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Ecological Applications, 18(7), 2008, pp. 1718–1727
� 2008 by the Ecological Society of America

MYCOBACTERIOSIS-ASSOCIATED MORTALITY IN WILD STRIPED BASS
(MORONE SAXATILIS) FROM CHESAPEAKE BAY, USA

D. T. GAUTHIER,1,5 R. J. LATOUR,2 D. M. HEISEY,3 C. F. BONZEK,2 J. GARTLAND,2 E. J. BURGE,4

AND W. K. VOGELBEIN
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1Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science,
Gloucester Point, Virginia 23062 USA

2Department of Fisheries Science, Virginia Institute of Marine Science, Gloucester Point, Virginia 23062 USA
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4Department of Marine Science, Coastal Carolina University, Conway, South Carolina 29528 USA

Abstract. The striped bass (Morone saxatilis) is an economically and ecologically
important finfish species along the Atlantic seaboard of the United States. Recent stock
assessments in Chesapeake Bay (USA) indicate that non-fishing mortality in striped bass has
increased since 1999, concomitant with very high (.50%) prevalence of visceral and dermal
disease caused by Mycobacterium spp. Current fishery assessment models do not differentiate
between disease and other components of non-fishing mortality (e.g., senescence, predation);
therefore, disease impact on the striped bass population has not been established. Specific
measurement of mortality associated with mycobacteriosis in wild striped bass is complicated
because the disease is chronic and mortality is cryptic. Epidemiological models have been
developed to estimate disease-associated mortality from cross-sectional prevalence data and
have recently been generalized to represent disease processes more realistically. Here, we used
this generalized approach to demonstrate disease-associated mortality in striped bass from
Chesapeake Bay. To our knowledge this is the first demonstration of cryptic mortality
associated with a chronic infectious disease in a wild finfish. This finding has direct
implications for management and stock assessment of striped bass, as it demonstrates
population-level negative impacts of a chronic disease. Additionally, this research provides a
framework by which disease-associated mortality may be specifically addressed within fisheries
models for resource management.

Key words: disease-associated mortality; force-of-infection; Morone saxatilis; mycobacteriosis; striped
bass.

INTRODUCTION

The anadromous striped bass, Morone saxatilis, is one

of four dominant piscivores in the Chesapeake Bay

(USA) and fills a critical ecological niche in estuarine

food webs (Hartman and Brandt 1995, Latour et al.

2008). Striped bass are also of high economic impor-

tance, forming the basis for large recreational and

commercial fisheries within Chesapeake Bay (Kirkley et

al. 2000). Disease outbreaks have been reported in

Chesapeake Bay striped bass since the late 1980s.

Mortality in fish from Maryland waters of the Bay in

1988 was associated with Streptococcus spp. (Baya et al.

1990), and visceral and dermal lesions observed in 1994

were attributed to Edwardsiella spp. (Baya et al. 1997).

Beginning in 1997, striped bass exhibiting poor body

condition and ulcerative skin lesions were observed in

Virginia and Maryland waters of Chesapeake Bay.

Histopathology revealed granulomatous inflammation

associated with acid-fast bacteria, consistent with

infection by Mycobacterium spp. (Vogelbein et al.

1999). Subsequent surveys have demonstrated high

(.50%) prevalence of visceral and dermal mycobacteri-

osis in striped bass from Chesapeake Bay (Vogelbein et

al. 1999, Cardinal 2001, Overton et al. 2003). Coincident

with reports of high disease prevalence, recent fishery

stock assessments have demonstrated an increase in

natural, non-fishing mortality among striped bass in

Maryland waters since 1999 (Jiang et al. 2007). These

observations suggest that mycobacteriosis may be

responsible for increased natural mortality of striped

bass. As with most fishery assessment models, however,

that of Jiang et al. (2007) does not differentiate between

disease and other components of non-fishing mortality,

such as predation and senescence. Therefore, the

relationship between disease and increased natural

mortality has not yet been established.

Mycobacteriosis is a subacute to chronic disease

common in wild and captive fishes worldwide. Mortality

resulting from mycobacteriosis is not generally reported

in wild finfish populations, although high mortality is

commonly observed in aquaculture (Nigrelli and Vogel
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1963, Hedrick et al. 1987, Bruno et al. 1998). Mycobac-

terium marinum, M. fortuitum, and M. chelonae are the

most frequently cultured isolates from diseased fishes,

although several other species have been reported

(Lansdell et al. 1993, Tortoli et al. 1996, Herbst et al.

2001, Whipps et al. 2003, Rhodes et al. 2004). In most

cases, disease is visceral, with spleen, liver, and kidney

being the primary target organs. Granulomatous in-

flammation, often with extensive tissue destruction, is

characteristic, although more poorly organized inflam-

matory responses are observed, typically in association

with high bacillary loads (Kent et al. 2004). External

clinical signs include scale loss, skin ulceration, emaci-

ation, exophthalmia, pigmentation changes, and spinal

defects (Nigrelli and Vogel 1963, Snieszko 1978, Wolke

and Stroud 1978, Bruno et al. 1998). Mycobacteriosis

has previously been described in wild and cultured

striped bass from the U.S. Pacific Coast, with prevalence

values as high as 68% and 80%, respectively (Sakanari et

al. 1983, Hedrick et al. 1987).

Characterization and identification of Mycobacterium

spp. associated with the epizootic of mycobacteriosis in

Chesapeake Bay striped bass are ongoing. A number of

isolates have been cultured, including the fish pathogen

M. marinum, the newly described species M. shottsii and

M. pseudoshottsii, and species typically considered to be

saprophytes (e.g., M. gordonae; Rhodes et al. 2001,

2003, 2004). Other isolates do not exactly match known

phenotypic profiles, and potentially represent additional

new species (Rhodes et al. 2004). Mycobacterium shottsii

and M. pseudoshottsii are the isolates most commonly

recovered from diseased striped bass, and co-infections

with multiple mycobacterial species occur (Rhodes et al.

2004). Both M. shottsii and M. pseudoshottsii are closely

related to M. marinum and M. ulcerans, important

pathogens of fishes and humans, respectively. IS2404, an

insertion sequence associated with mycolactone, a

plasmid-encoded polyketide toxin, has been detected in

M. pseudoshottsii, and production of variant mycolac-

tones has been demonstrated by this species, as well as

other related fish-pathogenic mycobacteria (Rhodes et

al. 2005, Ranger et al. 2006, Yip et al. 2007).

Observation of mortality among wild finfishes is

typically limited to acute kill events of schooling species

(e.g., Patterson 1996, Whittington et al. 1997, Blazer et

al. 2002). Due to the chronic nature of mycobacteriosis

in striped bass, however, mortality is cryptic, and has

not been measurable previously. Several modeling

approaches have been developed to estimate disease-

associated mortality from cross-sectional prevalence

data (Cohen 1973, Caley and Hone 2002), and have

recently been generalized to allow use of complex age-

varying hazards that more realistically represent disease

processes (Heisey et al. 2006). In this study, we apply the

approach of Heisey et al. (2006) to a comprehensive

three-year survey of mycobacteriosis in Chesapeake Bay

striped bass. This work was conducted using the

Chesapeake Bay Multispecies Monitoring and Assess-

ment Program (ChesMMAP), which is a fisheries-

independent survey in support of ecosystem-based

approaches to fisheries management. We present appar-

ent prevalence data with respect to age, sex, and cruise

(season), and examine age dependency of force-of-

infection, influence of covariates on force-of-infection,

and existence of disease-associated mortality.

MATERIALS AND METHODS

Field collections

Striped bass were collected by the ChesMMAP survey

in the main stem of Chesapeake Bay. During 2003–2005,

a total of 15 cruises were conducted (annually during

March, May, July, September, and November) and 80–

90 sites were sampled per cruise (Fig. 1). Sampling

locations were chosen according to a stratified random

design, with strata based on water depth (3–9 m, 9–15 m,

and .15 m) within five latitudinal 30-minute regions of

the bay. The number of locations sampled in each

regional stratum was randomly selected in proportion to

its area. At each sampling location, a 13.7 m, four-seam

balloon otter trawl (15.2 cm stretch mesh in the wings

and body and 7.6 cm stretch mesh in the cod end) was

towed for 20 min at ;6.5 km/h with the current. If

distinct size classes (based on fork length) of striped bass

were evident in the catch, length measurements were

coded according to a coarse size categorization (e.g.,

small, medium, large). A random subsample of each size

FIG. 1. A representative distribution of sampling locations
(black dots) within Chesapeake Bay (USA) for the Chesapeake
Bay Multispecies Monitoring and Assessment Program
(ChesMMAP) survey from 2003 to 2005. A comparable spatial
coverage was achieved during each cruise.
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class (if multiple classes were present) was further

processed for visual sex determination, otolith-based

ageing, and histological detection of splenic mycobacte-

riosis.

Laboratory procedures

A transverse section of the right sagittal otolith was

used to determine fish age following the methods of

Secor et al. (1995). Annuli were counted by viewing the

slide under a dissecting microscope using transmitted

light (253 magnification). Three readers aged all

specimens once and a randomly selected subsample of

200 specimens a second time. Year class ages were

assigned based on the conventional 1 January birth date.

Spleens were fixed in Z-fix (Anatech, Battle Creek,

Michigan, USA) for at least 72 hours, then divided

transversely into six approximately equal portions, while

removing an additional 1–2 mm section between

portions to avoid examination of contiguous sections.

Portions were then processed for routine paraffin

histology (Prophet et al. 1992). If all six portions for

an individual spleen would not fit in one cassette,

portions were randomized and distributed to multiple

cassettes. Sections were cut at 5 lm and stained with

hematoxylin and eosin (HE). One section of up to six

spleen portions and a 50-lm step section were included

on each slide. Tissue sections were examined on an

Olympus AX-70 light microscope (Olympus, Center

Valley, Pennsylvania, USA) for the presence of granu-

lomas. A granuloma was defined as any lesion contain-

ing epithelioid macrophages (Cotran et al. 1999).

Granulomas containing helminth parasites (typically

metacercariae of digenean trematodes) were not count-

ed. HE-stained sections were examined for granulomas

until (1) 12 sections (six sections þ six 50-lm step

sections) per fish were determined to be negative, or (2)

granulomas were found.

Statistical analyses

Force-of-infection.—Various measures exist for estab-

lishing the occurrence of disease in an animal popula-

tion. One such measure, cumulative incidence, is useful

in that it allows calculation of the force-of-infection rate

constant k, according to the formula p(t) ¼ 1 � e(�kt),

where p(t) is cumulative incidence, or proportion of

individuals that have become positive within the cohort,

at time t. Measurement of cumulative incidence requires

constant monitoring of a cohort over time (i.e.,

longitudinal monitoring), so that diseased individuals

that die before time t are still counted within the disease-

positive proportion. Thus cumulative incidence is not

influenced by population age structure or disease-

associated mortality, and may be thought of roughly

as the ‘‘true’’ measure of disease occurrence in a study

group. The longitudinal monitoring requirement, how-

ever, is seldom possible in studies of wild animals,

especially finfishes.

Due to this logistical constraint, apparent prevalence,

or the proportion of individuals in a sample that test

positive for a disease of interest, is a more commonly

used measure of disease in wild animal populations.

Apparent prevalence is conveniently measured in a

cross-sectional (i.e., single point-in-time) study design,

but may be strongly influenced by population age

structure and potentially by disease-associated mortal-

ity. Assuming that animals test negative for disease at

birth, time of exposure to disease agents and risk factors

increases with age. Thus the apparent prevalence is

directly related to the age structure of the population.

Disease-associated mortality preferentially removes dis-

eased individuals from the study population, thus

biasing cross-sectional samples toward negative individ-

uals. Many studies estimating incidence from age-

prevalence data avoid this complication, known as left

truncation, by assuming the disease in question to be

benign. Various models have, however, been designed

for human (Podgor and Leske 1986, Keiding 1991) and

wildlife (Cohen 1973, Woolhouse and Chandiwana

1992, Caley and Hone 2002) epidemiology to estimate

force-of-infection from age-prevalence data while taking

into account disease-associated mortality. To date, these

models have been able to accommodate only age-

invariant or coarsely defined age-varying force-of-

infection hazards. A piecewise approximation method

has recently been developed, however, which allows

incorporation of disease-associated mortality into ap-

parent prevalence-based models, including complex age-

varying infection hazards functions (Heisey et al. 2006).

Here, we apply this method to explore disease-associated

mortality of striped bass in Chesapeake Bay, USA.

In this work, we refer to ‘‘force-of-infection,’’ but the

event we actually analyze is the onset of detectable

disease (granulomatous inflammation). Indeed, in many

epidemiological studies, some advanced disease state is

used as a proxy for the infection event because the event

itself is too subtle to be detected. Thus, in our case, the

‘‘force-of-infection’’ would be more accurately referred

to as the ‘‘hazard of detectable disease.’’ For the sake of

readability and consistency with previous nomenclature,

however, we use the former term.

The three-state irreversible disease model (Fig. 2)

characterizes the probabilities of an individual being

non-diseased, N(t), diseased and alive, P(t), or dead,

D(t) at age t (Heisey et al. 2006). All animals are

assumed to be born disease negative so that N(0) ¼ 1,

P(0)¼ 0, D(0)¼ 0, and self cure is assumed not to occur.

Transitions between states are controlled by three age-

specific hazards functions: k(t) is the disease hazard, or

the rate at which disease-negative animals become

disease-positive; d(t) is the rate at which disease-negative

animals die; and d(t) þ l(t) is the disease-positive

mortality hazard, which represents the additive dis-

ease-negative and disease-positive mortality rates. Note

that the disease-associated hazard, l(t) is assumed to be

independent from background (disease-negative) mor-

D. T. GAUTHIER ET AL.1720 Ecological Applications
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tality. Disease-associated hazard l(t) thus potentially

includes mortality directly resulting from disease, as well

as indirect disease-related mortality mechanisms (e.g.,

higher susceptibility of diseased fish to capture or

predation). Cause-specific mortality is not implied by

l(t).
From the three-state model, a system of differential

equations can be constructed and solved for the state

probabilities N(t), P(t), and in turn m(t), which is defined

as the probability that an animal is disease positive

conditional on being alive at age t; i.e., Pr(P ¼ 1 j t) ¼
m(t). If k(t) and l(t) are assumed to not vary with age

such that k(t)¼ k and l(t)¼ l, then the link function for

age-specific apparent prevalence is

mcðtÞ ¼
1� e�ðk�lÞt

1� l
k

e�ðk�lÞt
ð1Þ

where the subscript c indicates that the hazard functions

are constant across age. Eq.1 specifies the age-specific

prevalence while adjusting for the potentially higher

mortality rate of disease-positive animals. Note that the

disease-negative mortality hazard d(t) has no influence

on mc(t) (Cohen 1972, Heisey et al. 2006).

The assumption that the infection hazard is invariant

with respect to age is often unrealistic. However,

relaxation of this assumption generally requires specifi-

cation of a functional form for the age-specific infection

hazard. Following the lead of Heisey et al. (2006), we

specify the following models.

Weibull: kðtÞ ¼ abðatÞb�1 ð2Þ

Pareto: kðtÞ ¼ ab
1þ bt

ð3Þ

Gompertz: kðtÞ ¼ eaþbt ð4Þ

Log-logistic: kðtÞ ¼ abðatÞb�1

½1þ ðatÞb�
ð5Þ

where for all models a and b are scale and shape

parameters, respectively, that control age dependency.

Note that the Pareto is technically not an ‘‘age-varying’’

infection hazard model, but it is included with this group

because its assumption of heterogeneous hazard offers

flexibility to the baseline hazard function. Unlike the

first three models, the log-logistic model allows the

hazard to achieve a peak (i.e., it is not monotonic).

Investigation of the influence of covariates on the

infection hazard is accomplished in the following

manner:

kðtÞ ¼ k0ðtÞeXb: ð6Þ

Here k0 is the baseline force-of-infection, X is the design

matrix, and b is the vector of parameters associated with

the covariates. The unit hazards ratio eb measures how

much of a unit change the ith covariate, modeled as eXb,

shifts k(t) up or down (Collett 2003, Heisey et al. 2006).

In the case of age-invariant infection hazard, k is not

dependent on t, and Eq. 6 simplifies to k ¼ k0e
Xb.

Application of the above age-variant hazard models

within the three-state irreversible disease model frame-

work does not allow for a closed-form solution of m(t).
To overcome this difficulty, we use a recently developed

piecewise approximation method that facilitates compu-

tation of m(t) for any age-varying hazard function.

Details of this method are given in Heisey et al. (2006).

The confidence intervals around bi and l were

generated by a profile likelihood approach. Models

were refitted using fixed individual parameters h
surrounding the original estimated parameter ĥ. The

95% confidence interval around ĥ was defined as the set

of h for which the likelihood ratio statistic G2 ¼ 2(Lĥ �
Lh) was ,3.84(v2

0:05;1) (Venzon and Moolgavkar 1988,

Heisey et al. 2006).

Application to striped bass.—We fitted eight model

structures with varying parameterizations for each

specified force-of-infection, either k or k(t) depending

on the assumptions of age dependency. All models were

fitted using the R function (R Development Core Team

2005) given in the supplement of Heisey et al. (2006).

Age-1 through Age-10 fish were treated as individual age

classes, while Age-11þ fish were binned. Four hundred

FIG. 2. Three-state irreversible disease model
(see Heisey et al. 2006).
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intervals were used to estimate m(t) with piecewise

methods (Heisey et al. 2006). Age-invariant hazard

models included parameterization with or without the

mortality term l and age, sex, cruise (season), and/or

year as covariates. The null model included only

parameter(s) associated with the form of k. Models

including age as a covariate were intended to examine

age dependency of force-of-infection. These models

allowed ln k to vary linearly (b0 þ b1t) or quadratically
(b0þb1t

2) with age. Since mc(t) already incorporated age,

including age as a covariate led to a model that did not

correspond to a solution of the differential equations

from the three-compartment model and thus did not

have a hazards-based interpretation. However, inclusion

of age as a covariate gave the model some flexibility and

allowed examination of the assumption of age invari-

ance of k. If the inclusion of age as a covariate

significantly improved model fit, then it was likely that

assumption of age invariance of the infection hazard was

incorrect and models other than mc(t) needed to be

considered (Heisey et al. 2006). The final age-invariant

hazard model included year as a covariate in order to

examine the possibility that apparent prevalence varied

annually.

Models incorporating age-variant force-of-infection

functions were fitted according to the piecewise approx-

imation method of Heisey et al. (2006). A total of 32

models including combinations of covariates sex and

cruise and the mortality parameter l were fitted.

Individual hazard ratios were calculated for cruises 2–

5, with cruise 1 set as the reference level, and for sex,

with males as the reference category. All model fits were

assessed with Akaike’s Information Criterion (AIC;

Burnham and Anderson 2002). Likelihood ratio testing

was used to examine differences between parameteriza-

tions including l and corresponding nested parameter-

izations not including l (Woodward 2005).

RESULTS

Apparent prevalence

The analyses presented here include 1420 striped bass

collected during the 2003–2005 sampling years. Of these,

519 were female and 901 were male. Ages 1–16 were

represented in the sample, with the majority of fish

between Ages 1 and 4 (n ¼ 1152 fish).

Apparent prevalence increased by age category

through Age 5 for both male and female fish, reaching

80.0% and 88.9%, respectively (Fig. 3). Prevalence in

Age-6 males and females was 47.8% and 100%,

respectively, although the latter value is based on a

sample size of four fish. Apparent prevalence was .85%

for Age-7þ males, whereas a marked reduction in

apparent prevalence was observed in Age-7þ females.

Age-invariant k models.—The linear age covariate

model did not demonstrate appreciably improved fit to

the observed data relative to the constant k model

without age covariate. Fit was markedly improved,

however, in all parameterizations of the quadratic age

covariate model (Table 1). The improved fit of the

quadratic age covariate model indicated that assumption

of age invariance of k within mc(t) was incorrect, and

incorporation of hazard functions describing age variance

of k was warranted. Treatment of year as a covariate did

not improve fit significantly for any parameterization.

This indicated that prevalence did not vary on an annual

basis over the period of the study, and inclusion of year

as a model covariate was contraindicated.

Age-variant models: k(t).—Among age-variant force-

of-infection models, the log-logistic yielded consistently

better model fits for all combinations of covariates and l
when compared to Weibull, Pareto, and Gompertz

FIG. 3. Age-specific apparent mycobacteriosis prevalence for male (gray bars) and female (open bars) striped bass collected by
the ChesMMAP survey during 2003–2005. Sample size is shown above each bar.

D. T. GAUTHIER ET AL.1722 Ecological Applications
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hazard functions. The most fully parameterized log-

logistic model, which included sex and cruise covariates

as well as l, produced the lowest AIC value and was

thus the reference model for comparisons. Inclusion of

disease-associated mortality l improved model fit

significantly in all parameterizations of the log-logistic

model (likelihood ratio test, P � 0.001). Inclusion of

cruise alone as a covariate improved model fits

considerably, whereas only modest decreases in DAIC

were observed for models including sex alone (Table 1).

For the best-fitting model (log-logistic, sex, cruise, l),
the unit hazard ratio for female relative to male fish was

0.78 (95% CI: 0.68–0.88). Hazard ratios for cruises 2–5

relative to cruise 1 were 1.23 (1.20–1.26), 1.29 (1.26–

1.32), 1.79 (1.75–1.84), and 2.10 (2.00–2.20), respectively

(Fig. 4).

The disease-associated mortality term l was estimated

from the best-fitting model as 0.36, with a 95% profile

likelihood confidence interval of 0.18–0.59. The annual

survival ratio of a diseased animal relative to a non-

diseased animal is calculated as e�l (Heisey et al. 2006).

Relative to a non-diseased fish, the survival probability

of a diseased fish from age t to t þ 1 was therefore

estimated as 0.69 (0.55–0.84). From the analysis per-

formed above, it appeared that inclusion of disease-

specific mortality in force-of-infection models was well

supported. The disparity between apparent prevalence

values in older female vs. male fish, however, generated

concern that decreased prevalence in the former may be

disproportionately driving estimations of l. In order to

more directly examine the relative contributions of sex-

specific apparent prevalence patterns to the estimate of l,
an additional analysis was performed under log-logistic

infection hazard and cruise covariate with data stratified

by sex. For male striped bass, e�l was estimated as 0.79

(0.57–1.01), and the DAIC value for l-containing vs.

non-l-containing models decreased to 1.62. Likelihood

ratio testing gave marginal support for l models vs. non-

l models (P¼ 0.057). For female fish, estimated e�l was

0.49 (0.22–0.76). DAIC between l-containing and non-l-
containing models was 11.9, and likelihood ratio testing

indicated significant improvement of model fit for the l-
containing model (P , 0.001).

DISCUSSION

Apparent prevalence of mycobacteriosis in male fish

increased with age, reaching its highest levels in Age-7þ
fish. Apparent prevalence in female fish was similar to

that in males through Age 5; however, prevalence

declined considerably in older female fish. Striped bass

are sexually dimorphic with respect to growth dynamics

and migratory behavior. The rate at which female fish

approach their maximum size, as well as maximum size

attained, are greater than those of males (Murdy et al.

1997, McNamee 2007). It is generally thought that

female fish begin migration outside Chesapeake Bay at

an earlier age than males. The degree to which this

occurs, however, is unclear (Kohlenstein 1981, Dorazio

et al. 1994), and recent otolith microchemistry analyses

have indicated that large numbers of both female and

male fish may remain resident in Chesapeake Bay

throughout their lives (Secor and Piccoli 2007). The

reason for the marked difference in prevalence between

older male and female fish may lie in differing migratory

patterns, spawning stresses, or other life history

differences. Better information about the life history of

striped bass, as well as risk factors for development of

mycobacteriosis, will be necessary to explore these

hypotheses.

The three-compartment irreversible disease model

used in this study makes the explicit assumption that

reversion to a non-diseased state does not occur (i.e.,

once a fish is diseased it will remain detectably diseased).

Therefore, the decline in prevalence observed in older

female fish is expressed by this model as disease-

associated mortality. Similar assumptions of disease

TABLE 1. Assessment of model fits based on Akaike’s information criteria.

Models

DAIC

Null l Sex Sex, l Cruise Cruise, l Cruise, Sex Cruise, Sex, l

Age-invariant k
Constant k 97.3 92.8 78.3 69.8 43.1 44.4 30.3 30.5
Linear age 87.7 88.7 69.8 69.9 42.7 43.8 29.5 31.4
Quadratic age 80.1 69.8 61.9 60.6 36.4 17.1 23.9 13.5
Year 98.5 94.7 80.9 72.8 44.8 46.5 32.7 33.2

Age-variant k
Weibull 95.9 93.9 75.5 69.7 41.0 41.0 32.3 26.2
Gompertz 88.6 90.6 68.8 70.1 42.9 44.8 29.7 31.7
Pareto 90.6 92.2 70.6 70.7 43.5 45.5 30.3 32.0
Log-logistic 83.3 73.0� 65.0 56.2� 26.3 7.6� 15.5 0�

Notes: Age-invariant models use the link function mc(t). The null model includes only parameter(s) associated with the form of k.
Age is included as a covariate in ‘‘linear’’ (ln k¼b0þb1t) and ‘‘quadratic’’ (ln k¼b0þb1t

2) models. Year is included as a covariate
in the ‘‘year’’ model. Age-variant force-of-infection models use different hazard functions to describe k(t) as defined in the text.
Covariate parameterizations are in columns, and all fits for all models are calculated relative to the best-fit model (log-logistic, sex,
cruise, l). In all cases, significantly better fits were observed in models containing l (P � 0.001). Where models have more than one
parameter, they are not interactions.

� Models containing l were compared to their respective restricted model in which l¼ 0 with the likelihood ratio test.
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irreversibility have been made explicitly or implicitly in

previous studies of mycobacteriosis in wildlife (Ander-

son and Trewhella 1985, Caley and Hone 2002, Heisey et

al. 2006), and it is generally assumed that mycobacte-

riosis in fishes is chronic, progressive, and ultimately

fatal (Van Duijn 1981, Frerichs 1993, Decostere et al.

2004). Regression or resolution of mycobacteriosis in

naturally or experimentally infected fishes has not, to

our knowledge, been described. Long-term (45 weeks)

experimentally induced mycobacterial infections in

striped bass resulted in progressive granuloma forma-

tion and, in M. marinum infections, secondary recru-

descent disease (Gauthier et al. 2003). Death of diseased

female wild striped bass in Chesapeake Bay, perhaps due

to energetic demands of spawning and migration, is

therefore plausible and not contraindicated by available

data. The ability of mycobacteria of human and

veterinary importance to enter latency, however, is well

known (Flynn and Chan 2001), and the possibility that

fishes (striped bass in particular) may in some circum-

stances resolve mycobacterial granulomas remains an

important consideration to the model used in this study.

Simple models of disease dynamics often assume that

force-of-infection is constant through time. This as-

sumption, however, is seldom realistic in natural

systems, as force-of-infection can vary considerably

with several factors, including host/pathogen density

and life history traits (Scott and Smith 1994). The

assumption of age-invariant k in modeling these data

was tested with ‘‘diagnostic’’ models incorporating age

as a covariate (Heisey et al. 2006). The improved fit of

these models suggested age dependency of k(t), and

indicated the use of more complex hazard functions

describing force-of-infection in the context of m(t). It is
worth noting that we assumed age-invariant disease-

associated mortality (l). Age-variant disease-associated

mortality could have significant implications for this

model, and future efforts will explore this possibility.

Model parameterizations including year as a covariate

were applied assuming age-invariant k in order to test

possible effects of annual variation in disease prevalence.

The apparent constancy of annual prevalence demon-

strated by these parameterizations indicates that annual

prevalence of mycobacteriosis in Chesapeake Bay

striped bass was stable from 2003 to 2005. Diseases

with low pathogenicity and long persistence times

generally tend toward endemicity (Anderson and May

1979), and it may be that striped bass mycobacteriosis

would best be described as an endemic, rather than

epidemic disease. An additional consideration is the

recent, large fluctuation in striped bass population size.

Striped bass populations along the eastern seaboard of

the United States experienced a collapse in the late 1970s

and 1980s, followed by a robust recovery thought to be

due primarily to fishing moratoria and favorable

environmental conditions leading to strong recruitment

(Field 1997, Richards and Rago 1999). The level of

disease prevalence currently observed may be related in

part to increased host density, and may therefore have a

different ‘‘stable’’ level when striped bass populations

are lower. Unfortunately, comparable historical infor-

mation about bay-wide disease prevalence is not

available, so meaningful inferences about long-term

disease trends are not possible. Accommodation of

calendar time as well as age influences in the force-of-

infection models used in this work is theoretically

feasible, but will require long-term data sets to avoid

confounding effects (Heisey et al. 2006).

Age-variant models using the log-logistic hazard

function demonstrated markedly improved fit over

models using Weibull, Gompertz, or Pareto hazard

functions. The improved fit of the log-logistic model is

perhaps not surprising, as the freedom of the log-logistic

hazard function to peak lends it flexibility not found in

monotonic models (Collett 2003). Lower initial force-of-

infection values may reflect a lag period between

infection and disease expression in younger fish.

Interpretation of the post-modal decline in force-of-

infection with increasing age is dependent in large part

on the mechanism(s) of mycobacterial transmission to

FIG. 4. Force-of-infection, k(t), calculated from the best-fit
model (log-logistic, sex, cruise, l) for (a) male and (b) female
striped bass. Cruises: 1 (solid diamond), 2 (open square), 3
(solid triangle), 4 (X), and 5 (open triangle) represent March,
May, July, September, and November, respectively, from 2003
to 2005.
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striped bass. Transmission of mycobacteriosis in fishes is

poorly understood, although ingestion appears to be an

important route (Ross and Johnson 1962, Ross 1970,

Hariff et al. 2007). Transovarian transmission has been

reported for livebearing fishes (Conroy 1966). The

degree to which mycobacteria are transmitted to wild

fishes from environmental matrices, as well as the

occurrence of fish-to-fish transmission in natural habi-

tats are unknown. The latter process would almost

certainly incur density dependency of force-of-infection,

and declining force-of-infection with age could readily

be attributed to lower densities of susceptible (negative)

hosts. Potential relationships between declining age-

specific force-of-infection and mechanisms of indirect

waterborne transmission are less straightforward, and

development of relevant hypotheses will require a better

understanding of the host–pathogen ecology of this

disease.

Based on DAIC estimation of model fit, both cruise

and sex covariates were found to influence infection

hazard in the log-logistic model (Fig. 4). Female fish

were found to have a lower infection hazard than male

fish, and hazard by cruise increased as the year

progressed. Sex-specific differences in force-of-infection

are likely related to life history differences (e.g.,

migration), and may also be due to physiological

differences such as spawning stress. Seasonality of

hazard may be due to environmental stressors, such as

increased summer temperatures and seasonal hypoxia

found in Chesapeake Bay (Kemp et al. 2005). Region

was not included as a covariate in these analyses, as the

highly migratory nature of striped bass would make

interpretation of regional effects on the model difficult.

Both DAIC model comparisons and likelihood ratio

testing supported the inclusion of disease-associated

mortality l as a model parameter. Additionally, the 95%

confidence interval around the estimated value of

disease-associated mortality e�l did not include unity.

Taken together, these analyses indicated that, under the

assumptions of this modeling approach, significant

disease-associated mortality occurred in Chesapeake

Bay striped bass. The manner or degree in which

mycobacteriosis may be regulating the striped bass

population, however, remains unknown. Development

of predictive dynamic models of disease effects on the

striped bass population is beyond the scope of this work;

however it is our hope that the model presented here will

lay the foundations for future efforts of this type.

Bias toward overestimation or underestimation of

prevalence can be expected to have specific effects on the

models described in this study. Prevalence underestima-

tion would be expected to mimic disease-associated

mortality, leading to inflated estimates of l and

improved model fits for parameterizations including l.
Conversely, overestimation of prevalence would be

expected to produce underestimates of l. Disease status

in this study was determined based on histologic

detection of splenic granulomas. This approach has also

been used in previous studies of mycobacteriosis in

striped bass (e.g., Overton et al. 2003); however its

specificity is imperfect due to the occasional presence of

other granuloma-eliciting agents. Acid-fast staining may

be used to positively identify mycobacteria in tissue

sections; however, acid-fast bacilli (AFB) are not always

visible in mycobacterial granulomas of fishes (Daoust et

al. 1989, Colorni et al. 1998, Gauthier et al. 2003), and

classifying disease status by presence of AFB is therefore

likely to underestimate prevalence. By erring on the side

of prevalence overestimation, we have therefore taken a

conservative approach toward estimation of l. Sampling

may represent another source of prevalence bias in this

study, as it is possible that disease status may influence

relative capture probability of fish by the ChesMMAP

trawl gear. As mycobacteriosis generally results in

debilitation of affected fishes, it seems plausible that

the direction of bias in this case would be towards

collection of diseased individuals. This would again be

expected to make the analysis more conservative with

respect to estimation of l; however we acknowledge that
effects of disease on relative distribution and catchability

of striped bass are unknown.

Disease-associated mortality was demonstrated at the

level of the entire data set, which included both male and

female fish. Visual inspection of the apparent prevalence

data, however, gives the impression that sex-specific

disease processes may be present. Moreover, the

depression of apparent prevalence in older female fish

begs the question of whether this group may be

disproportionately driving the model-estimated mortal-

ity. Refitting the full log-logistic model to male fish alone

narrowly failed to reject the null hypothesis of no

mortality (likelihood ratio test, P ¼ 0.057). Sensitivity

analysis, however, indicated that recategorizing 5% of

disease-positive male fish to disease negative was

sufficient to reject the null hypothesis and support the

model in which l 6¼ 0. These results may best be

interpreted as indicating that disease-associated mortal-

ity in male fish, if it occurs, is modest.

The striped bass is an economically and ecologically

important finfish along the eastern seaboard of the

United States. As such, high prevalence of a potentially

lethal infectious disease in this species is of considerable

concern to fisheries managers and user groups. In this

work, we provide the first evidence for mycobacteriosis-

associated mortality in striped bass of Chesapeake Bay,

the dominant breeding and nursery ground for the

striped bass along the Atlantic coast. This evidence is

based on a novel modeling approach to estimating force-

of-infection from age-prevalence data (Heisey et al.

2006). The method we describe here depends on several

assumptions, including irreversibility of disease and age-

invariant disease-associated mortality. These assump-

tions are reasonable given the current understanding of

mycobacterial pathobiology in fishes, but require

testing, especially in the context of wild populations.

We intend this work to drive formulation of hypotheses
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to test these assumptions, and thus to aid in develop-

ment of more sophisticated models of disease dynamics

based on directed field and experimental data.
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