are resolved along the flight path, it 
is necessary that a thrust force exist equal to the bird's drag. For a gliding 
bird moving through still air, there is no aerodynamic thrust force. Hence, 
the bird must glide down toward the earth at such an angle that the resultant 
aerodynamic force exactly balances the weight. 

In the glide at constant velocity v, the force component balancing the drag is 
W sin r. Since the bird has a velocity in the direction of the force the weight is doing 
work against the drag at the rate WV sin y. Since the vertical component of the bird' s 
velocity (the sinking velocity) is V sin y, the bird is losing potential energy at the 
rate WV sin y, and we see that the loss of altitude is furnishing the energy to power the 
glide. Suppose now that the bird were gliding down through an enormous box of 
air, but that this box was rising vertically (relative to the earth) with the 
speed V sin r. Then, although it wou1a: still be sinking relative to the air 
at the rate V sin r, the bird would be flying parallel to the surface of the 
earth with a velocity V cosy. If the box of air were moving upward with a 
speed greater than V sin r, the bird ~ould actually be gaining altitude with 
respect to the earth. In this case the power for flight comes from the energy 
of the rising air. This simple picture gives the basic principle of static 
soaring flight. 

If a bird wished to make a turn, it is necessary that a component of the 
aerodynamic force act toward the center of the turn to provide the necessary 
centripetal acceleration. This is accomplished by banking the wing through 
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some angle ~. In this way a component of the lift acts to pull the bird 
around the turn. Since the lift is no longer acting in a vertical plane, the 
lift force must be greater in a turn if it is to balance the weight force. 

The mechanics of dynamic soaring in shear layers and in gusts is discussed 
in detail within the pr~sent paper, so that the aerodynamic details are not 
considered here. Due to the unsteady nature of dynamic soaring, it is a much 
more complex phenomenon than static soaring flight. 

A-5. CIASSIFICATION AND RANGES OF ALBATROSSES 

Order: Procellariiformes 

Famiq: Diomedeidae 

Genus : Phoe betria 

Species: Phoebetria fusca (Sooty Albatross) 

Range:* South Atlantic and Indian Oceans, eastward to Australia; 
confined chiefq to temperate latitudes. Breeds at Gough Island and the 
Tristan da Cunha group in South Atlantic. 

Species: Phoebetria palpebrata (Light-mantled Albatross) 

Range: Circumpolar in the pan-antarctic belt, ranging from about 
the 35th parallel southward into the zone of pack ice and beyond the antarctic 
circle. Breeds at Antipodes, Campbell, Auckland, Macquarie, Kerguelen, Crozet, 
Prince Edward, and South Georgia Islands. 

Genus : Di omedea 

Species: Diomedea melanophris (Black-brewed Albatross) 

Range: Southern oceans generally, from the tropic of Capricorn 
to latitude 60° S., and occasionalfy beyond. Breeds at Campbell and Auckland 
Islands; at Kerguelen and the Prince Edward Islands, South Georgia, the 
Falklands, Staten Islands, and at the Ildefonso and Diego Ramirez Islets, near 
Cape Horn. 

Species: Diomedea chrysostoma (Gray-headed Albatross) 

Range: From south temperate latitudes to the edge of pack ice. 
Breeds at Campbell Island south of New Zealand, at Kerguelen, the Prince 
Edwards, Crozets, South Georgia, the Falklands, and the Diego Ramirez Islands. 

*Data on ranges of sourthern albatrosses are taken from Murpby.4 
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Species: Diomedea chlororhynchos (Yellow-nosed Albatross) 

Range: Ranges widely over the southern oceans, and breeds upon 
Gough Island and the islands of the Tristan da Cunha group in the Atlantic, 
and at St. Paul Island in the Indian Ocean. 

Species: Diomedea bulleri (Buller's Albatross) 

Range: Confined to the South Pacific Ocean between the New 
Zealand region and the West Coast of South America. Breeds at the Snares 
Islands, and at several islands of tb.e Chatham group. 

Species: Diomedea cauta (White-capped Albatross) 

Range: Southern oceans, chiefly in temperate latitudes, and 
apparently less co:rrmon in the South Atlantic than in the Pacific and Indian 
Oceans. The subspecies salvini is known to breed only at the Bounty Islands, 
east and south of New Zealand. 

Species: Diom.edea irrorata (Galapagos Albatross) 

Range: Breeds at Hood Island of the Galapagos and ranges to 
southward of the archipelago; regularly reaches the coast of Ecuador and 
northern Peru. 

Species: Diomedea exulans (Wandering Albatross) 

Range: Circumpolar in the west 'Wind belt of the southern 
hemisphere, and ranging normally from the tropic of Capricorn southward to 
latitude 600 s., occasionally entering the zone of pack ice. Breeds at 
northerly antarctic islands, such as South Georgia, the Prince Edward and 
Crozet groups, Kerguelen, Auckland, and Antipode~. 

Species: Diomedea epomophora (Royal Albatross) 

Range: Coastal waters of southern America and New Zealand. 
Breeds on Campbell Island, New Zealand, and coasts and islands of southern 
South America. 

Species: Diomedea nigripes (Black-footed Albatross) 

Diomedea immutabilis (La.ysan Albatross) 

Diomedea albatru.s (Short-tailed Albatross) 

Ranges: These are the albatrosses of the North Pacific Ocean, 
and range over the entire ocean area between Hawaii and the Bering Sea. 
Breeding of the first two species occurs on the islands of the central North 
Pacific Ocean, particularly on the leeward islands of the Hawaiian archipelago. 
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A-6. · DYNAMIC SOARING IN AERONAUTICS 

The possibility of achieving dynamic soaring flight in sailplanes has long 
intrigued soaring enthusiasts as a means for opening up a new realm of soaring 
energy. It is of interest, therefore, to briefly consider such possibilities 
in light of the foregoing analysis of natural dynamic soaring. 

Use of Shear Layers and Regions 

It does not appear that practical use of ocean shear layers for dynamic 
soaring by sailplanes is possible to any significant extent. The reason for 
this lies in the excessively large size of the sailplane needed to support 
a man, compared to the depth of the shear layer. An efficient sailplane large 
enough to support a man, and having the same wing loading and aspect ratio as 
the albatross, would possess a span of some 45 to 50 feet. Hence, in performing 
a turn with any appreciable bank, the wings of the plane would span practically 
the entire extent of the shear layer; and very little, if any, useful energy 
could be taken from the wind. It thus appears that the absolute depth of the 
shear layers at sea, although making dynamic soaring a certain and usef'ul 
flight mode for the albatross, precludes its use for practical soaring by man. 
This same effect of relative size of bird and sailplane on soaring ability is 
also noted in the case of static soaring in thermal shells over land.3 

The mathematical analysis of albatross soaring flight presented in the 
body of this paper has shown that the essential physical requirement for 
dynamic soaring is the existence of two regions of air in close proximity having 
different absolute velocities. At sea, the shear layer satisfies this condi­
tion. Over land, conditions suitable for dynamic soaring in sailplanes no 
doubt exist at various times and places in the form of relatively strong 
velocity gradients. Great difficulty is encountered in the practical use of 
such shear regions, however, due to the uncertainty of finding sufficiently 
large areas of strong wind gradients in the free atmosphere, and in the case 
of shears generated by surface obstructions, the very restric~ed and stationary 
nature of the shear regions. For example, relatively strong wind shears are 
detected at the higher altitudes from time to time, but such conditions are 
highly unpredictable as to time, place, and extent of occurrence. Other shear 
conditions generated by surface obstructions no doubt exist, such as in valleys 
between parallel mountain ridges (Fig. 54) and in the lee of sharp ridges 
(Fig. 55) where the upflow has separated but flight is restricted to the 
immediate vicinity of these obstructions. In addition, such flight is somewhat 
dangerous since the separated airflow is usually vecy turbulent and unsteady. 
It is easy to understand the enormous advantages the ocean shear layers, with 
their immense areas of apparently cons:tant shear conditions, offer the alba­
tross in its ceaseless wanderings. 

One possibility for accomplishing dynamic soaring over land consists in 
use of the land shear layers. As previously noted in Fig. 4., appreciable 
velocity gradients exist over land, especially over smooth, flat land (such 
as deserts), where the shear layers are quite similar to thos~ over the ocean, 
only thicker. It may be possible that sustained dynamic soaring is feasible 
over vast stretches of flat prairie land or coastal pl.a.ins, using the same 
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Fig. 54 Fig. 55 

flight techniques and patterns as used by the albatross over the sea. The 
great complexity of providing an efficient and flexible means for varying the 
wing loading in the leeward glide and the rapid, accurate maneuvers required, 
however, would make the use of such layers quite difficult and rather dangerous 
because of the high speeds and low altitudes involved. In any event, dynamic 
soaring will always be a much more difficult and exacting endeavor than the 
relatively simple equilibrium static soaring in thermal shells as presently 
used by sailplanes. 

The basic principles involved in dynamic soaring by the albatross and 
the governing differential equations, as derived in this paper, can, of course, 
be directly applied to the analysis of dynamic soaring by sailplanes in various 
shear layers and regions over land. Meteorological measurements of the inten­
sity of shear layers over various terrain types, when used with the basic 
equations of Section III will clearly indicate the aerodynamic properties a 
sailplane must have in order to perform dynamic soaring in a given layer and, 
more importantly, whether or not dynami.c soaring over land is feasible (from an 
aerodynamic standpoint) with any type of sailplane. In this respect, it should 
be noted that, unlike the situation in thermal soaring, the high value of wing 
loading which comes with high A values in sailplanes is no longer detrimental 
in dynamic soaring. 

Use of Gusts 

The possibility of accomplishing extended dynamic soaring with sailplanes 
in gusts does not presently appear very promising, except under certain 
specialized and infrequent wind conditions and at specific locations. The 
primary difficulty involved in gust soaring is, once again, the uncertainty of 
finding a usable gust at the time it is needed to replenish the energy supply 
of the craft. 
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Fig. 56 Fig. 57 

Two basic sources of €:,rusts are ( 1) inflows to thermal shells and ( 2) 
peri odJ c vortex wakes in the lee of lai"ge obstacles, as pictured in Figs. 56 
ar1d 57, respectively. In the first case, the inflow toward the thermal shell 
creates a temporary inc.!rease ( or decrease) in the absolute velocity of the air 
at a given point,15 and these resultant changes in wind speed are felt as 
gusts. In the second case, the large free-vortices created by flow separation 
behind the obstacles are carried along by the wind, and produce local gusts as 
they move past a fixed point. Thermal-induced gusts are uncertain in nature 
and difficult to find, generally, while obstacle-created gusts are limited in 
extent and require special ranges of wind speed and direction for their orderly 
prc,ductt on. 

For the case of gusts created by forming thermal shells, and for idealized 
vortex wakes, Vw(t) functions can be theoretically predicted, but experimental 
researeh on actual gust functions is needed for the various specific terrain 
locations under var.i.ous weather conditions before the possibility of any useful 
gust soar Jng can be estabJ.ished. To date, no obviouslY. useful. gust forms have 
been encoW1te.red by sailplanes. However, with a more detailed knowledge of 
character1stic gust functions, the windward climb equations of Section III can 
be used to e8tab].1 r;h the necessary aerodynamic characteristics of sailplanes 
for ef'f.i c:t en t gust soar:i.ng, and to determi.rie the optimmn CL ( t) function to be 
used for maximum altitude gain during the gusts. 

In conelus:Lon, although special 1)<A:r:Sb:iJ.5 ties for dynam:i c soaring in saJl­
planer, exi,E,t., it does not appear that dynamic soarjng by man :i.s presently 
possibJe f.o any useful degree. The great complex.ity of dynar:.tic soaring flight, 
even under buffi ei ent meteorologi.cal conditJons, will alwayf:., require constant 
and ext.remc mancuverabi lity of the aircraft and continuom:; acti.on on the part 
of the p51 ot. The ultimately useful exploitation of specj a li. zed sourees of 
dynamie soarjng energy wJJ.1 depend in great measure upon carefully planned 
research irit,i the be(-,t methods for extractjng such energy. 

NASA-Langley, 1972 
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