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1. Introduction

Motivated by pure and applied problems, researchers need to understand the eigenvalues ofmatri-

ces. For example, in numerical analysis or population dynamics, a square matrix A satisfies

limm→∞ Am = 0 if and only if all eigenvalues havemodulus less than 1; in stability theory of differen-

tial equations, the solution of the system of differential equations x′ = Ax is stable if and only if all the

eigenvalues of A lie in the left half plane; in the study of quadratic forms a Hermitianmatrix is positive

definite if and only if all the eigenvalues lie on the positive real line; see [7]. However, sometimes

there is no practical or efficient way to compute the eigenvalues exactly, say, because the dimension of

the matrix is too high or numerical and measuring errors in the entries, etc. So, researchers consider

eigenvalue inclusion sets; see [7,14]. For instance, the well known Gershgorin theorem asserts that

the eigenvalues of a matrix lie in the union of circular disks centered at the diagonal entries and radii

determined by the off-diagonal entries (see the definition in Section 2). These allowone to estimate the

location of the eigenvalues for a given matrix efficiently. To further improve the estimate, researchers

apply simple transformations such as diagonal similarities to amatrix to get better or easier estimates

of the eigenvalue location of the given matrix. In this connection, it is interesting to study maps on

matrices that improve or leave invariant eigenvalue inclusion sets S(A) for matrices A ∈ Mn. In this

paper, we consider such problems for several types of eigenvalue inclusion regions including the

Gershgorin sets, the Ostrowski’s sets, and the Brauer’s sets, which are unions of Cassini ovals.

In fact, there is independent interest in studying maps on matrix spaces leaving invariant certain

properties, functions or subsets. Such problems are known as preserver problems. Early study on the

subject focused on linear preservers, i.e., linearmaps having the preserving properties; see [10] and its

references. Recently, researchersworkongeneral preservers (also referred toasnon-linearpreservers);

see [12] and its references.

To facilitate our discussion, we fixed some notations. Denote by Mn the set of n × n complex

matrices, and Sp(A) the set of eigenvalues of A ∈ Mn. Also E11, E12, . . . , Enn be the standard basis inMn.

In [11], the authors showed that a linear map Φ : Mn → Mn satisfies

Sp(Φ(A)) = Sp(A) for all A ∈ Mn (1.1)

if and only if there is an invertible S ∈ Mn such thatΦ has the form A �→ S−1AS or A �→ S−1AtS. In [5],

it was shown that a multiplicative map Φ : Mn → Mn satisfies (1.1) if and only if there is an invertible

matrix S ∈ Mn such that Φ has the form A �→ S−1AS. By the result in [2, Theorem 1.1] (see also [8]),

a map Φ : Mn → Mn satisfies Sp(Φ(A) − Φ(B)) = Sp(A − B) for all A, B ∈ Mn if and only if there are

R, S ∈ Mn, where S is invertible, such thatΦ has the form A �→ S−1AS + R or A �→ S−1AtS + R. Also it

was proven in [4] that amapΦ : Mn → Mn satisfying Sp(Φ(A)Φ(B)) = Sp(AB) for all A, B ∈ Mn must

have the form A �→ ±S−1AS or A �→ ±S−1AtS with invertible S ∈ Mn. Notice that maps that preserve

the spectral values of maximummodulus of products were also studied in [13]. In this connection, it is

interesting to knowwhat kinds of transformation onmatrices will improve or leave invariant a certain

eigenvalue inclusion set S(A) for A ∈ Mn. If one just assumes that S(A) = S(Φ(A)) for every matrix A

on Φ , the structure of Φ can be quite arbitrary. For instance, one can partition the set of matrices into

equivalenceclasses so that twomatricesAandBbelong to thesameclass ifS(A) = S(B). IfΦ sendseach

of these classes back to itself, then Φ satisfies S(A) = S(Φ(A)) for every matrix A. So, it is reasonable

to impose some condition on the map Φ relating the eigenvalue value containment sets of a pair of

matrices. In [6], characterizations were obtained for maps Φ satisfying S(A − B) = S(Φ(A) − Φ(B))
for any A, B ∈ Mn. In applications, one often needs to consider the product or powers of matrices, and

estimate their eigenvalues. For example, applications in wavelet analysis require the joint spectral

radius, which is the maximum eigenvalue of matrix products over a set of matrices [9]. Therefore,

we consider Φ satisfying S(Φ(A)Φ(B)) = S(AB) for any two matrices A and B. It is shown that such

maps have tractable structure. An important step in our study is to extract information about the

eigenvalues of Φ(A) using S(A) and S(A2) = S(Φ(A)2). To achieve this, we use the following result

in matrix theory; for example see [7, Theorem 3.2.4.2].

Proposition 1.1. Suppose A ∈ Mn has n distinct eigenvalues and B ∈ Mn satisfies AB = BA. Then there is

a complex polynomial p(z) of degree at most n − 1 such that B = p(A).
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Though the general strategywe used to prove the results in Sections 2 and 3 is similar, the technical

arguments in the proofs are quite different. Thus, instead of just saying that “by a similar argument as in

the previous case”, we present the proofs of the results for Ostrowski sets and Brauer’s sets separately.

We would like to thank the referee for some helpful comments.

2. Gershgorin and Ostrowski sets

Given a matrix A = [aij] ∈ Mn. Define

Rk = Rk(A) = ∑
j /=k

|akj| and Ck = Ck(A) = ∑
j /=k

|ajk| k = 1, . . . , n.

The Gershgorin set of A is defined by

G(A) =
n⋃

k=1

Gk(A) with Gk(A) = {μ ∈ C : |μ − akk| � Rk}.

The set Gk(A) is called a Gershgorin disk of A. It is well known that the Gershgorin set contains all the

eigenvalues of A, see, e.g. [7].

Let ε ∈ [0, 1]. The Ostrowski set of A is defined by

Oε(A) =
n⋃

k=1

Oε,k(A) with Oε,k(A) = {μ ∈ C : |μ − akk| � Rε
kC

1−ε
k }.

Clearly, the Ostrowski set is an extension ofG(A) asO1(A) = G(A) andO0(A) = G(At). It turns out that
for any ε ∈ [0, 1], Oε(A) also contains all eigenvalues of A [7, Chapter 6]. We have the following result

on preservers of the Gershgorin and Ostrowski sets.

Theorem 2.1. Let ε ∈ [0, 1]. A mapping Φ : Mn → Mn satisfies

Oε(Φ(A)Φ(B)) = Oε(AB) for all A, B ∈ Mn (2.2)

if and only if there exist c = ±1, a permutation matrix P, and an invertible diagonal matrix D, where D is

unitary unless (n, ε) = (2, 1/2), such that

Φ(A) = c(DP)A(DP)−1 for all A ∈ Mn.

Wewrite O(A) and Ok(A) instead of Oε(A) and Oε,k(A), respectively, for notational simplicity if the

meaning of ε is clear in the context. The following observations will be used in our proof.

Lemma 2.2. Let ε ∈ (0, 1) and A, B ∈ Mn.

(a) If Oε(A
2) consists of n disjoint isolated points, then

Ck(A) Rk(A) = 0 for all k = 1, . . . , n. (2.3)

(b) If A and B each satisfy (2.3) and the set Oε(AB) consists of a collection of nonzero isolated points,

then

Ck(A) Rk(B) = 0 for all k = 1, . . . , n.

Proof. (a) Suppose Oε(A
2) consists of n disjoint isolated points. Then for every k, Ck(A

2)Rk(A
2) = 0.

So either Ck(A
2) = 0 or Rk(A

2) = 0. On the other hand, each disk of Oε(A
2) contains at least one

eigenvalue of A2 and therefore A2 has n distinct eigenvalues. By Proposition 1.1, anymatrix commuting

with A2 is a polynomial of A2. In particular, A is a polynomial of A2. Then Ck(A
2) = 0 implies Ck(A) = 0,

or Rk(A
2) = 0 implies Rk(A) = 0. Thus, the result follows.

(b) Suppose A = [aij] and B = [bij] satisfy the hypothesis. Assume that Ck(A)Rk(B) /= 0 for some k.

Then Rk(A) = 0 and Ck(B) = 0. Write A = P

[
A11 0

A21 A22

]
Pt and B = P

[
B11 B12
0 B22

]
Pt for some
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permutation matrix P, where A11 = [akk] ∈ M1, B11 = [bkk] ∈ M1, and A22, B22 ∈ Mn−1. Notice also

that A21 and B12 are nonzero (n − 1) × 1 matrix and 1 × (n − 1) matrix respectively. Since

0 /∈ Oε(AB) = Oε

(
P

[
A11B11 A11B12
A21B11 A21B12 + A22B22

]
Pt

)
,

both A11 and B11 are nonzero and Oε(AB) contains a non-degenerate disk centered at A11B11. But this

contradicts the hypothesis. Therefore, Ck(A)Rk(B) = 0. �

Proof of Theorem 2.1. For the sufficiency part, note that O(X) = O(PXPt) for any permutation matrix

P, O(X) = O(DXD∗) for any diagonal unitary matrix D, and O(X) = O(DXD−1) for any invertible di-

agonal matrix D if (n, ε) = (2, 1/2). If Φ(A) = ±(DP)A(DP)−1, then Φ(A)Φ(B) = DP(AB)PtD−1 and

O(AB) = O(Φ(A)Φ(B)).
For the necessity part, suppose Φ : Mn → Mn satisfies (2.2). We first prove the case when ε = 1.

Recall that O1(A) = G(A), the Gershgorin set of A. The proof is divided into Assertions 2.1–2.3.

Assertion 2.1. Let D = μ diag(1, . . . , n) for μ > 1. There exist a permutation matrix P and a diagonal

matrix R = diag(r1, . . . , rn) with rk ∈ {1,−1} such that Φ(D) = PRDPt .

Proof. Since G(Φ(D)2) = G(D2) = {μ2, (2μ)2, . . . , (nμ)2}, we see that Φ(D)2 is a diagonal matrix

with diagonal entries as in G(D2). Note that Φ(D) commutes with Φ(D)2, so by Proposition 1.1, Φ(D)
is a polynomial of Φ(D)2. Thus, Φ(D) is a diagonal matrix with diagonal entries whose squares equal

to μ2, (2μ)2, . . . , (nμ)2. Then there are r1, . . . , rn ∈ {−1, 1} and a permutation matrix P such that

Φ(D) = PRDPt with R = diag(r1, . . . , rn). �

Assertion 2.2. Following the notation in Assertion 2.1, there are ν11, . . . , νnn ∈ C with |νij| = 1 and

νijνji = 1 such that

Φ(Eij) = νijPEijP
t for all 1� i, j � n.

Proof. Without loss of generality, wemay assume that P = In in Assertion 2.1. For every k, notice that

G((RD)Φ(Ekk)) = G(DEkk) = {kμ, 0}. It follows that Φ(Ekk) is a diagonal matrix and its jth diagonal

entry must be either 0 or k/(rjj). Observe that G(Φ(Ekk)
2) = G(E2kk) = {1, 0}. Thus, only the kth

diagonal entry of Φ(Ekk) is nonzero. Hence, Φ(Ekk) = rkEkk . Let νkk = rk . Clearly, |νkk| = νkkνkk = 1.

Then the assertion holds for i = j.

Assume i /= j. SinceG(Φ(Eij)(νkkEkk)) = G(EijEkk) = {0} for all k /= j, only the jth column ofΦ(Eij)
can contain nonzero entries. Similarly, G((νkkEkk)Φ(Eij)) = G(EkkEij) = {0} for all k /= i, and so only

the ith row of Φ(Eij) can contain nonzero entries. Therefore, Φ(Eij) = νijEij for some νij ∈ C. Now

as G((νiiEii)(νijEij)) = G(EiiEij) is a disk centered at 0 with radius 1, we have |νiiνij| = 1 and hence

|νij| = 1. Also G(νijνjiEijEji) = G(EijEji) = {1, 0} gives νijνji = 1. �

Assertion 2.3. For ε = 1, the map Φ has the asserted form as in Theorem 2.1.

Proof. Assume that Assertions 2.1 and 2.2 hold with P = In. For any A = [aij], let B = [bij] = Φ(A).

By Assertion 2.2, G((νjiEji)B) = G(EjiA). Then bij = ν−1
ji aij = νijaij and so

Φ(A) = N ◦ A = [νijaij] with N = [νij], (2.4)

where N ◦ A is the Schur (entrywise) product of N and A. Without loss of generality, we may assume

that ν11 = 1; otherwise, replace Φ by A �→ −Φ(A). Let X = E11 + E1k + Ek1 + Ekk with k /= 1. Then

X2 = 2X . By (2.4), Φ(X) = E11 + ν1kE1k + νk1Ek1 + νkkEkk and hence

Φ(X)2 = 2E11 + (1 + νkk)ν1kE1k + (1 + νkk)νk1Ek1 + 2Ekk.

If νkk = −1, then Φ(X)2 = 2(E11 + Ekk). But then O(Φ(X)2) = {2, 0}, which contradicts the fact that

O(X2) = O(2X) is a non-degenerate disk centered at 2 with radius 2. Therefore, νkk = 1 for all k. For
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n = 2, the map has the form Φ(A) = SAS−1 with S = diag(1, ν21). Then the assertion holds when

n = 2.

Suppose n� 3. Let U = diag(1, ν21, . . . , νn1). Then U is a unitary matrix as |νij| = 1 for all i and

j. By replacing Φ with the map A �→ U−1Φ(A)U, we may further assume that νk1 = ν1k = 1 for

all k. Now the assertion holds if one can show that νij = 1 for all 2� i, j � n. To prove this, let X =
E11 + E1i + E1j + Ei1 + Eii + Eij with i /= j. Notice that X2 = 2X . Then G(X2) is a disk centered at 2

with radius 4. By (2.4), Φ(X) = E11 + E1i + E1j + Ei1 + Eii + νijEij and hence

Φ(X)2 = 2(E11 + E1i + Ei1 + Eii) + (1 + νij)(E1j + Eij).

So G(Φ(X)2) is the disk centered at 2 with radius (2 + |1 + νij|). Then O(Φ(X)2) = O(X2) implies

νij = 1. Thus, the assertion holds. �

For ε = 0, the proof is similar. We now move to the case when ε ∈ (0, 1). The proof of this case is

more delicate, and we divide the proof into Assertions 2.4–2.6.

Assertion 2.4. Let D = μ diag(1, . . . , n) with μ > 1. Then there exist a permutation matrix P and a

diagonal matrix R = diag(r1, . . . , rn) with rj ∈ {1,−1} such that

Φ(D) = PRDPt and Φ(D + Eij) = P(RD + νijEij)P
t for all i /= j,

where νij ’s are nonzero numbers such that νijνji = 1.

Proof. Since O(Φ(D)2) = O(D2) = {μ2, . . . , (nμ)2}, Φ(D)2 has diagonal entries μ2, . . . , (nμ)2.
Moreover, by Lemma 2.2(a), Ck(Φ(D)) Rk(Φ(D)) = 0 for all k. It follows that the diagonal entries

of Φ(D)2 are squares of the diagonal entries of Φ(D). Thus, there are r1, . . . , rn ∈ {−1, 1} and a

permutation matrix P such that the kth diagonal entry of PtΦ(D)P is rkkμ. Without loss of generality,

we may assume that P = In; otherwise, we replace Φ by the map A �→ PtΦ(A)P.
Let Xij = D + Eij .We claim that for distinct i and j,Φ(D) andΦ(Xij) have the same diagonal entries.

First, by a similar argument as in the first paragraph, one sees that Ck(Φ(Xij))Rk(Φ(Xij)) = 0 for all

k, and if d1, . . . , dn are the diagonal entries of Φ(Xij), {d21 , . . . , d2n} = {μ2, . . . , (nμ)2}. Notice also that

O(Φ(Xij)Φ(D)) = {μ2, . . . , (nμ)2}. By Lemma 2.2(b),

Ck(Φ(Xij)) Rk(Φ(D)) = 0 for k = 1, . . . , n. (2.5)

Then the kth diagonal entry of Φ(D)Φ(Xij) is equal to the product of kth diagonal entries of Φ(D) and
Φ(Xij), i.e., (rkkμ)dk , which is in the set O(Φ(D)Φ(Xij)). Then we must have dk = rkkμ. Hence, the

claim holds.

Observe that O(XijXkj) = O(XijXik) = {μ2, . . . , (nμ)2} for all k /= j. Lemma 2.2(b) and (2.2) yield

Ck(Φ(Xij)) Rk(Φ(Xkj)) = Ck(Φ(Xij)) Rk(Φ(Xik)) = 0.

Suppose Ck(Φ(Xij)) /= 0. Then Rk(Φ(Xkj)) = Rk(Φ(Xik)) = 0 and hence Rk(Φ(Xkj)Φ(Xik)) = 0.

Moreover, the kth diagonal entry of Φ(Xkj)Φ(Xik) is equal to the product of the kth diagonal entries of

Φ(Xkj) and Φ(Xik), which is (kμ)2. Then the set O(Φ(Xkj)Φ(Xik)) has a degenerate disk centered at

(kμ)2. But this contradicts the fact that O(XkjXik) has n disjoint disks and the disk centered at (μk)2 is

non-degenerate. Therefore, Ck(Φ(Xij)) = 0 for all k /= j. Similarly, one can show that Rk(Φ(Xij)) = 0

for k /= i by the fact that O(XikXij) = O(XkjXij) = {μ2, . . . , (nμ)2} for all k /= i. Therefore, only the

(i, j)th off-diagonal entry of Φ(Xij) can be nonzero. With the above claim, Φ(Xij) = RD + νijEij for
some νij ∈ C. Finally, since O(Φ(Xji)Φ(Xij)) = O(XjiXij) has two non-degenerate disks centered at

(iμ)2 and (jμ)2 + 1 with radius |iμ|, one can conclude that νijνji = 1. Thus, the last part of the

assertion holds.

Finally, we show that Φ(D) is a diagonal matrix. Once this is proved, we can conclude that

Φ(D) = RD with R = diag(r1, . . . , rn) and the assertion holds. Suppose Φ(D) is not diagonal. Then

Cj(Φ(D)) /= 0 for some j. By (2.5), Cj(Φ(Xij)) = Cj(Φ(Xji)) = 0 for all i /= j. Then the jth diagonal

entry of Φ(Xij)Φ(Xji) is equal to the product of the jth diagonal entries of Φ(Xij) and Φ(Xji), which is
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(rjjμ) · (rjjμ) = (jμ)2. Moreover, Cj(Φ(Xij)Φ(Xji)) = 0. Then the set O(Φ(Xij)Φ(Xji)) has a degener-

ate disk centered at (jμ)2. But the set O(XijXji) contains n disjoint disks and the disk centered at (jμ)2

is non-degenerate. Thus, we have derived a contradiction. �

Assertion 2.5. Following the notation in Assertion 2.4 and define νkk = rk for 1� k � n, we have

Φ(Eij) = νijPEijP
t for all 1� i, j � n.

Proof. Assume that Assertion 2.4 holds with P = In. Suppose first that i /= j. By the fact that

O((RD)Φ(Eij)) = O(DEij) = {0}, one sees that all diagonal entries of Φ(Eij) are zero. On the other

hand, for any s /= t, O((RD + νstEst)Φ(Eij)) = O(XstEij), which is equal to {0} or {1, 0} depending on

(s, t) /= (j, i) or (s, t) = (j, i). It follows that all entries ofΦ(Eij) are zero, except the (i, j)th entry which

is equal to ν−1
ji = νij . Thus, Φ(Eij) = νijEij and the assertion holds for i /= j.

Next, fork = 1, . . . , n,O((νijEij)Φ(Ekk)) = O(EijEkk) = {0} for all i /= j. Thenall off-diagonal entries

ofΦ(Ekk)have tobezeroandhenceΦ(Ekk) is adiagonalmatrix. Further,O(Φ(Ekk)
2) = O(E2kk) = {1, 0}

implies that the diagonal entries are either −1, 0, or 1. Finally, O((RD)Φ(Ekk)) = O(DEkk) = {k, 0}
implies that all diagonal entries have to be zero, except the kth entry,which is equal to rk , i.e.,Φ(Ekk) =
rkEkk . �

Assertion 2.6. For ε ∈ (0, 1), the map Φ has the asserted form as in Theorem 2.1.

Proof. Assume that Assertions 2.4 and 2.5 hold with P = In. By a similar argument as in the first part

of Assertion 2.3, one can assume that νkk = 1 for all k and for any A = [aij] ∈ Mn,

Φ(A) = N ◦ A = [νijaij] with N = [νij]. (2.6)

For (n, ε) = (2, 1/2), the map has the form Φ(A) = SAS−1 with S = diag(1, ν21). Therefore, the
result follows in this case. In the following, we assume that (n, ε) /= (2, 1/2).

We first claim that |νij| = 1 for all i /= j. Once the claim holds, then the assertion holds for n = 2.

For the case ε /= 1/2, by (2.6), O(νijEij + νjiEji) = O(Eij + Eji) is a disk centered at origin with radius

1. Then max{|νij|ε |νji|1−ε , |νji|ε |νij|1−ε} = 1, and therefore |νij| = 1. For the case ε = 1/2 and n� 3,

let X = Eii + 2Eij + Eik + Eji and Y = Eii + Eij + 2Eik + Eji with k /= i, j. Notice that Φ(In) = In. Then

O(InΦ(X)) = O(InX) = O(InY) = O(InΦ(Y))

yields |νji|(2|νij| + |νik|) = |νji|(|νij| + 2|νik|) and hence |νij| = |νik|. Similarly, one can show that

|νji| = |νjk| and |νki| = |νkj|. Then
|νij| = |νik| = |νki|−1 = |νkj|−1 = |νjk| = |νji| = |νij|−1,

and therefore |νij| = 1. Thus, the claim holds.

Now assume n� 3. Let U = diag(1, ν21, . . . , νn1), which is a unitary matrix. By replacing Φ with

the map A �→ U−1Φ(A)U, we may assume that ν1k = νk1 = 1 for all k. It remains to show that

νij = 1 for all 2� i, j � n. To see this, consider X = E11 + E1i + E1j + Ei1 + Eii + Eij with i /= j. Notice

thatX2 = 2X . By (2.6),Φ(X) = E11 + E1i + E1j + Ei1 + Eii + νijEij and henceΦ(X)2 = 2(E11 + E1i +
Ei1 + Eii) + (1 + νij)(E1j + Eij). SinceO(Φ(X)2) = O(X2) is a disk centered at 2with radius 21+ε . One

can conclude that νij = 1. Thus, the result follows. �

3. Brauer’s Set

In this section, we consider another eigenvalue inclusion set, the Brauer’s Set [1] of a matrix A =
[aij] ∈ Mn which is defined by

C(A) = ⋃
1� i<j � n

Cij(A),
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where Cij(A), the (i, j)th Cassini oval of A with i /= j, is defined by

Cij(A) = {μ ∈ C : |(μ − aii)(μ − ajj)| � Ri(A)Rj(A)}.
There are discussions of the Cassini oval in the standard references. We have a similar result for a map

that preserves the Brauer’s set of product of matrices.

Theorem 3.1. A mapping Φ : Mn → Mn satisfies

C(Φ(A)Φ(B)) = C(AB) for all A, B ∈ Mn (3.7)

if and only if there exist c = ±1, a permutation matrix P and an invertible diagonal matrix D, where D is

unitary if n� 3, such that

φ(A) = c(DP)A(DP)−1 for all A ∈ Mn.

The following results about Cassini ovals will be used in the proof.

Lemma 3.2. Let A = [aij] and B = [bij] in Mn.

(a) The set C(A) consists of a collection of isolated points if and only if A has atmost one rowwith nonzero

off-diagonal entries.
(b) If C(A2) consists of n isolated points, then C(A2) contains squares of the diagonal entries of A and at

most one row of A has nonzero off-diagonal entries.
(c) If each of the sets C(A2), C(B2), and C(AB) consists of n nonzero isolated points, then A and B can

have nonzero off-diagonal entries in one common row only.

Proof. Part (a) is trivial by definition. To showpart (b), supposeC(A2) consists ofn isolatedpoints. Then

A2 must have n distinct eigenvalues. By (a), at most one row of A2 has nonzero off-diagonal entries.

Moreover, A is a polynomial of A2 by Proposition 1.1. Therefore, at most one row of A has nonzero

off-diagonal entries. Thus, part (b) follows.

Now suppose A and B satisfy the hypothesis in (c). By (b), at most one row of each of A and B can

have nonzero off-diagonal entries. Furthermore, all diagonal entries of A and B are nonzero. Assume

A and B have nonzero off-diagonal entries in its ith and jth row, respectively. If i /= j, then both the

ith and jth rows of AB have nonzero off-diagonal entries. But then C(AB) has a non-degenerate oval,

which is a contradiction and part (c) holds. �

Proof of Theorem 3.1. Note that C(X) = C(PXPt) for any permutation matrix P, C(X) = C(DXD∗) for
any diagonal unitary matrix D, and C(X) = C(DXD−1) for any invertible diagonal matrix D if n = 2.

Hence, if Φ(A) = ±(DP)A(DP)−1, then Φ(A)Φ(B) = DP(AB)PtD−1 and C(AB) = C(Φ(A)Φ(B)). We

now prove the converse by dividing the proof into several assertions. In the following, we assume that

Φ : Mn → Mn satisfies (3.7).

Assertion 3.1. Let D = μ diag(1, . . . , n) with μ > 1. Then there exist a permutation matrix P and a

diagonal matrix R = diag(r1, . . . , rn) with rj ∈ {1,−1} such that

Φ(D) = PRDPt and Φ(D + Eij) = PR(D + νijEij)P
t for all i /= j,

where νij ’s are nonzero numbers such that νijνji = 1.

Proof. Let Xij = D + Eij . Notice that for any i /= j, C(Φ(D)2) = C(Φ(Xij)
2) = {μ2, . . . , (nμ)2}. By

Lemma 3.2(b), both Φ(D) and Φ(Xij) have at most one row with nonzero off-diagonal entries.

We claim thatΦ(D) is a diagonal matrix. SupposeΦ(D) has a nonzero off-diagonal entry in the kth

row for some k. By the fact that C(Φ(D)φ(Xij)) = {μ2, . . . , (nμ)2} and Lemma 3.2(c), only the kth row

ofΦ(Xij) can contain nonzero off-diagonal entries. In particular, this observation holds forΦ(X12) and
Φ(X21) andhence only the kth rowofΦ(X12)Φ(X21)mayhavenonzero off-diagonal entries. Therefore,
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C(Φ(X12)Φ(X21))contains isolatedpointsonly,whichcontradicts thatC(X12X21)hasanon-degenerate
oval. Therefore, the claim holds and Φ(D) is a diagonal matrix. Since C(Φ(D)2) = {μ2, . . . , (nμ)2},
thereexist apermutationmatrixP andR = diag(r1, . . . , rn)with rj ∈ {1,−1} such thatΦ(D) = PRDPt .

Without loss of generality, we may assume that P = In. Now the fact that C(Φ(D)Φ(Xij)) =
{μ2, . . . , (nμ)2} implies that Φ(Xij) has the same diagonal entries as Φ(D). Since C(Φ(Xij)Φ(Xji)) =
C(XijXji) has two non-degenerate disks with centers (iμ)2 + 1 and (jμ)2, that implies that the (i, j)th
entry of Φ(Xij) and the (j, i)th entry of Φ(Xji) must be nonzero. Suppose the (i, k)th entry of Φ(Xij)
is nonzero for some k /= i, j if n� 3. Recall that Φ(Xki) has nonzero (k, i)th entry. Then one sees that

(iμ)2 is not a center of any of the oval in C(Φ(Xij)φ(Xki)). But this contradicts that C(XijXki) has two

non-degenerate disks centered at (iμ)2 and (kμ)2. Therefore, Φ(Xij) = RD + νijEij for some nonzero

νij ∈ C. Finally, since C(Φ(Xij)Φ(Xji)) = C(XijXji), one can conclude that νijνji = 1. �

Assertion 3.2. Following the notation in Assertion 3.1 and define νkk = rk, we have

Φ(Eij) = νijPEijP
t for all 1� i, j � n.

Proof. Without loss of generality, we assume P = In in Assertion 3.1. For any distinct i and j, since

C((RD)Φ(Eij)) = C(DEij) = {0}, all diagonal entries of Φ(Eij) are zero. Furthermore, as

C(Φ(Xst)Φ(Eij)) is equal to {0} or {1, 0}, depending on (s, t) /= (j, i) or (s, t) = (j, i), only the (i, j)th

entry canbenonzeroandequal toν−1
ji = νij , i.e.,Φ(Eij) = νijEij . Thus, theassertionholds for i /= j. Now

for any k = 1, . . . , n, since C((νijEij)Φ(Ekk)) = C(EijEkk) = {0} for all i /= j,Φ(Ekk)must be a diagonal

matrix.Moreover, C(Φ(E2kk)) = {1, 0} and C(Φ(D)Φ(Ekk)) = {k, 0} implies thatΦ(Ekk) = rkEkk . Then

the assertion follows. �

Assertion 3.3. The map Φ has the asserted form as in Theorem 3.1.

Proof. Assume that P = In in Assertions 3.1 and 3.2. By a similar argument as in the first part of

Assertion 2.3, one can assume that νkk = 1 for all k, and for any A = [aij] ∈ Mn,

Φ(A) = N ◦ A = [νijaij] with N = [νij]. (3.8)

For the case when n = 2, the map has the form Φ(A) = SAS−1 with S = diag(1, ν21). Therefore,
the result follows if n = 2. In the following, we assume that n� 3.

Let X = 2Eij + Eik + Eji and Y = Eij + 2Eik + Eji with k /= i, j. Notice that Φ(In) = In. Then

C(InΦ(X)) = C(InX) = C(InY) = C(InΦ(Y)),

which is a disk centered at zero with radius
√

3. Thus, |νji|(2|νij| + |νik|) = |νji|(|νij| + 2|νik|) and

hence |νij| = |νik|. Similarly, one can show that |νji| = |νjk| and |νki| = |νkj|. Then
|νij| = |νik| = |νki|−1 = |νkj|−1 = |νjk| = |νji| = |νij|−1

and therefore |νij| = 1. Now let U = diag(1, v21, . . . , vn1), which is a unitary matrix. By replacing Φ

with the map A �→ U−1Φ(A)U, we may assume that ν1k = νk1 = 1 for all k. It remains to show that

νij = 1 for all 2� i, j � n. To see this, consider X = E11 + E1i + E1j + Ei1 + Eii + Eij . Notice that X2 =
2X . By (3.8), Φ(X) = E11 + E1i + E1j + Ei1 + Eii + νijEij and hence Φ(X)2 = 2(E11 + E1i + Ei1 + Eii)

+ (1 + νij)(E1j + Eij). Since C(Φ(X)2) = C(X2) contains a disk centered at 2 with radius 8, one can

conclude that νij = 1. Thus, the result follows. �
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