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for trees, we identify the changes that can occur and characterize the circumstances under
which they occur. This extends known results for the removal of vertices. A catalog of
examples is given to illustrate the possibilities that can occur and to contrast the case of
trees with that of general graphs.
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1. Introduction

For an undirected graph G, we denote by J¢(G) the set of all Hermitian matrices whose graph is G; no restriction is placed
by G on diagonal entries. For any matrix A € #(G), we denote by A(i) the principal submatrix of A created by deleting the
ith row and column. Similarly, we mean by G(i) the subgraph of G resulting from deletion of the ith vertex, or, equivalently,
the graph of A(i). For G = (V, E), if (i, j) € E, we know that a;;, a;; # 0; we denote by A(e; ;) the matrix A altered only so that
a; = a; = 0. Similarly, we denote by G(e; ;) the graph resulting from removing the edge (i, j) from G. For the purpose of
some of our arguments, the order in which we remove vertices or edges will be relevant (although, of course, the end result
is independent of the order); we thus apply the convention of removing edges and vertices in the order they are listed. For
example, G(eq 7, 4) is the subgraph of G in which we first delete the edge (1, 2) and then the 4th vertex.

ForanyA € #(G) and A € R, we denote the multiplicity of A as m4()). Recall that, by the classical interlacing inequalities
for Hermitian matrices, |ma(A) — mag) (A)| < 1. Since deleting a row and a column with the same index from A is analogous
to deleting a vertex from G, it is useful to classify vertices in the following way: if ma(A) — ma)(A) = —1, then the vertex
iis called a Parter vertex for A in G; if ma(A) — my(A) = 0, then i is a neutral vertex; and if ma (L) — myi)(A) = 1, theniis
a downer vertex. Previous papers, such as [2] have explored the theory of such vertices extensively. Our interest here is the
possible effects upon multiplicities of eigenvalues of matrices in #(T) when an edge is removed from a tree T. However,
some of our observations are more general, and we try to indicate what is special about trees.

2. Preliminaries

As we mentioned before, although we consider the order in which we remove vertices or edges from a graph, the end
result is the same. More specifically, we see that G(e; ;, i) = G(i, e; ;) = G(i), since removal of a vertex i from G also results
in the removal of all edges incident to i. Similarly, A(e; j, i) = A(i). This leads us to a simple but important observation:
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Remark 2.1. For A € #(G), Mace; ;) (A) = mu(A).

This leads us to the following lemma:

Lemma 2.2. Let G = (V, E) be any undirected graph, and A € #(G). For (i,j) € E, A € R,
Ma(A) — 2 < My, (A) < ma(d) + 2.
Proof. Assume, to the contrary, that [Mage, ) (M) —ma(1)| = 3.Then, by the interlacing inequalities, IMae; ;i () —ma(A)] = 2.

So, by Remark 2.1, |mag (M) — ma(X)| > 2, which cannot be the case, since interlacing dictates that the multiplicity of an
eigenvalue can increase or decrease by at most 1 fromAto A(i). O

Thus we can define edges as Parter, neutral, and downer in the same way as we defined vertices as such, with the obvious
additional classifications of 2-Parter and 2-downer edges. It turns out, however, that although 2-downer edges can exist in
a general graph (see Appendix of Examples (1)), they do not exist in trees, which we will show below using the following
definition and lemma.

Definition 2.3. Let T = (V,E) be a tree, and (i,j) € E.Ifjis a downer vertex for A in the forest T (i), then we call the
connected subgraph of T (i) containing j a downer branch ati for A in T.

Identifying downer branches can be very useful, thanks to the following lemma [1]:

Lemma 2.4. For atree T, a vertex i is Parter for A in T if and only if there is a downer branch at i for A in T.

We are now ready to prove that 2-downer edges do not exist in trees.

Theorem 2.5. Let T = (V,E) beatree,A € #(T), (i,j) € E,and A € R. Then

ma(A) — 1 < My p(A) < ma(d) + 2.
Proof. From Lemma 2.2, we need only show that Mae, ) () cannot be m4 (1) — 2. Assume, to the contrary, that Mage; ) (A) =
mu(A) — 2. By Remark 2.1 and interlacing, we have

ma(A) — 1= My (A) = mup(A) = mu(d) — 1.

Thus Mae; . (M) = ma(A) — 1 = my; (A), so the vertex i must be downer for A in T and Parter for A in T (e; ;). But, since i is
downer in T, then by Lemma 2.4 there is no downer branch at i, which means that there cannot be a downer branch ati in
T(e;;) since T (i) and T (e; ;, i) are the same. So i cannot be Parter in T (e; j), and we have a contradiction. O

Since 2-Parter, Parter, downer, and neutral edges do exist in trees (see Appendix of examples (2), (3), (4), and (5),
respectively), we devote the rest of this paper to determining how they occur and certain properties about them.

3. Locating edges using vertex classification
We have already discussed Parter vertices, but, for our purposes, we segregate them into two different categories:

Definition 3.1. Let T = (V, E) be a tree with i € V a Parter vertex for A. If there is exactly one downer branch at i for A, we
call i singly Parter; if there is more than one downer branch at i, we call i multiply Parter.

Lemma 3.2. Let A € #(T) for some tree T, and let i be a vertex in T such that, with respect to an eigenvalue A of A, i is multiply
Parter. Then, for any vertex j # iin T, i is Parter (of some sort) in T (j). Moreover, the classification of j (as Parter, downer, or
neutral with respect to ) is the same in T(i) asin T.

Proof. Since i is multiply Parter in T, there is a downer branch at i in T that does not contain j, and thus there is a downer
branch at i in T (j). Therefore, by Lemma 2.4, i is Parter in T(j). Now assume that the classification of j changes with the
deletion of i from T. Then we have that ma j, (1) # ma.,;(A), since i is Parter in both T and T (j). Since A(i, j) = A(j, 1), this
is a contradiction. O

We can thus make the following remark, using the same reasoning as we did in the proof of Lemma 3.2.

Remark 3.3. Let i be multiply Parter in T, and let (j, k) be any edge in T. Then i is Parter in T(e; ), and (j, k) has the same
classification in T (i) as in T, assuming (j, k) is not incident to i.

From this point onwards, to avoid confusion between edges and vertices, we will abbreviate Parter as P, singly Parter as
P, multiply Parter as Pp,, neutral as N, and downer as D whenever we talk about vertices.
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Table 1

Possible change in multiplicity of
A with the removal of adjacent
vertices i and j.

i ma(A) — My (A)
P P -2,0

P N -1,0

P D 0

N N 0

N D  Not possible

D D 1

Remark 3.4. Note that [my; ;) (A) — mai(2)| < 1; this follows from Remark 2.1 and interlacing.

The results above in Table 1, will also prove helpful. The vertices i and j are adjacent in T, and their given classifications
are with respect to the matrix A € #(T).
So, for example, if i and j are adjacent vertices that are both D, we know that j must be N in T (i).

Now we can prove some necessary conditions for the existence of Parter and 2-Parter edges.

Theorem 3.5. Let T = (V,E) beatree, A € #(T), and (i, j) € E be 2-Parter for A € R. Then i and j are both P, for A inT.

Proof. By Remark 3.4 and interlacing, we see thati must be P for 2 in T, so that ma () + 1 = mag) (X) = Mac;;,i (A), the last
equality justified by Remark 2.1. Therefore, since (i, j) is 2-Parter for A in T, i must be D for A in T (e; ;). Thus, by Remark 3.3,
i must be P for A in T; the same argument holds forj. O

Theorem 3.6. Let T = (V,E) beatree,A € #(T), and (i, j) € E be Parter for A € R. Theniis P; andjis N for A in T, or vice
versa.

Proof. By Remark 3.4 and interlacing, i cannot be D. So we consider 2 cases:

(a) Let i be N. Thus, by Remark 2.1, ma(X) = mau(X) = Mae; ;i (1), so i must be D in T(e;;), and therefore is also D in
T (j). Thus there is a downer branch at j, so j must be P. Since iis N in T and D in T (j), by Lemma 3.2, j is P;.

(b) Let i be P. By Remark 2.1, ma(A) + 1 = may(A) = MAGe; i) (1), soiis N in T(e;;). Thusiis also N in T(j), and, by
Lemma 3.2, i is Ps. By the first and third lines of Table 1, j cannot be P or D; otherwise, ma (1) — ma,;(A) would be —1or 1,
respectively. Thusjis N. O

For downer edges, however, we can make a stronger claim:

Theorem 3.7. Let T = (V,E) beatree and A € #(T). Then (i, j) € E is downer for . € o (A) if and only if i and j are both D
for AinT.

Proof. (=) Let (i, j) € E be downer. By Remark 3.4 and interlacing, i cannot be P in T; we assume, for a contradiction, that
iis N. Thus, by Remark 2.1, ma(A) = mai(A) = Mae; ;i) (A), soimust be P in T(e; ). So, according to Lemma 2.4, there is a
downer branch at i for A in T (e; ;) but no downer branch atiin T, which is clearly a contradiction. Thus i must be D, and the
same argument holds for j.

(<) Let (i, j) € E, whereiand j are both D. By Remark 3.4 and interlacing, (i, j) is either downer or neutral; we assume,
for a contradiction, that it is neutral. By Table 1,iis N in T(j), and j is N in T (i); thus both are N in T (e; j). We therefore have

Mage; ;i) (A) = Ma(R)
Map () = mu(A) — 1.
By Remark 2.1, however, these multiplicities should be equal, so we have a contradiction. O

We notice that the only type of edge for whose existence in a tree we do not have a necessary condition is a neutral edge.
Thus, from these theorems, we obtain the following corollary:

Corollary 3.8. Let T = (V,E) beatreeand (i, j) € E. If i and j are both N, then (i, j) is neutral. If, instead, at least one of i and j
is P, then (i, j) is also neutral.

We summarize our results in Table 2:

Remark 3.9. Ifiis Py and j is D, i and j cannot be adjacent. If they were, by Table 1, m4; j)(A) = ma(1), so j remains D with
the removal of i. Thus, there is a downer branch for A at i that contains j. But that equality also implies that i must remain
P with the removal of j, so there is also a downer branch at i that does not contain j by Lemma 2.4. Since i is P;, this is a
contradiction.

We conclude with the following corollary.

Corollary 3.10. Let T = (V, E) be a tree and (i, j) € E be neutral. Then the classifications of i and j (as P, N, or D) are the same
inT(e;;)asinT.
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Table 2
Possible classification for (i, j) given classifica-
tions of i and j.

Possible classifications for (i, j)

i j

P P Neutral

Ppn P Neutral

P, N Neutral

Pp, D Neutral

P, P, 2-Parter, neutral’

P, N Parter, neutral”

P, D i, j cannot be adjacent™”
N N Neutral

N D i, j cannot be adjacent™”
D D Downer

See Appendix of examples (6) for an example.
" See Appendix of examples (5) for an example.
" See Remark 3.9.
" See Table 1.

Proof. Let (i,j) € E be neutral. Assume, to the contrary, that the classification of i changes when we remove (i, j). By
Remark 2.1,

MaGe; iy (A) = Mag) (A). (3.1)
Since (i, j) is neutral,
M y(A) = ma(d). (3.2)

But the classification of i is different in T (¢; ;) from T, which makes it impossible that both (3.1) and (3.2) are satisfied, so we
have a contradiction. The same argument holds forj. O

4. Appendix of examples

Fora C {1,...,n}, Alx] denotes the principal submatrix of A that lies in the rows and columns indexed by «. A blank
entry in a matrix denotes 0.

Examples.

1 1 1
(1) A= |:1 1 1:|
1 1 1

Note that A has rank 1, and thus m,(0) = 2.If you set ay3 = as; = 0, however, the resulting matrix A(e; 3) has full rank,
SO Mae, 5(0) = 0. Thus (1, 3) is a 2-downer edge for the eigenvalue 0, and we have an example of a 2-downer edge in a

non-tree.

_01 —_
1 0 1
1 0 1
1 0 1
2) A= 1 0 1 1
1 0 1
1 0
1 0 1
L 1 04
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Here, ma(—1) = 1and my, ,)(—1) = 3,50 (2, 3) is 2-Parter for the eigenvalue —1. Note that vertices 2 and 3 are both P;.

— 00 =

| O—O0—0——0

8

(3) A=

—_ e N
0 =

Here, ms(8) = 1and myc, ,)(8) = 2, so (1, 2) is Parter for the eigenvalue 8. Note that vertex 1is Py and vertex 2 is N.

i @ﬂi@

1 N\

—_ O =

4 A= 1
8

_ N

8

Here, m4(8) = 2 and my, ,)(8) = 1, so (1, 2) is downer for the eigenvalue 8. Note that vertices 1 and 2 are both D.
8 1
1 2
5B) A= 1

—_ W =

—_— N
—_
[

O—0O0—0——0—0

Here, ma(8) = 1 = My, 5)(8), so (2, 3) is neutral for the eigenvalue 8. Note that vertex 2 is P and vertex 3 is N.
8 1
1 2 1
1 3
1

1
6) A= 8
1

_— N =
—_
—_

O—0O0—C0O0—C06—~0-—0

Here, ma(8) = 1 = My, 5)(8), s0 (2, 3) is neutral for the eigenvalue 8. Note that vertices 2 and 3 are both P;.
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