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[1] The rate of high energy cosmic ray muons as measured
underground is shown to be strongly correlated with upper-
air temperatures during short-term atmospheric (10-day)
events. The effects are seen by correlating data from the
MINOS underground detector and temperatures from the
European Centre for Medium Range Weather Forecasts
during the winter periods from 2003–2007. This effect
provides an independent technique for the measurement of
meteorological conditions and presents a unique
opportunity to measure both short and long-term changes
in this important part of the atmosphere. Citation: Osprey,

S., et al. (2009), Sudden stratospheric warmings seen in MINOS

deep underground muon data, Geophys. Res. Lett., 36, L05809,

doi:10.1029/2008GL036359.

1. Introduction

[2] Primary cosmic rays, consisting of protons and other
nuclei, are constantly entering the solar system producing a
flux of around 70 m�2 sr�1 s�1 for particles above 1 GeV at
the top of the atmosphere [Gaisser, 1990]. The subsequent
interactions in the atmosphere (peaking at an altitude of
about 15 km) produce short-lived mesons (charged pions
and kaons) which can then decay, producing muons. Muons
are penetrating particles with a relatively long lifetime and
can be observed on the Earth’s surface and deep under-
ground. The minimum muon energy required to reach 705 m
underground, the location of the MINOS detector used in
this study, is 0.7 TeV.
[3] There are two mechanisms by which the condition of

the atmosphere affects the muon rate. Firstly, an increase in
temperature causes the atmosphere to expand so muons are
produced higher up and therefore have a larger probability
to decay before being detected. Secondly, the mesons may
interact (and thereby be lost) as well as decay. As the
temperature increases, the probability of interaction
becomes smaller because the local atmospheric density
decreases, so more mesons decay, causing an increase in
the muon rate. In deep underground detectors where muons
with a high surface energy are measured, the second effect
dominates and this causes a positive correlation between
temperature and muon rate.This was first seen in a seasonal
variation of the muon rate [Ambrosio et al., 1997].
[4] In the atmosphere, planetary Rossby waves can have

horizontal wavelengths of several thousand kilometers
[Andrews et al., 1987]. These waves propagate up from
the troposphere to the stratosphere during winter [Charney
and Drazin, 1961] and have an association with high-
latitude vortex structures in the upper atmosphere. In
analogy to water waves these waves can break causing
temperatures in the polar stratosphere to rise by over 50 K in
a few days. These events are known as Sudden Stratospheric

Warmings (SSW) and appear as a displacement or splitting
of a large persistent low pressure system which resides over
the pole, known as the wintertime stratospheric polar
vortex. These events are observed as anomalous changes
in temperature and wind at high latitudes. The frequency of
SSW are thought to be tied loosely to the wind direction in
the tropical stratosphere [Holton and Tan, 1980] and sea-
surface temperatures [Chen et al., 2003]. The distribution of
the major land-masses provides a means of generating these
waves, as air is pushed up as it moves over steep terrain.
Consequently most recorded instances of SSW have oc-
curred in the Northern Hemisphere where most land surface
is found, with only one recorded instance in the Southern
Hemisphere [Varotsos, 2002].
[5] SSW were discovered in the early 1950s by Scherhag

using radiosonde measurements over Berlin [Scherhag,
1952]. Since then, radiosonde measurements have provided
the mainstay in recording meteorological data in the upper
troposphere and lower stratosphere. However, rocket sound-
ings, LIDAR, airborne observatories and satellite measure-
ments have increasingly improved our understanding of the
upper atmosphere and phenomena such as SSW. This paper
provides the first observational evidence of a SSW in the
Northern Hemisphere using secondary cosmic ray muons
deep underground.

2. MINOS Far Detector

[6] For this measurement, the MINOS neutrino detector
was used to detect muons [Adamson et al., 2007]. The 5400
tonne detector (D. G. Michael et al., manuscript in prepa-
ration, 2009) consists of 486 vertical magnetised steel sheets
interleaved with plastic scintillator detector planes, which
are regular octagons, 8 m from side-to-side. The detector is
29 m long. The scintillator planes are segmented into 4.1 cm
strips in alternating perpendicular directions to allow parti-
cle tracks to be viewed in two orthogonal 2D views. The
passage of muons is detected with photomultiplier tubes and
both pulse height and arrival times are digitised. Pattern
recognition software is used to reconstruct tracks, first in 2D
and then 3D. Tracks are required to pass through at least
five of the 2.56 cm thick steel planes (a threshold local
muon energy of 200MeV) to remove the chance of noise or
radioactively induced hits accidentally forming a track.
High efficiency and therefore a high stability for counting
muons is achieved by designing the reconstruction software
to tolerate missing hits along the track. This results in a total
acceptance for the MINOS Far Detector to single atmo-
spheric muons of (1 � 107) cm2 sr [Adamson et al., 2007;
Rebel, 2004] for the above data selection. The detector has
been operational from August 2003 to the present with a
live-time percentage in the time period analysed in this
paper of 93.4%.
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[7] Upper-air temperature data were provided by the
British Atmospheric Data Centre (BADC). This comprised
the 4-daily Operational Analysis data from the European
Centre for Medium-Range Weather Forecasts (ECMWF).
These data combine a range of environmental data in a
meteorologically consistent fashion using a process known
as data assimilation [Courtier et al., 1994; ECMWF, 2007].
An added advantage of these data is that they are contiguous
both spatially and in time. For temperature data, these
comprise (interpolated) 1� by 1� globally gridded data and
provide 21 discrete pressure levels extending from the
surface to 1 hPa (about 48 km) altitude.
[8] Following Barrett et al. [1952] and Ambrosio et al.

[1997], a single combined effective temperature T is defined
by making a weighted average temperature as a function of
altitude as shown in Figure 1. The weighting is given by the
distribution of altitudes where the mesons which cause
observed muons in MINOS occur, based on analytic calcu-
lation [Ambrosio et al., 1997; Gaisser, 1990]. Figure 1
shows that most of the mesons are located about the
tropopause (�100 hPa) where temperature is least
variable. However, some mesons exist in the troposphere
(below �300 hPa), where baroclinic weather systems are
associated with most of the variability. Mesons also occur in
the mid–stratosphere (above �10 hPa) which experiences
variability (especially during wintertime) due to a more
pronounced annual cycle than at lower altitudes, the pres-
ence of large–scale waves and decreasing air density. The
average over the 21 pressure levels, using weights shown in
Figure 1, gives the effective temperature T. To obtain data
suitable for this study, a linear interpolation was performed
(in longitude and latitude) using the ECMWF temperatures
nearest the MINOS Far Detector.

3. Results

[9] The position of the polar vortex on February 6, 2005
is shown in Figure 2 which is at a time of low temperatures.
Also shown is the location of the MINOS detector, in the

town of Soudan, Minnesota, USA at lat. 47.8�N, lon.
92.2�W. Ertel’s Potential Vorticity, usefully conserved over
a period of several days in the stratosphere, is a measure of
the location, size and shape of the winter polar vortex, is
also shown in Figure 2. During this time, part of the polar
vortex covers the MINOS site. The presence of the polar
cyclone brings with it cooler temperatures and relatively
strong westerly winds (not shown). The shape of the
vortex is elliptical which suggests that large-scale Rossby
waves are present and propagating up into the stratosphere.
These waves are linked intimately with the Aleutian High
(a region of high pressure located about the North Pacific).
The region of high temperature seen in Figure 2 identifies
the position of this anticyclone. By February 16, the shape
of the polar vortex has changed and no longer extends
over Soudan (Figure 2, bottom). Furthermore, the Aleutian
High has broadened and reaches longitudes near Soudan.
This behaviour is suggestive of a particular SSW event,
where the Aleutian High strengthens and displaces a
weakened polar vortex from the pole [Andrews et al.,
1987].
[10] The variation in muon rate R measured in MINOS

for the winter 2004–2005 and the corresponding effective
temperature T are shown as a function of time in Figure 3b.
To better highlight covariations in muon rate and tempera-
ture, a 5-day rolling average is applied twice to each
timeseries. The correlation of the daily unfiltered data is
0.90 with a regression coefficient a = (T/R) dR/dT of 0.87 ±
0.03. This value for a compares well with expectations
from a model of pion production and decay which predicts
a = 0.91 at MINOS depths [Ambrosio et al., 1997]. This
model gives an overestimate of a because kaons are
neglected (P. Adamson et al., manuscript in preparation,
2009). During late autumn and throughout winter, the
effective temperature gradually decreases before reaching
a minimum in early February. The boreal winter of 2004–
2005 had the lowest temperatures on record in the polar
stratosphere [Manney et al., 2006; Rex et al., 2006]. Linked
with this, ozone concentrations in the polar vortex were
anomalously low, and the amounts of polar stratospheric
clouds and chemically active chlorine were high [Tilmes et
al., 2006]. Throughout this time, variations in both effec-
tive temperature and muon flux are highly correlated. A
conspicuous feature in both muon flux and temperature is
seen in late winter (February); both show a sharp rise
followed by a fall over a period of 2–3 weeks during
which the muon rate changes by (4 ± 1)%. This behaviour
is consistent with Rossby wave activity which has been
associated with a split in the vortex in the lower strato-
sphere [Chshyolkova et al., 2007]. Following this warming
and cooling, temperatures and muon rate are seen to
increase once more, coinciding with an early final warming
(and break-up) of the vortex on March 10, with the
transition from winter to summer conditions. It is sug-
gested, that had polar temperatures not risen due to the
early break up of the winter vortex, greater ozone destruc-
tion may have occurred [Feng et al., 2007].
[11] The muon flux variation measured by MINOS and

the corresponding effective temperature are also shown for
the preceding (Figure 3a) and subsequent two winters
(Figures 3c and 3d). All years show a similarly strong
correlation between R and T. Similarly to the winter of

Figure 1. Muon Weighting Function. Scaling factor used
to determine effective temperature (blue, top axis, arbitrary
scale) and climatological temperature ±1 standard deviation
for the period 2003–2007 from ECMWF (solid yellow,
bottom axis).
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2004/2005, the other winter periods show times of increased
temperature and muon flux most likely associated with the
presence of Rossby waves (A. Charlton-Perez, personal
communication, 2007).

4. Discussion

[12] For the first time, daily variations in secondary
cosmic rays from an underground muon detector are shown

to be associated with planetary–scale meteorological phe-
nomena in the stratosphere. These phenomena occur over
timescales from around ten days to two weeks and are
intimately linked with the wintertime stratospheric polar
vortex. The correspondence with the MINOS data is strik-
ing, especially during the winter months. As a significant
fraction of tropospheric ionisation is thought to be produced
by secondary cosmic muon radiation [Aplin et al., 2005;
Bazilevskaya et al., 2008; Sloan and Wolfendale, 2008],

Figure 2. (left) Effective temperature and (right) potential vorticity at 850K for (top) 6 and (bottom) 16 February 2005
derived from ECMWF. Units are K and 10�4 K m2 kg�1 s�1, respectively. The location of Soudan is marked by an X.
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future work should include looking for these and related
effects in lower energy cosmic muons.
[13] Our results raise the possibility of utilising muon

detectors for meteorological applications. Other large un-
derground detectors around the globe should find their data
contain similar variability. The positive temperature effect
has only previously been seen in variations averaged over
seasons [Ambrosio et al., 1997]; here we have shown that
much shorter term variations can be seen. Since cosmic rays
were discovered in the 1930s, several datasets have been
accumulated. During this period, upper-air observations
were largely restricted to balloons and were plagued by
biases that could change with time. These biases have only
recently been significantly reduced. Future studies may
show that the early cosmic ray data has captured useful
upper-air information which is beneficial to centres such as
the ECMWF, particularly as a basis for calibrating long term
trends in temperature.
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University of Athens, Greece, and Brazil’s FAPESP and CNPq. We are
grateful to the Minnesota Department of Natural Resources, the crew of the
Soudan Underground Laboratory, and the staff of Fermilab for their
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