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The numerical range W (A) of a bounded linear operator A on a Hilbert space is the col-
lection of complex numbers of the form (Av, v) with v ranging over the unit vectors in
the Hilbert space. In terms of the location of W (A), inclusion regions are obtained for
W (Ak) for positive integers k, and also for negative integers k if A−1 exists. Related in-
equalities on the numerical radius w(A) = sup{|μ|: μ ∈ W (A)} and the Crawford number
c(A) = inf{|μ|: μ ∈ W (A)} are deduced.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let H be a Hilbert space with the inner product (u, v), and let B(H) be the set of bounded linear operators on H. The
numerical range of A ∈ B(H) is defined by

W (A) = {
(Av, v): v ∈ S, (v, v) = 1

}
.

Furthermore, define the numerical radius and the Crawford number of A by

w(A) = sup
{|z|: z ∈ W (A)

}
and c(A) = inf

{|z|: z ∈ W (A)
}
,

respectively. These concepts are useful in studying linear operators and have attracted the attention of many authors
in the last few decades (e.g., see [2,6,9,10], and their references). In applications of these concepts to other areas such
as perturbation theory, generalized eigenvalue problems, numerical analysis, system theory, and dilation theory (e.g., see
[1,4,5,7–9,12,15]), it is useful to know the location of W (Ak) for positive integers k and also negative integers k if A is
invertible. The following facts are well known; see [9,10] for example.

Facts 1.1. Let A ∈ B(H) and k be a positive integer.

(a) If W (A) ⊆ D with D = {z ∈ C: |z| � 1} then W (Ak) ⊆ D.

(b) If W (A) ⊆ S = {reit : r � 0, t ∈ [−t0, t0]} for some t0 ∈ [0,π/2) and A is invertible, then W (A−1) ⊆ S as well.
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(c) Suppose A is normal. Then W (Ak) is the convex hull of the spectrum of Ak, which is a subset of the convex hull of the set

W (A)
k = {

ηk: η ∈ W (A)
}
.

If, in addition, 0 /∈ W (A), then the above conclusion holds for negative integers k as well.

It is desirable to find a good inclusion region for W (Ak) in terms of W (A). In view of (a)–(c) above, one may wonder

whether it is always the case that W (Ak) is a subset of the convex hull of W (A)
k = {zk: z ∈ W (A)} for a general operator.

It is not true as shown in the following example.

Example 1.2. Let k > 1 be a positive integer. If A = ( 1 2s
0 1

)
with s = sin(π/(2k)), then 1 < ks and W (A) = {z ∈ C: |z − 1| � s}

and

W (A) ⊆
{

reit ∈ C: r � 0,
−π

2k
� t � π

2k

}
.

So, {η1 · · ·ηk: ηi ∈ W (A), i = 1, . . . ,k} is a subset of the right half plane {z ∈ C: Re z � 0}. Since Ak = ( 1 2ks
0 1

)
, it follows that

W (Ak) is the circular disk with radius ks centered at 1. In particular, 0 is an interior point of W (Ak). So,

W
(

Ak) � conv
{
η1 · · ·ηk: ηi ∈ W (A), i = 1, . . . ,k

}
.

In this paper, we will study the location of W (Ak) for integers k. Related inequalities on the numerical radius and the
Crawford number of Ak will be obtained. We will focus on positive powers of operators A in Section 2, and turn to negative
powers in Section 3.

In our discussion, we will identify H with Cn if H has dimension n. In such a case, we will identify B(H) with Mn . The
following basic facts (see [10,9]) will be used frequently in our discussion.

(1) The spectrum σ(A) of A is always a subset of the closure of W (A).
(2) W (aA + bI) = aW (A) + b for any a,b ∈ C.
(3) W (B ⊕ C) = conv{W (B) ∪ W (C)}, where conv S denotes the convex hull of S ⊆ C.
(4) If A ∈ M2 has eigenvalues λ1, λ2, then W (A) is an elliptical disk with foci λ1, λ2 and the length of minor axis equals

{tr(A∗ A) − |λ1|2 − |λ2|2}1/2.

2. Positive powers of operators

2.1. Inclusion regions of W (Ak) in terms of W (A)

Let k be a positive integer, and A ∈ B(H). As shown in Section 1, the inclusion W (Ak) ⊆ W (A)k is not true in general.
But there are situations under which the inclusion is valid. Here is a scheme to amend the situation so that W (A) will be
useful in estimating W (Ak).

Let μ = ei2π/k and Ã = A ⊕μA ⊕· · ·⊕μk−1 A. Then W ( Ãk) = W (Ak). It is natural to use W ( Ã) to determine an inclusion
region for W (Ak). Denote by Ck = {ηk: η ∈ C} for any C ⊆ C. We have the following result.

Theorem 2.1. Suppose A ∈ B(H) and μ = ei2π/k for a positive integer k > 1. Let Ã = A ⊕ μA ⊕ · · · ⊕ μk−1 A. Then

W ( Ã)k =
{

conv

[
k⋃

j=1

μ j W (A)

]}k

is a convex set satisfying the following inclusion

W
(

Ak) = W
(

Ãk) ⊆ W ( Ã)k.

To show that W ( Ã)k is convex, we prove the following general result on convex subsets in C, which is of independent
interest.

Proposition 2.2. Suppose C ⊆ C is convex and satisfies C = μC with μ = ei2π/k. Then the set Ck = {νk: ν ∈ C} is convex.

Proof. Suppose α,β ∈ C . We need only to show that the line segment joining αk and βk lies in the set Ck . The conclusion
is clear if α or β is 0. Suppose it is not the case. We may assume that the argument of α−1β lies in [0,π/k]. Otherwise,
replace β by ei2 jπ/kβ for a suitable j ∈ {1, . . . ,k −1}. Let 	 = conv{0,α,β}. Then {zk: z ∈ 	} is a convex set with boundary:{

tαk: 0 � t � 1
} ∪ {

tβk: 0 � t � 1
} ∪ {[

tα + (1 − t)β
]k

: 0 � t � 1
}
. �
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The following identity will be useful in our discussion.

Lemma 2.3. Let T ∈ B(H), a ∈ C, and μ = ei2π/k for a positive integer k > 1. If g j(z) = (ak − zk)/(a − μ j z) for j = 1, . . . ,k, then

kāk−1(ak I − T k) =
k∑

j=1

g j(T )∗
(
aI − μ j T

)
g j(T ).

Proof. Let g j(z) = (ak − zk)/(a − μ j z) for j = 1, . . . ,k. Then

k∑
j=1

g j(z) = d

da

(
ak − zk) = kak−1

is independent of z. Thus, kāk−1 = ∑k
j=1 g j(z) and

kāk−1(ak I − T k) =
k∑

j=1

g j(T )∗
(
ak I − T k) =

k∑
j=1

g j(T )∗
(
aI − μ j T

)
g j(T ). �

We are now ready to present the following.

Proof of Theorem 2.1. Since W (B ⊕ C) = conv{W (B) ∪ W (C)}, if Ã is defined as in the theorem then W (Ak) = W ( Ãk) and
W ( Ã)k = {conv[⋃k

j=1 μ j W (A)]}k . Applying Proposition 2.2 to C = W ( Ã), we see that W ( Ã)k is convex.

It remains to show that W ( Ãk) ⊆ W ( Ã)k . By Lemma 2.3, if g j(z) = (ak − zk)/(a − μ j z) for j = 1, . . . ,k, then

kāk−1(ak I − Ãk) =
k∑

j=1

g j( Ã)∗
(
aI − μ j Ã

)
g j( Ã). (2.1)

Now, suppose b = ak ∈ W (Ak) = W ( Ãk). Then there is a unit vector v ∈ H such that

0 = ((
ak I − Ãk)v, v

)
.

We consider two cases.
Case 1. Suppose g j( Ã)v is nonzero for each j = 1, . . . ,k in (2.1). Let

K = W (aI − μ Ã) = · · · = W
(
aI − μk−1 Ã

) = W (aI − Ã).

By (2.1), if

η j = ((
aI − μ j Ã

)
g j( Ã)v, g j( Ã)v

)
/
∥∥g j( Ã)v

∥∥2 ∈ W
(
aI − μ j Ã

)
for j = 1, . . . ,k, then for γ = ∑k

j=1 ‖g j( Ã)v‖2,

0 = γ −1((ak I − Ãk)v, v
) = γ −1

k∑
j=1

∥∥g j( Ã)v
∥∥2

η j

is a convex combination of k elements in the convex set K = W (aI − Ã). So, a ∈ W ( Ã) and ak ∈ W ( Ã)k .
Case 2. Suppose there is j ∈ {1, . . . ,k} such that

0 = g j( Ã)v =
∏

1�q�k,q �= j

(
aI − μq Ã

)
v.

Then there is q ∈ {1, . . . ,k} and a nonzero vector y such that (a − μq Ã)y = 0. It follows that a ∈ W (μq Ã) = W ( Ã). Thus,
ak ∈ W ( Ã)k . �

Note that one can also deduce Theorem 2.1 from [11, Theorem 1] once Proposition 2.2 is verified. Also, one can use
Proposition 2.2 and arguments similar to those in the proof of Theorem 2.1 to prove the following general version of
Theorem 2.1.

Theorem 2.4. Let k > 1 be a positive integer. Suppose A ∈ B(H) is such that W (A) ⊆ Γ , where Γ is a convex subset of C satisfying
ei2π/kΓ = Γ . Then W (Ak) ⊆ conv{zk: z ∈ Γ }.
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Now, if one considers Γ to be the set of k-sided polygons if k � 3 or parallel strips when k = 2 containing W (A), then
the intersection of all such Γ equals W ( Ã) in Theorem 2.1, and we have

W
(

Ak) ⊆ {
μk: μ ∈ W ( Ã)

} ⊆
⋂
Γ

{
μk: μ ∈ Γ

}
.

2.2. Inclusion regions for W (Ak) in terms of w(A) and c(A)

In this subsection, we study inclusion regions for W (Ak) in terms of the numerical radius and the Crawford number
of A when W (A) does not contain the origin. In particular, it provides estimates for c(Ak) in terms of c(A).

Theorem 2.5. Let A ∈ B(H) be such that W (A) is a subset of the segment{
z ∈ C: |z| � 1, Re z � cosφ

}
for some φ ∈ [0,π/2]. For any positive integer m = 2k or 2k − 1 such that 2kφ � π , we have W (Am) is a subset of the segment{

z ∈ C: |z| � 1, Re z � cos(mφ)
}
.

Proof. By the power inequality, w(Am) � w(A)m for any positive integer m. Thus, W (Am) lies inside the unit disk. Denote
by Am = Hm + iGm with Hm = H∗

m and Gm = G∗
m . It remains to show that:

For m = 2k − 1 or k, Hm �
(
cos(mφ)

)
I.

Here X � Y means that X − Y is positive semi-definite.
For m = 1, we have H1 � (cosφ)I by the given assumption. For m = 2, we have H2

1 � (cos2 φ)I . Since W (A) lies inside
the unit disk and H1 � (cosφ)I , we have −(sin φ)I � G1 � (sin φ)I and hence G2

1 � (sin2 φ)I . By the fact that

A2 = (H1 + iG1)
2 = (

H2
1 − G2

1

) + i(H1G1 + G1 H1),

we have

H2 = H2
1 − G2

1 �
(
cos2 φ

)
I − (

sin2 φ
)

I = (
cos(2φ)

)
I.

Next, for m = 2k − 1 or 2k with k > 1, we assume by induction hypothesis that

H2k̃−1 � cos
(
(2k̃ − 1)φ

)
I and H2k̃ �

(
cos(2k̃)φ

)
I

for k̃ < k. In particular, Hk−1 � (cos((k − 1)φ))I and Hk � (cos(kφ))I . Since W (Ak) and W (Ak−1) lie inside the closed unit
disk, it follows that

−(
sin

(
(k − 1)φ

))
I � Gk−1 �

(
sin

(
(k − 1)φ

))
I and −(

sin(kφ)
)

I � Gk �
(
sin(kφ)

)
I. (2.2)

For m = 2k, we have Hk � (cos(kφ))I by induction assumption, and G2
k � (sin2(kφ))I by (2.2). Thus,

H2k = H2
k − G2

k �
(
cos2(kφ)

)
I − (

sin2(kφ)
)

I = (
cos(2kφ)

)
I.

Suppose m = 2k − 1. Note that

Gk = (−i/2)
[

Ak − (
A∗)k]

= (−i/2)
[

A Ak−1 − A∗(A∗)k−1]
= (−i/2)

[
(H1 + iG1)(Hk−1 + iGk−1) − (H1 − iG1)(Hk−1 − iGk−1)

]
= H1Gk−1 + G1 Hk−1.

Also, since Gk = G∗
k , we have

Gk = H1Gk−1 + G1 Hk−1 = Gk−1 H1 + Hk−1G1. (2.3)

Writing Am = Ak−1 A Ak−1 = (Hk−1 + iGk−1)(H1 + iG1)(Hk−1 + iGk−1), we have

2Hm = 2Hk−1 H1 Hk−1 − Gk−1G1 Hk−1 − Hk−1G1Gk−1 − Gk−1(H1Gk−1 + G1 Hk−1) − (Gk−1 H1 + Hk−1G1)Gk−1.

By (2.3),

2Hm = Hk−1
[
2H1 − H−1

k−1Gk−1G1 − G1Gk−1 H−1
k−1

]
Hk−1 − (GkGk−1 + Gk−1Gk). (2.4)
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Since Hk−1 � (cos((k − 1)φ))I by induction assumption, and ‖Gk−1‖ � sin((k − 1)φ) by (2.2),∥∥H−1
k−1Gk−1G1 + G1Gk−1 H−1

k−1

∥∥ � 2‖G1‖‖Gk−1‖
∥∥H−1

k−1

∥∥ � 2 sinφ sin((k − 1)φ)

cos((k − 1)φ)
.

It follows that

2H1 − H−1
k−1Gk−1G1 − G1Gk−1 H−1

k−1 � 2(cosφ)I − 2 sinφ sin((k − 1)φ)I

cos((k − 1)φ)
= 2(cos(kφ))I

cos((k − 1)φ)
. (2.5)

By (2.2) again, we have

‖GkGk−1 + Gk−1Gk‖ � 2‖Gk‖‖Gk−1‖ � 2 sin(kφ) sin
(
(k − 1)φ

)
. (2.6)

Putting (2.5) and (2.6) in (2.4) and using the assumption that Hk−1 � (cos((k − 1)φ))I , we have

2Hm � 2 cos(kφ)

cos((k − 1)φ)
Hk−1 Hk−1 − 2 sin

(
(k − 1)φ

)
sin(kφ)I

� 2 cos(kφ) cos
(
(k − 1)φ

)
I − 2 sin

(
(k − 1)φ

)
sin(kφ)I

= 2
(
cos

(
(2k − 1)φ

))
I,

which is the desired inequality. �
Clearly, if W (A) lies in a segment of a circle, we have bounds for w(A) and c(A). By the power inequality, we know that

w(Ak) � w(A)k . By these facts and Theorem 2.5, one can use w(A) and c(A) to obtain bounds for c(Am) as follows.

Theorem 2.6. Let m be a positive integer and A ∈ B(H) be nonzero such that c(A) = w(A) cosφ with mφ ∈ [0,π/2]. Then

c
(

Am)
/w

(
Am)

� c
(

Am)
/w(A)m � cos(mφ).

Proof. The result is trivial if m = 1. Assume that m > 1. Then mφ ∈ [0,π/2] implies that c(A) � w(A) cos(φ) > 0. Hence,
A is invertible, and so is Am . Thus, 0 < w(Am) and w(Am) � w(A)m by the power inequality. The first inequality in the
theorem follows.

To prove the second inequality, we may replace A by A/w(A) and assume that w(A) = 1 and c(A) = cosφ with mφ ∈
[0,π/2]. Then there is θ ∈ [0,2π) such that

W (A) ⊆ eiθ{z ∈ C: |z| � 1, Re z � cosφ
}
.

By Theorem 2.5, for each m = 2k or 2k − 1 with 2kφ � 2mφ � π , we have

W
(

Am) ⊆ eimθ
{

z ∈ C: |z| � 1, Re z � cos(mφ)
}
.

Thus, c(Am) � cos(mφ). �
Remark 2.7. Note that the conclusion on W (Am) in Theorem 2.5 can be deduced from Theorem 2.6 if mφ ∈ [0,π/2].

To see this, suppose Theorem 2.6 holds. Assume

W (A) ⊆ {
z ∈ C: |z| � 1, Re z � cosφ

}
,

where mφ ∈ [0,π/2]. Then B = diag(eiφ, e−iφ) ⊕ A satisfies w(B) = 1 and c(B) = cosφ. By Theorem 2.6, w(Bm) � 1 and
c(Bm) � cos(mφ). Thus, there is θ ∈ [0,2π) such that

W
(

Am) ⊆ W
(

Bm) ⊆ eiθ{z ∈ C: |z| � 1, Re z � cos(mφ)
}
.

Since eimφ, e−imφ ∈ W (Bm), we see that θ = 0. Hence, we have

W
(

Am) ⊆ {
z ∈ C: |z| � 1, Re z � cos(mφ)

}
.

Next, we prove a result using the information W (Ak) to deduce information of W (A). In a certain sense, it can be
viewed as the converse of Theorem 2.6.

Theorem 2.8. Suppose k is a positive integer and A ∈ B(H) satisfies

W (A) ⊆ {
z ∈ C: |z| � 1, Re z � cos(π/k)

}
. (2.7)
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If d ∈ R is such that

W
(

Ak) ⊆ {
z ∈ C: |z| � 1, Re z � dk},

then

W (A) ⊆ {
z ∈ C: |z| � 1, Re z � d

}
.

Proof. If d < cos(π/k), the result trivially holds. Assume that d � cos(π/k). By Lemma 2.3 and the assumption on W (Ak),
we have

0 � Re
(
kdk−1(dk I − Ak)) = Re

(
k∑

j=1

g j(A)∗
(
dI − μ j A

)
g j(A)

)
, (2.8)

where μ, g1, . . . , gk are defined as in Lemma 2.3. Since Re(μ j A) � cos(π/k) < d, we see that d /∈ W (μ j A) for j ∈
{1, . . . ,k − 1}. Hence gk(A) = ∏k−1

j=1(dI − μ j A) is invertible. Thus, the negativity of gk(A)∗ Re(dI − A)gk(A) implies that
of Re(dI − A). �

Note that if c(A)/w(A) � cos(π/(2k)), then 0 may lie in W (Ak). So, we always assume that c(A)/w(A) � cos(π/(2k))

when we study bounds of c(Ak). Using the contra-positive of Theorem 2.6, we can get an upper bound for c(A) in terms of
that of c(Ak), namely, if w(A) = 1 and c(Ak) = cos(kφ) with φ ∈ [0,π/(2k)), then c(A) � cosφ. Using Theorem 2.8, we can
prove the following.

Theorem 2.9. Let k be a positive integer. Suppose A ∈ B(H) is nonzero and satisfies c(A)/w(A) � cos(π/(2k)). Then c(A)k � c(Ak).

Proof. We may replace A by ξ A for some complex number ξ with |ξ | = 1/w(A) and assume that c(A) = cos θ ∈ W (A) with
θ ∈ [0,π/(2k)] and

W (A) ⊆ {
z ∈ C: |z| � 1, Re z � cos θ

}
.

Suppose γ ∈ W (Ak) satisfies |γ | = c(Ak). By Theorem 2.6,

γ ∈ {
z ∈ C: |z| � 1, Re z � cos(kθ)

}
so that γ = dkeikt for some d > 0 and t ∈ [−π/(2k),π/(2k)]. Now, replace A by e−it A so that

W (A) ⊆ {
z ∈ C: |z| � 1, Re z � cos

(|θ | + |t|)} ⊆ {
z ∈ C: |z| � 1, Re z � cos(π/k)

}
as θ, t ∈ [−π/(2k),π/(2k)]. Since dk = |γ | is a point in W (Ak) nearest to the origin, we see that

W
(

Ak) ⊆ {
z ∈ C: |z| � 1, Re z � dk}.

By Theorem 2.8, we see that

W (A) ⊆ {
z ∈ C: |z| � 1, Re z � d

}
.

Thus, c(A) � d, and hence c(A)k � dk = c(Ak) as asserted. �
3. Negative powers of operators

First, we study inclusion region for W (A−1). To ensure that A−1 exists, we often assume that 0 /∈ W (A). Note that this
condition is stronger than the assumption that A is invertible. We have the following.

Proposition 3.1. Let A ∈ B(H). If H has dimension 2 and A is invertible, then W (A−1) = W (A)/det(A). If H has dimension at least
3 and if 0 /∈ W (A), then

W
(

A−1) ⊆
⋃{

W (B)/det(B): B = X∗ A X, X∗ X = I2
}
.

Proof. Assume that A = ( a b
0 c

) ∈ M2. Then A−1 = 1
ac

( c −b
0 a

)
, which is unitarily similar to A/det(A). So, W (A−1) =

W (A)/det(A).
Suppose A ∈ B(H) is invertible, and v ∈ H is a unit vector. Let B be the compression of A on a two-dimensional

subspace of H containing v and A−1 v . Since 0 /∈ W (B) ⊆ W (A), B is invertible. Then (A−1 v, v) = (B−1 v, v) ∈ W (B−1). �
If A is a nonzero multiple of a positive definite matrix, then W (A−1) = conv{z−1: z ∈ W (A)}. But the equality may not

hold even for a normal operator A of the form α I + βH for some self-adjoint H .
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Example 3.2. Let A = diag(1 + i,1 − i). Then W (A) is the line segment joining the points 1 + i and 1 − i, but W (A−1) is
the line segment joining the points (1 − i)/2 and (1 + i)/2, and is a proper subset of conv{z−1: z ∈ W (A)}.

For non-normal A ∈ B(H), the inclusion relation W (A−1) ⊆ {z−1: z ∈ W (A)} may not hold as shown in the following
example.

Example 3.3. Let A = ( 1 2c
0 1

)
with 0 < c < 1. Then A−1 = ( 1 −2c

0 1

)
, and W (A−1) = W (A) is a circular disk with [1 − c,1 + c]

as diameter. However, K = {z−1: z ∈ W (A)} is the disk with [1/(1 + c),1/(1 − c)] as diameter. So W (A−1) � K as 1 − c <

1/(1 + c).

Using Theorem 6 in [11], we have the following result.

Proposition 3.4. Suppose A ∈ B(H) is invertible. If

W (A) ⊆ {
z ∈ C: |z − 1| � 1

}
,

then

W
(

A−1) ⊆ {z: Re z � −1/2}.

By Proposition 3.4, one can obtain a left supporting line for W (A−1) if W (A) is included in a certain circle. In the
following, we show that one can obtain a circular inclusion region for W (A−1) in terms of a supporting line of W (A) that
separates W (A) and the origin.

Proposition 3.5. Let A ∈ B(H) be such that Re A � sI for some s > 0. Then∥∥A−1 − I/(2s)
∥∥ � 1/(2s),

and

W
(

A−1) ⊆ {
z ∈ C:

∣∣z − 1/(2s)
∣∣ � 1/(2s)

}
.

Proof. If A + A∗ � 2sI > 0, then 2sA−1(A + A∗ − 2sI)A∗−1 � 0 and hence

I � I − 2sA−1(A + A∗ − 2sI
)

A∗−1 = (
I − 2sA−1)(I − 2sA−1)∗

,

which is equivalent to ‖I − 2sA−1‖ � 1. Hence w(I − 2sA−1) � 1 and the result follows. �
Note that none of Proposition 3.4 or Proposition 3.5 gives us any information about c(A−1). In connection with this, we

have the following result.

Theorem 3.6. Suppose A ∈ B(H) is invertible. Then

c
(

A−1) � c(A)/w(A)2.

Proof. The result is trivial if c(A) = 0. So, we assume that c(A) > 0. If A ∈ M2, then W (A−1) = W (A)/det(A) by Proposi-
tion 3.1. Since |det(A)| � w(A)2, we have c(A−1) � c(A)/(w(A))2.

This result can be extended to general operators A ∈ B(H) with 0 /∈ W (A). In fact, for such an operator A, let v ∈ H
be any unit vector, and let B be the compression of A on a two-dimensional subspace of H containing the vectors v and
A−1 v . Since 0 /∈ W (B), B is invertible. By the result on 2 × 2 matrices, we have∣∣(A−1 v, v

)∣∣ = ∣∣(B−1 v, v
)∣∣

� inf
{|z|: z ∈ W

(
B−1)}

� inf
{|z|: z ∈ W (B)/w(B)2}

� inf
{|z|: z ∈ W (A)/w(A)2}.

Thus c(A−1) � c(A)/w(A)2. �
Theorem 3.7. Let S = {z ∈ C: |z| � r, Re z � s} with r > s > 0. Suppose A ∈ B(H) is such that W (A) ⊆ S. Then

W
(

A−1) ⊆ conv
{

z−1: z ∈ S
} = {

z ∈ C:
∣∣z − 1/(2s)

∣∣ � 1/(2s), Re z � s/r2}.
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Proof. We may replace A by A/w(A) and assume that r = 1 and s = cos θ with θ ∈ (0,π/2). Let B = A ⊕ diag(eiθ , e−iθ ).
Then W (B) ⊆ S and W (A−1) ⊆ W (B−1). By Theorem 3.6, c(B−1) � c(B)/w(B)2 = cos θ . Since eiθ , e−iθ ∈ W (B−1), it follows
that s = cos θ ∈ W (B−1) is the point in W (B−1) nearest to the origin, and the support line of the convex set W (B−1) at
cos θ must pass through eiθ and e−iθ . Thus, W (A−1) ⊆ W (B−1) ⊆ {z: Re z � s}. By Proposition 3.5, we see that W (A−1) ⊆
{z: |z − 1/(2s)| � 1/(2s)}. Hence, W (A−1) ⊆ {z: |z − 1/(2s)| � 1/(2s), Re z � s}, which equals the set conv{z−1: z ∈ S}. �

By Theorem 2.5 and Theorem 3.7, we have the following.

Corollary 3.8. Let θ ∈ [0,π/(2p)] for a positive integer p. Suppose A ∈ B(H) is such that W (A) ⊆ {z: |z| � 1, Re z � cos θ}. Then
for γ = 2 cos(pθ),

W
(

A−p) ⊆ {
z ∈ C:

∣∣z − 1/(2γ )
∣∣ � 1/(2γ ), Re z � γ

}
.

By the power inequality, we have w(Ak) � w(A)k for any A ∈ B(H) and any positive integer k. In the following, we
obtain a similar inequality for the negative powers of A for an invertible A ∈ B(H), and characterize those A which attained
the equality.

Theorem 3.9. Suppose A ∈ B(H) is invertible and p is a positive integer. Then

w
(

A−p)
� w(A)−p .

The equality holds if and only if A is a nonzero multiple of a unitary operator.

Proof. Using the fact that ρ(B) � w(B) for any B ∈ B(H), one easily sees that

w
(

A−1) � ρ
(

A−1) = 1/ inf
{|z|: z ∈ σ(A)

}
� ρ(A)−1 � w(A)−1.

Replacing A by A p , we have w(A−p) � w(A p)−1. Using the fact that w(A p) � w(A)p , we have w(A−p) � w(A)−p .
If A is a multiple of a unitary operator, then we have w(A−p) = w(A)−p . For the converse, suppose the equality holds.

We may replace A by γ A for a suitable nonzero γ and assume that w(A−p) = w(A)−p = 1. Thus,

1 = w
(

A−p)
� w

(
Ap)−1 � w(A)−p = 1.

So, 1 = w(A−p) = w(A p). By [14, Corollary 1] (see also [13]), A p is unitary. Since w(A) = 1, by the result of Ando [1], there
exist a self-adjoint Z ∈ B(H) and a contraction C ∈ B(H) such that −I � Z � I and A = (I + Z)1/2C(I − Z)1/2. Now,

V = Ap = (I + Z)1/2C̃(I − Z)1/2 (3.1)

is unitary, where C̃ = C(I − Z 2)1/2C · · · C(I − Z 2)1/2C is a contraction. So, (I + Z) and (I − Z) are invertible, and(
I + Z V

V ∗ I − Z

)
is positive semi-definite. Applying Schur complement, we see that

I + Z � V (I − Z)−1 V ∗. (3.2)

Suppose convσ(Z) = [a,b]. Since (I + Z) and (I − Z) are invertible, we have [a,b] ⊆ (−1,1) and conv(σ ((I − Z)−1)) =
[(1 − a)−1, (1 − b)−1]. Comparing the spectrum on both sides of (3.2), we see that 1 + a � (1 − a)−1 and 1 + b � (1 − b)−1.
Hence, a = b = 0, i.e., Z = 0. By (3.1) and the fact that Z = 0, we have A p = C̃ = C p is unitary. Because C is a contraction,
we conclude that C is unitary. �

Corollary 1 in [14] asserts that A ∈ B(H) is unitary if w(A) = w(A−1) = 1. The above theorem can be viewed as a
generalization of this result. Clearly, if w(A) = w(A−1) = 1, then w(A) � 1 and σ(A) lies on the unit circle. In the finite-
dimensional case, the converse is also valid. In the infinite-dimensional case, there exists non-unitary A ∈ B(H) such that
w(A) � 1 with σ(A) lying on the unit circle. For instance, if V is the Volterra operator, then A = (I + V )−1 is such an
example (e.g., see [10, Problem 190]).

Remark 3.10. From the proof of Theorem 3.9, we see that

w
(

A−1)p � w
(

A−p)
� w

(
Ap)−1 � w(A)−p .

We have shown that w(A−p) = w(A)−p if and only if A is a multiple of a unitary operator. Replacing A by A−1, we see
that w(A−1)p = w(A p)−1 if and only if A is a multiple of a unitary operator.

Very recently, Ando and Li [3] have extended Theorem 3.9 by replacing the numerical radius with any operator radius.
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