

W&M ScholarWorks

Arts & Sciences Articles

Arts and Sciences

2010

Semidefiniteness Without Hermiticity

Charles R. Johnson William & Mary, crjohn@WM.EDU

Robert Reams

Follow this and additional works at: https://scholarworks.wm.edu/aspubs

Recommended Citation

Johnson, Charles R.; Reams, Robert. Semidefiniteness without Hermiticity. Rocky Mountain J. Math. 40 (2010), no. 5, 1579--1585. doi:10.1216/RMJ-2010-40-5-1579. https://projecteuclid.org/euclid.rmjm/1289916912

This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

SEMIDEFINITENESS WITHOUT HERMITICITY

CHARLES R. JOHNSON AND ROBERT REAMS

ABSTRACT. Let $A \in M_n(\mathbf{C})$. We provide a rank characterization of the semidefiniteness of Hermitian A in two ways. We show that A is semidefinite if and only if $\operatorname{rank}[X^*AX] = \operatorname{rank}[AX]$, for all $X \in M_n(\mathbf{C})$, and that A is semidefinite if and only if $\operatorname{rank}[X^*AX] = \operatorname{rank}[AXX^*]$, for all $X \in M_n(\mathbf{C})$. We show that, if A has semidefinite Hermitian part and A^2 has positive semidefinite Hermitian part, then A satisfies row and column inclusion. Let $B \in M_n(\mathbf{C})$, and let k be an integer with $k \geq 2$. If $B^*BA, B^*BA^2, \ldots, B^*BA^k$ each has positive semidefinite Hermitian part; we show that $\operatorname{rank}[BAX] = \operatorname{rank}[X^*B^*BAX] = \cdots = \operatorname{rank}[X^*B^*BA^{k-1}X]$, for all $X \in M_n(\mathbf{C})$. These results generalize or strengthen facts about real matrices known earlier.

1. Introduction. In [6], a number of results about real matrices, not necessarily symmetric, with semidefinite real quadratic form were given. In some cases these results generalize to complex matrices with semidefinite Hermitian part, and, in some, they do not. Here, we sort out what happens in the complex case, and in some instances give new or stronger results. If the proofs in the complex case extend naturally from the real case, by merely changing "transpose" to "transpose complex conjugate," we skip the proof and only refer to [6]. However, we have allowed some overlap of material, for the purpose of clarity.

Let $A \in M_n(\mathbf{C})$. The Hermitian part of A is defined in [3] by $H(A) = (A + A^*)/2$. A matrix $A \in M_n(\mathbf{C})$ is called positive semidefinite if it is Hermitian $(A^* = A)$ and $x^*Ax \geq 0$ for all $x \in \mathbf{C}^n$. $A \in M_n(\mathbf{C})$ is said to have positive semidefinite Hermitian part if H(A) is positive semidefinite. We say $A \in M_n(\mathbf{C})$ is semidefinite if either A or A is positive semidefinite.

The principal submatrix of A lying in rows and columns $\alpha \subseteq \{1,\ldots,n\}$ will be denoted by $A[\alpha]$, and the submatrix lying in rows α

²⁰¹⁰ AMS Mathematics subject classification. Primary 15A03, 15A45, 15A48, 15A57.

Keywords and phrases. Positive semidefinite, Hermitian part, row and column inclusion.

Received by the editors on January 6, 2008, and in revised form on April 16, 2008.

 $DOI: 10.1216 / RMJ-2010-40-5-1579 \\ Copy right © 2010 Rocky Mountain Mathematics Consortium Mathematics Consorti$

and columns β will be denoted $A[\alpha, \beta]$. A matrix $A \in M_n(\mathbf{C})$ satisfies row (column) inclusion if $A[\{i\}, \alpha]$ lies in the row space of $A[\alpha]$ for each $i = 1, \ldots, n$ (if $A[\alpha, \{j\}]$ lies in the column space of $A[\alpha]$ for each $j = 1, \ldots, n$) and each $\alpha \subseteq \{1, \ldots, n\}$.

It is well known that if $A \in M_n(\mathbf{C})$ is semidefinite then A satisfies row and column inclusion. This follows easily as a corollary of Theorem 1's rank characterization of the semidefiniteness of $A \in M_n(\mathbf{C})$.

Theorem 1. Let $A \in M_n(\mathbf{C})$ be Hermitian. Then the following are equivalent:

- (a) A is semidefinite;
- (b) rank $[X^*AX] = \text{rank } [AX]$, for all $X \in M_n(\mathbf{C})$;
- (c) $x^*Ax = 0$ implies Ax = 0, for $x \in \mathbb{C}^n$.

Proof. Straightforward.

Corollary 2. Let $A \in M_n(\mathbb{C})$ be Hermitian. If A is semidefinite, then A satisfies row and column inclusion.

Proof. Take $X \in M_n(\mathbf{C})$ diagonal with ones and zeros on the diagonal in rank $[X^*AX] = \operatorname{rank}[AX] = \operatorname{rank}[X^*A]$.

Theorem 1 and Lemma 3 imply another rank characterization, in Theorem 4, of the semidefiniteness of $A \in M_n(\mathbf{C})$.

Lemma 3. Let $A \in M_n(\mathbf{C})$. Then $\ker [X^*XA] = \ker [XA]$, for all $X \in M_n(\mathbf{C})$.

Proof. For $u \in \mathbf{C}^n$, $X^*XAu = 0$ implies $0 = u^*A^*X^*XAu = (XAu)^*(XAu)$, so XAu = 0.

Theorem 4. Let $A \in M_n(\mathbf{C})$ be Hermitian. Then A is semidefinite if and only if we have rank $[X^*AX] = \text{rank} [AXX^*]$, for all $X \in M_n(\mathbf{C})$.

Proof. Starring the terms in square brackets in the statement of Lemma 3 we have rank $[AX^*X] = \text{rank}[AX^*]$, for all $X \in M_n(\mathbb{C})$, since $A = A^*$. With $Y = X^*$ we have rank $[Y^*AY] = \text{rank}[AYY^*]$, for all $Y \in M_n(\mathbb{C})$, if and only if A is semidefinite. \square

We return to the issue of finding sufficient conditions for not necessarily Hermitian $A \in M_n(\mathbf{C})$ to satisfy row and column inclusion. It is routine to check that the (a) \Rightarrow (b) and (b) \Rightarrow (c) parts of the proof of Theorem 4 in [6] extend naturally from the real to the complex case to give Theorem 5 below, although statement (b) says more than in [6].

Theorem 5. it Let $A \in M_n(\mathbf{C})$. Consider the following statements:

- (a) A has semidefinite Hermitian part and A^2 has positive semidefinite Hermitian part;
- (b) $\operatorname{rank}[X^*H(A)X] = \operatorname{rank}[H(A)X] = \operatorname{rank}[AX] = \operatorname{rank}[X^*AX],$ for all $X \in M_n(\mathbf{C})$;
 - (c) $x^*Ax = 0$ implies Ax = 0, for $x \in \mathbb{C}^n$.
- Then (a) implies (b), and (b) implies (c).

Proof. Assuming (a) to prove the equalities in (b), let $u \in \ker [H(A)X]$. Then H(A)Xu = 0, so $(A + A^*)Xu = 0$, and $AXu = -A^*Xu$. Then $A^*AXu = -(A^*)^2Xu$, and therefore $(AXu)^*(AXu) = u^*X^*A^*AXu = -u^*X^*(A^*)^2Xu$, which implies AXu = 0. Thus, $\ker [H(A)X] \subseteq \ker [AX]$, so $\operatorname{rank} [H(A)X] \ge \operatorname{rank} [AX] \ge \operatorname{rank} [X^*AX]$.

 $u \in \ker[X^*AX]$ implies $X^*AXu = 0$, so $u^*X^*AXu = 0$ and $u^*X^*A^*Xu = 0$. Adding these two equations we have $u^*X^*(A + A^*)Xu = 0$, so H(A)Xu = 0. Thus, $\ker[X^*AX] \subseteq \ker[H(A)X]$, and so $\operatorname{rank}[X^*AX] \ge \operatorname{rank}[H(A)X]$.

Combining the inequalities of the last two paragraphs we have that rank $[H(A)X] = \operatorname{rank}[AX] = \operatorname{rank}[X^*AX]$. Since H(A) is positive semidefinite we have rank $[X^*H(A)X] = \operatorname{rank}[H(A)X]$, from Theorem 1. \square

An example of a matrix that satisfies (c), but does not imply either of the two hypotheses of (a) in Theorem 5, is

$$A = \begin{pmatrix} 1+2i & 0 & 0\\ 0 & -1+2i & 0\\ 0 & 0 & 0 \end{pmatrix}.$$

Our next theorem gives us a better understanding of the rank statements of Theorem 1 and Theorem 5. For $A \in M_n(\mathbf{C})$, F(A) denotes the classical field of values [4] defined by $F(A) = \{x^*Ax \mid x \in \mathbf{C}, x^*x = 1\}$.

Theorem 6. For $A \in M_n(\mathbf{C})$, the following statements are equivalent:

- (i) $x^*Ax = 0$ implies Ax = 0, for $x \in \mathbb{C}^n$;
- (ii) there is a unitary $V \in M_n(\mathbf{C})$ so that

$$V^*AV = \begin{pmatrix} A_1 & 0 \\ 0 & 0 \end{pmatrix}$$

with $0 \notin F(A_1)$, where $A_1 \in M_k(\mathbf{C})$ and $k \leq n$;

(iii) rank
$$[AX] = \operatorname{rank} [X^*AX]$$
, for all $X \in M_n(\mathbb{C})$.

Proof. Suppose (i). There is a unitary $V \in M_n(\mathbf{C})$ which upper triangularizes A so that

$$V^*AV = \begin{pmatrix} A_1 & A_2 \\ 0 & A_3 \end{pmatrix},$$

where $A_1 \in M_k(\mathbf{C})$ is nonsingular and $A_3 \in M_{n-k}(\mathbf{C})$ has all eigenvalues 0, with $k \leq n$. Taking $x = Ve_i$ we have $e_i^*V^*AVe_i = 0$ which implies $AVe_i = 0$ and $V^*AVe_i = 0$, for $k+1 \leq i \leq n$, so

$$V^*AV = \begin{pmatrix} A_1 & 0 \\ 0 & 0 \end{pmatrix}.$$

If $0 \in F(A_1)$, then for some $x \in \mathbf{C}^k$, $x \neq 0$, we have $0 = x^*A_1x = y^*Ay$, where $y = V(x \circ)^* \in \mathbf{C}^n$. But then Ay = 0 and so $A_1x = 0$, which is not possible since A_1 is nonsingular, so (ii) holds.

Suppose (ii). If $X^*AXu = 0$, then

$$0 = u^* X^* A X u = (V^* X u)^* \begin{pmatrix} A_1 & 0 \\ 0 & 0 \end{pmatrix} V^* X u.$$

If we write $V^*Xu = \binom{v_1}{v_2}$, we have $v_1^*A_1v_1 = 0$, which implies $v_1 = 0$. Writing

$$V = \begin{pmatrix} V_1 & V_2 \\ V_3 & V_4 \end{pmatrix},$$

gives

$$AXu = V \begin{pmatrix} A_1 & 0 \\ 0 & 0 \end{pmatrix} \ V^*Xu = \begin{pmatrix} V_1A_1 & 0 \\ V_3A_1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ v_2 \end{pmatrix} = 0,$$

so that $u \in \ker [AX]$. Then $\ker [AX] = \ker [X^*AX]$ implies (iii). \square

Corollary 7. If $A \in M_n(\mathbf{C})$ satisfies (i), (ii) or (iii) in Theorem 6, then A satisfies row and column inclusion.

Corollary 8. If $A \in M_n(\mathbf{C})$ has semidefinite Hermitian part and A^2 has positive semidefinite Hermitian part, then (i), (ii), (iii) of Theorem 6 hold.

Proof. Follows from Theorem 5.

When $A = \binom{1+2i-1}{-1}$, we have A with semidefinite Hermitian part, A^2 has negative semidefinite Hermitian part, but we do not have statement (i) when $x = \begin{pmatrix} 1 & 1 \end{pmatrix}^*$.

We can extend Theorem 5 even further as follows.

Theorem 9. Let $A, B \in M_n(\mathbf{C})$. Given the following statements:

- (a) B^*BA has semidefinite Hermitian part and B^*BA^2 has positive semidefinite Hermitian part;
 - (b) rank $[BAX] = \text{rank } [X^*B^*BAX]$, for all $X \in M_n(\mathbb{C})$;
 - (c) $x^*B^*BAx = 0$ implies BAx = 0, for $x \in \mathbb{C}^n$;

then (a) implies (b), and (b) implies (c).

Proof. Similar to the proof of Theorem 5.

Theorem 12 uses Lemmas 10 and 11, which improve on the corresponding lemma in [6].

Lemma 10. Let $A, B \in M_n(\mathbb{C})$ with B^*BA having semidefinite Hermitian part. Then $\ker [BA] = \ker [BA^2]$.

Proof. $BA^2x = 0$ implies $x^*A^*B^*BAAx = 0$, $x^*A^*A^*B^*BAx = 0$, and $x^*A^*(B^*BA + A^*B^*B)Ax = 0$. But then, since $B^*BA + A^*B^*B = \pm C^*C$, for some $C \in M_n(\mathbf{C})$, so $x^*A^*(C^*C)Ax = 0$, $(CAx)^*(CAx) = 0$, CAx = 0, $C^*CAx = 0$, so $(B^*BA + A^*B^*B)Ax = 0$. Rewriting this as $B^*BA^2x + A^*B^*BAx = 0$, and using $BA^2x = 0$, we have $A^*B^*BAx = 0$. So $0 = x^*A^*B^*BAx = (BAx)^*(BAx)$, and BAx = 0. This shows that $\ker[BA^2] \subseteq \ker[BA]$. Evidently, $\operatorname{rank}[BA^2] \subseteq \operatorname{rank}[BA]$, and so $\dim(\ker[BA^2]) \ge \dim(\ker[BA])$. □

Lemma 11. Let $A, B \in M_n(\mathbf{C})$, and let B^*BA have semidefinite Hermitian part. Then $\ker [BA] = \ker [BA^m]$, for any positive integer m.

Proof. By induction on m. We will show that $\ker[BA^m] \subseteq \ker[BA]$. Now $BA^mx = 0$ implies $x^*(A^*)^{m-1}B^*BAA^{m-1}x = 0$ and $x^*(A^*)^{m-1}A^*B^*BA^{m-1}x = 0$, which imply $x^*(A^*)^{m-1}(B^*BA + A^*B^*B)A^{m-1}x = 0$, so $B^*BAA^{m-1}x + A^*B^*BA^{m-1}x = 0$. Using $BA^mx = 0$, we must have that $A^*B^*BA^{m-1}x = 0$. But then $0 = x^*(A^*)^{m-1}B^*BA^{m-1}x = (BA^{m-1}x)^*(BA^{m-1}x)$, so that $BA^{m-1}x = 0$. From $\ker[BA] = \ker[BA^{m-1}]$, by induction, we conclude that $x \in \ker[BA]$. Finally, rank $[BA^m] \le \operatorname{rank}[BA]$ implies dim $(\ker[BA^m]) \ge \dim(\ker[BA])$. □

Theorem 12 generalizes the (a) \Rightarrow (b) part of Theorem 9, as well as generalizing Theorem 7 in [6].

Theorem 12. Let $A, B \in M_n(\mathbf{C})$, and let k be an integer with $k \geq 2$. If B^*BA , B^*BA^2 ,..., B^*BA^k each have positive semidefinite Hermitian part, then

$$rank [BAX] = rank [X^*B^*BAX] = \cdots = rank [X^*B^*BA^{k-1}X],$$

for all $X \in M_n(\mathbf{C})$.

Proof. By induction on k. Assume the result is true for k-1, in other words that rank $[BAX] = \text{rank}[X^*B^*BAX] = \cdots =$ rank $[X^*B^*BA^{k-2}X]$, for all $X \in M_n(\mathbb{C})$. Let $u \in \ker [X^*B^*BA^{k-1}X]$, so $X^*B^*BA^{k-1}Xu = 0$. Then we have $u^*X^*B^*BA^{k-1}Xu = 0$, but since $B^*BA^{k-1} + (A^{k-1})^*B^*B = C^*C$, we also have $u^*X^*C^*CXu = 0$ 0, which implies CXu = 0, so $0 = C^*CXu = (B^*BA^{k-1} +$ $(A^{k-1})^*B^*B)Xu$. Now $B^*BA^{k-1}Xu = -(A^*)^{k-1}B^*BXu$ gives us that $A^*B^*BA^{k-1}Xu = -(A^*)^kB^*BXu$, but then we have that $u^*X^*A^*B^*BA^{k-2}AXu = -u^*X^*(A^*)^kB^*BXu$. That is, $(AXu)^*B^*\times A^*B^*BXu$. $BA^{k-2}(AXu) = -u^*X^*B^*BA^kXu$. Since B^*BA^{k-2} and B^*BA^k have positive semidefinite Hermitian part, we must have $(AXu)^*B^*BA^{k-2} \times$ (AXu) = 0, so by induction BA(AXu) = 0. This means that $Xu \in \ker(BA^2)$, and from Lemma 10 this implies that $Xu \in \ker(BA)$, so BAXu = 0. We have just shown that $\ker [X^*B^*BA^{k-1}X] \subseteq$ $\ker [BAX]$. Suppose now that BAXu = 0; then $BA^{k-1}Xu =$ 0 from Lemma 11, so $X^*B^*BA^{k-1}Xu = 0$, and $\ker[BAX] \subseteq$ $\ker \left[X^*B^*BA^{k-1}X \right].$

The bibliography in [6] has further references to results about matrices with positive semidefinite Hermitian part. See also [1, 4, 5].

REFERENCES

- 1. C.S. Ballantine and C.R. Johnson, Accretive matrix products, Linear and Multilinear Algebra 3 (1975), 169–185.
- 2. D. Hershkowitz and H. Schneider, Matrices with a sequence of accretive powers, Israel J. Mathematics 55 (1986), 327–344.
- ${\bf 3.}$ R.A. Horn and C.R. Johnson, ${\it Matrix~analysis},$ Cambridge University Press, Cambridge, 1985.
- 4. ——, Topics in matrix analysis, Cambridge University Press, Cambridge, 1991.
- 5. C.R. Johnson, K. Okubo and R. Reams, Uniqueness of matrix square roots and an application, Linear Algebra Appl. 323 (2001), 51-60.
- 6. C.R. Johnson and R. Reams, Semidefiniteness without real symmetry, Linear Algebra Appl. 306 (2000), 203–209.

DEPARTMENT OF MATHEMATICS, COLLEGE OF WILLIAM AND MARY, P.O. BOX 8795, WILLIAMSBURG, VA 23187-8795

Email address: crjohnso@math.wm.edu

DEPARTMENT OF MATHEMATICS, HAWKINS HALL, SUNY PLATTSBURGH, 101 BROAD STREET, PLATTSBURGH, NY 12901

Email address: robert.reams@plattsburgh.edu