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Let A and B be two factor von Neumann algebras. For A, B ∈ A,

define by [A, B]∗ = AB − BA∗ the new product of A and B. In this

paper, we prove that a nonlinear bijectivemapΦ : A → B satisfies

Φ([A, B]∗) = [Φ(A),Φ(B)]∗ for all A, B ∈ A if and only if Φ is a ∗-
ring isomorphism. In particular, if the vonNeumann algebrasA and

B are type I factors, thenΦ is a unitary isomorphism or a conjugate

unitary isomorphism.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

As a kind of new products in a ∗-ring, the operation XY − YX∗ was discussed in [6]. This product

XY − YX∗ is found playing a more and more important role in some research topics, and its study

has recently attracted many authors’ attention. This product was extensively studied because, by

the fundamental theorem of Šemrl in [6], maps of the form T �→ TA − AT∗ naturally arise in the

problem of representing quadratic functionals with sesquilinear functionals (see, for example, [7,8]).

Šemrl in [9] proved every Jordan ∗-derivation J : B(H) → B(H) (satisfying J(T2) = TJ(T) + J(T)T∗)
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is of the form J(T) = TA − AT∗, where B(H) denotes the algebra of all bounded linear operators on

a Hilbert space H. Motivated by the work of Šemrl and the theory of rings (and algebras) equipped

with a Lie product [T , S] = TS − ST or a Jordan product T ◦ S = TS + ST , Molnár recently in [5] ini-

tiated the systematic study of this new product, and studied the relation between subspaces and

ideals of B(H). Where he showed that if a subspace N of B(H) satisfies AB − BA∗ ∈ N for A ∈ B(H)
and B ∈ N , then N is an ideal; and also, if the dimension of H is an odd natural number, then

N = B(H). In addition, he proved that if H is of dimension greater than 1 and N ⊆ B(H) is an ideal,

then span{AB − BA∗|A ∈ N , B ∈ B(H)} = span{BA − AB∗|A ∈ N , B ∈ B(H)} = N . In [2], Brešar and

Fošner generalized Molnár’s results to rings with involution in different ways, and studied the rela-

tionship between (ordinary) ideals of a ring R and left and right ideals of Rwith respect to the product

AB − BA∗. Their approach is entirely algebraic and is completely different from one used by Molnár,

and it is based on discovering certain identities that connect the product AB − BA∗ with the initial,

associative product.

Let A and B be two ∗-rings. For A, B ∈ A, denote by [A, B]∗ = AB − BA∗ the new product of A and B.

A map φ : A → B is called new products preserving if φ([A, B]∗) = [φ(A),φ(B)]∗ for all A, B ∈ A. In

[1], the authors studied the bijective map preserving this new product on B(H), where H is a complex

Hilbert space of dimension greater than 2. They showed that such maps are in fact ∗-automorphisms

or conjugate ∗-automorphisms. This result shows that, in some sense, the new product AB − BA∗
structure is determine enough the ∗-algebraic structure of B(H). In this paper, we will discuss such

a problem on more general factor von Neumann algebras. We prove that such a bijective map on

factor von Neumann algebras must be a ∗-additive isomorphism (see Main Theorem). In particular,

if the factor is of type I, then ∗-isomorphism is spatial, which generalized the main result in [1] to

any complex Hilbert space case (see Corollary 1). We mention here the method used in [1] is not

completely fit for general von Neumann algebras since the notion of finite-rank is meaningless in

general von Neumann algebras.

As usual, R and C denote respectively the real field and complex field. Recall that a factor is a von

Neumann algebra whose center only contains the scalar operators. An algebra R is called prime if

ARB = {0} implies that A = 0 or B = 0. It is well known that every factor von Neumann algebra is a

prime algebra.

Our main result is as follows:

Main Theorem. Let A and B be two factor von Neumann algebras. Assume that Φ : A → B is a bijective

map. Then Φ satisfies Φ(AB − BA∗) = Φ(A)Φ(B) − Φ(B)Φ(A)∗ for all A, B ∈ A if and only if Φ is a

∗-ring isomorphism.

2. The proof of Main Theorem

In this section, we will complete the proof of the main theorem by proving several claims. The

following results will be used many times in the proof of theorem.

Lemma 1. Let A be a factor von Neumann algebra, and A ∈ A. Then AB = BA∗ for every B ∈ A implies

that A ∈ RI.

Proof. In fact, take B = I, then A = A∗, and therefore, AB = BA for every B ∈ A, hence A belongs to

the center of A. Note that A is a factor, it follows that A ∈ RI. �

Lemma 2. Let A be a factor von Neumann algebra, and B ∈ A. Then AB = BA∗ for every A ∈ A implies

that B = 0.

Proof. It follows that AB = BA for every Hermitian element A, and hence AB = BA for every A ∈ A
since A = A+A∗

2
+ i A−A∗

2i
, where A+A∗

2
and A−A∗

2i
are Hermitian. So there exists a scalar α ∈ C such

that B = αI. Taking A ∈ A such that A /= A∗, one has α(A − A∗) = 0, and consequently, α = 0 and

B = 0. �
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Proof of Main Theorem

Claim 1. Φ(0) = 0.

For any A ∈ A, we haveΦ(A)Φ(0) − Φ(0)Φ(A)∗ = Φ(0). It follows from the surjectivity ofΦ that

there exists A ∈ A such that Φ(A) = iI (where, i is the imaginary number unit), so 2iΦ(0) = Φ(0),
and hence Φ(0) = 0.

Claim 2. Φ(RI) = RI, Φ(CI) = CI and Φ preserves Hermitian elements in both directions.

Claim 1 and the injectivity of Φ imply that

AB = BA∗ ⇔ Φ(A)Φ(B) = Φ(B)Φ(A)∗ for all A, B ∈ A. (2.1)

Let α ∈ R be arbitrary. Then the equality αI · A = A · (αI)∗ (∀A ∈ A) implies that Φ(αI)Φ(A) =
Φ(A)Φ(αI)∗. Now the surjectivity of Φ ensures that

Φ(αI)S = SΦ(αI)∗ for all S ∈ B.

Lemma1 implies thatΦ(αI) ∈ RI. A similardiscussion implies thatΦ(A) ∈ RI ⇒ A ∈ RI. SoΦ(RI) =
RI.

For any Hermitian element A ∈ A (that is, A∗ = A), Eq. (2.1) implies that Φ(A)Φ(I) = Φ(I)Φ(A)∗,
and hence it follows fromΦ(I) ∈ RI andΦ(I) /= 0 thatΦ(A) = Φ(A)∗. Conversely, assume thatΦ(A)
is Hermitian. Then, it follows fromΦ(RI) = RI and Eq. (2.1) again that A is Hermitian. SoΦ preserves

Hermitian elements in both directions.

Let α ∈ C be arbitrary. Then, for every Hermitian element A ∈ A, the equality A · αI = (αI) · A∗
implies that Φ(A)Φ(αI) = Φ(αI)Φ(A)∗. Since Φ preserves Hermitian elements in both directions,

it follows from the surjectivity of Φ that SΦ(αI) = Φ(αI)S for every Hermitian element S ∈ B, and
therefore, TΦ(αI) = Φ(αI)T for all T ∈ B since T = S1 + iS2 with S1 and S2 being Hermitian, so

Φ(αI) ∈ CI. A similar discussion implies that Φ(A) ∈ CI ⇒ A ∈ CI. So Φ(CI) = CI.

Claim 3. Φ(iA) = iΦ(A) (∀A ∈ A) or Φ(iA) = −iΦ(A) (∀A ∈ A) and Φ preserves projections in both

directions.

Applying Claim 2, we have Φ
(
± 1

2
iI
)

∈ (C \ R)I and Φ
(
± 1

2
I
)

∈ RI. It follows from 1
2
iI =[

− 1
2
iI,− 1

2
I
]
∗ that

Φ

(
1

2
iI

)
= 2Φ

(
−1

2
I

)
Φ

(
−1

2
iI

)
, (2.2)

Also the equality − 1
2
I =

[
1
2
iI, 1

2
iI
]
∗ implies that

Φ

(
−1

2
I

)
= 2Φ

(
1

2
iI

)2

(2.3)

and − 1
2
I =

[
− 1

2
iI,− 1

2
iI
]
∗ ensures that

Φ

(
−1

2
I

)
= 2Φ

(
−1

2
iI

)2

. (2.4)

Now Eqs. (2.2)–(2.4) ensure that Φ
(
− 1

2
I
)

= − 1
2
I, and

Φ

(
1

2
iI

)
= ±1

2
iI. (2.5)
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So, for every A ∈ A, we have

Φ(iA) = Φ

([
1

2
iI, A

]
∗

)
=
[
Φ

(
1

2
iI

)
,Φ(A)

]
∗

=
(
Φ

(
1

2
iI

)
− Φ

(
1

2
iI

)∗)
Φ(A),

which, together with Eq. (2.5), implies that

Φ(iA) = iΦ(A) (∀A ∈ A) or Φ(iA) = −iΦ(A)(∀A ∈ A).

For every projection P ∈ A, since 2iP = iPI − I(iP)∗, we have Φ(2iP) = ±2iΦ(P), and hence,

±2iΦ(P) = Φ(2iP) = Φ([iP, P]∗) = [Φ(iP),Φ(P)]∗ = ±2iΦ(P)2,

so Φ(P)2 = Φ(P). That is, Φ(P) is a projection. Conversely, assume that Φ(P) is a projection. Since

Φ−1 has the same property as Φ has, a similar discussion implies that P is a projection. Hence Φ

preserves projections in both directions.

Claim 4. Let P(A) and P(B) denote respectively the set of all projections in A and B, then Φ : P(A) →
P(B) preserves the order and orthogonality in both directions.

Let P, R ∈ P(A) be arbitrary and PR = RP = 0. That is, P and R are orthogonal projections. Then it

follows from Claims 1 and 3 that

0 = Φ([iP, R]∗) = [Φ(iP),Φ(R)]∗ = ±i(Φ(P)Φ(R) + Φ(R)Φ(P)),

andconsequently,Φ(P)Φ(R) + Φ(R)Φ(P) = 0.Note thatΦ(P)andΦ(R)areprojections, soΦ(P)Φ(R)
= Φ(R)Φ(P) = 0. Conversely, if Φ(P) and Φ(R) are orthogonal projections in B, then a similar dis-

cussion implies that P and R are orthogonal projections. Hence Φ : P(A) → P(B) preserves the

orthogonality in both directions.

For any P, R ∈ P(A) with P � R, that is, PR = RP = P. By Claim 3,

±2iΦ(P) = Φ(2iP) = Φ([iP, R]∗) = [Φ(iP),Φ(R)]∗ = ±i(Φ(P)Φ(R) + Φ(R)Φ(P)),

and therefore, 2Φ(P) = Φ(P)Φ(R) + Φ(R)Φ(P). So Φ(P) = Φ(P)Φ(R) = Φ(R)Φ(P). That is,

Φ(P) � Φ(R). Let P, R ∈ P(A) such that Φ(P) � Φ(R), a similar discussion is applied to Φ−1, we

get that P � R, and hence, Φ : P(A) → P(B) preserves the order in both directions.

Claim 5. Let A ∈ A be an Hermitian element and λ ∈ R. Then

Φ(A) + Φ(λI − A) ∈ RI.

LetA ∈ A be anHermitian element andλ ∈ R. For everyHermitian elementX ∈ A, since [A, X]∗ =
[X , λI − A]∗, one has

[Φ(A),Φ(X)]∗ = [Φ(X),Φ(λI − A)]∗,
which, together with Claim 2, implies that, for every Hermitian element X ∈ A,

(Φ(A) + Φ(λI − A))Φ(X) = Φ(X)(Φ(A) + Φ(λI − A)).

It follows from Claim 2 again that Φ(A) + Φ(λI − A) commutes with every Hermitian element in B,
and hence, commuteswith every element inB, soΦ(A) + Φ(λI − A) ∈ CI. Note thatΦ(A) + Φ(λI −
A) is Hermitian, it follows that Φ(A) + Φ(λI − A) ∈ RI.

Choose an arbitrary nontrivial projection P1 in A and let P2 = I − P1. Then, Claims 2 and 3 ensure

that there exist nontrivial projections Qi (i = 1, 2) such that Φ(Pi) = Qi. By Claim 5, Q1 + Q2 = I. Let

i, j = 1, 2, write Aij = PiAPj and Bij = QiBQj , then

A =
2∑

i,j=1

Aij and B =
2∑

i,j=1

Bij.
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Claim 6. Φ(Aij) = Bij (i /= j).

Let i /= j and X ∈ Aij be arbitrary. Since X = [Pi, X]∗, we have

Φ(X) = [Φ(Pi),Φ(X)]∗ = QiΦ(X) − Φ(X)Qi.

It follows that Φ(X)Qi = 0 and Φ(X) = QiΦ(X), and hence QjΦ(X) = 0. So

Φ(X) =
2∑

i,j=1

QiΦ(X)Qj = QiΦ(X)Qj ∈ Bij.

That is, Φ(Aij) ⊆ Bij . Since Φ−1 has the same property as Φ has, we have Bij ⊆ Φ(Aij) Therefore,

Φ(Aij) = Bij .

Claim 7. Φ(Aii) = Bii (i = 1, 2).

Let j /= i. Set Q ∈ Bjj be an arbitrary projection. Then Qi + Q ∈ B is a projection and Qi + Q �Qi.

By Claims 3 and 4, there exists a projection PQ ∈ A with PQ � Pi such that Φ(PQ ) = Qi + Q . Since,

for every A ∈ Aii, we have [PQ , A]∗ = 0, it follows that [Qi + Q ,Φ(A)]∗ = 0, which, together with

[Qi,Φ(A)]∗ = 0, implies that

Φ(A)Q = QΦ(A) for every projection Q ∈ Bjj. (2.6)

Taking Q = Qj in Eq. (2.6) and multiplying Qi respectively from the left side and the right side of Eq.

(2.6), one obtains that

QiΦ(A)Qj = 0 and QjΦ(A)Qi = 0. (2.7)

Note that Bjj is a factor von Neumann algebra, and a von Neumann algebra is generalized by its

projections if and only if it has no infinite dimensional abelian summand (see, for example, [4]). It

follows from Eq. (2.6) that QjΦ(A)Qj ∈ CQj , which, together with Eq. (2.7), implies that, for every

A ∈ Aii, Φ(A) ∈ Bii + CQj .

For every Ai ∈ Aii, define a function fi : Aii → C as follows:

fi(Ai)Qj = QjΦ(Ai)Qj , where j /= i.

Then Φ(Ai) = QiΦ(Ai)Qi + fi(Ai)Qj . Take a nonzero element X ∈ Aij (i /= j). Then it follows from

[X , Ai]∗ = 0 that [Φ(X),Φ(Ai)]∗ = 0, that is,

Φ(X)(QiΦ(Ai)Qi + fi(Ai)Qj) = (QiΦ(Ai)Qi + fi(Ai)Qj)Φ(X)∗.
ByClaim6,Φ(X) ∈ Bij .MultiplyingQj fromthe right sideof theaboveexpression, onehas fi(Ai)Φ(X) =
0. Note thatΦ(X) /= 0, we have fi(Ai) = 0 for every Ai ∈ Aii. So fi(·) ≡ 0, and therefore,Φ(Aii) ⊆ Bii.

The same discussion is applied to Φ−1, the inverse inclusion relation can be similarly proved. Hence

Φ(Aii) = Bii.

Claim 8. For i, j = 1, 2, let Aij ∈ Aij , then

Φ(Aii + Aij) = Φ(Aii) + Φ(Aij), i /= j,

Φ(Aii + Aji) = Φ(Aii) + Φ(Aji), i /= j,

Φ(Aii + Ajj) = Φ(Aii) + Φ(Ajj), i /= j,

Φ(Aij + Aji) = Φ(Aij) + Φ(Aji), i /= j.

Let Φ(T) = Φ(Aii) + Φ(Aij). Then, for every Xjj ∈ Ajj , it follows from Claims 6 and 7 that

Φ([Xjj , T]∗) = [Φ(Xjj),Φ(T)]∗
= [Φ(Xjj),Φ(Aii) + Φ(Aij)]∗
= [Φ(Xjj),Φ(Aij)]∗ = Φ([Xjj , Aij]∗).
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This, together with the injectivity of Φ , implies that

Xjj(T − Aij) = (T − Aij)X
∗
jj for every Xjj ∈ Ajj. (2.8)

Multiplying Pi from the right side of Eq. (2.8), one has Xjj(T − Aij)Pi = 0 for every Xjj ∈ Ajj . That is,

PjXPj(T − Aij)Pi = 0 for every X ∈ A. Note that A is prime, so PjTPi = 0. Multiplying Pi from the left

side of Eq. (2.8), similarly, one gets that PiTPj = Aij . It follows from Eq. (2.8) again and Lemma 2 that

PjTPj = 0.

On the other hand, for every Xii ∈ Aii, by Claims 6 and 7, one has

Φ([T , Xii]∗) = [Φ(T),Φ(Xii)]∗
= [Φ(Aii) + Φ(Aij),Φ(Xii)]∗
= [Φ(Aii),Φ(Xii)]∗ = Φ([Aii, Xii]∗).

So (T − Aii)Xii = Xii(T − Aii)
∗ for every Xii ∈ Aii, and hence, there exists a real number αT such that

PiTPi = Aii + αTPi. Therefore T = ∑2
i,j=1 PiTPj = Aii + Aij + αTPi and

Φ(Aii + Aij + αTPi) = Φ(Aii) + Φ(Aij).

For every Xij ∈ Aij (i /= j), it follows from the above expression that there exists a real number α such

that

Φ(AiiXij − XijA
∗
ij + αTXij) = Φ([Aii + Aij + αTPi, Xij]∗)

= [Φ(Aii + Aij + αTPi),Φ(Xij)]∗
= [Φ(Aii) + Φ(Aij),Φ(Xij)]∗
= Φ([Aii, Xij]∗) + Φ([Aij , Xij]∗)
= Φ(AiiXij) + Φ(−XijA

∗
ij)

= Φ(AiiXij − XijA
∗
ij + αPi).

Thus αTXij = αPi, and hence αT = 0. So

Φ(Aii + Aij) = Φ(Aii) + Φ(Aij). (2.9)

For every Tjj ∈ Ajj , it follows from [Tjj , Aii + Aji]∗ = [Tjj , Aji]∗ that

[Φ(Tjj),Φ(Aii + Aji) − Φ(Aji)]∗ = 0.

By Claim 7, we have, for every Sjj ∈ Bjj ,

Sjj(Φ(Aii + Aji) − Φ(Aji)) = (Φ(Aii + Aji) − Φ(Aji))S
∗
jj .

A similar discussion just as Eq. (2.8) implies that

QjΦ(Aii + Aji)Qi = Φ(Aji), QiΦ(Aii + Aji)Qj = 0 and QjΦ(Aii + Aji)Qj = 0.

By Claim 7, there exists Bii ∈ Aii such that

QiΦ(Aii + Aji)Qi = Φ(Bii).

So

Φ(Aii + Aji) = Φ(Bii) + Φ(Aji).

For every Tji ∈ Aji (j /= i), the above expression and Eq. (2.9) imply that

Φ(−TjiA
∗
ii) + Φ(−TjiA

∗
ji) = Φ(−TjiA

∗
ii − TjiA

∗
ji) = Φ([Aii + Aji, Tji]∗)

= [Φ(Aii + Aji),Φ(Tji)]∗
= [Φ(Bii) + Φ(Aji),Φ(Tji)]∗
= Φ(−TjiB

∗
ii) + Φ(−TjiA

∗
ji).
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So Tji(A
∗
ii − B∗

ii) = 0 for every Tji ∈ Aji, and hence, Bii = Aii. Hence

Φ(Aii + Aji) = Φ(Aii) + Φ(Aji).

Let Φ(T) = Φ(A11) + Φ(A22). For every T11 ∈ A11, we have

Φ([T11, T]∗) = [Φ(T11),Φ(T)]∗ = [Φ(T11),Φ(A11) + Φ(A22)]∗ = Φ([T11, A11]∗).
This implies thatT11(T − A11) = (T − A11)T

∗
11 foreveryT11 ∈ A11, and thereforeP1TP2 = 0,P2TP1 = 0

and P1TP1 = A11. Similarly, one can prove that P2TP2 = A22. So

Φ(A11 + A22) = Φ(A11) + Φ(A22). (2.10)

For every Tii ∈ Aii, we have always [Aij + Aji, Tii]∗ = [Aji, Tii]∗ (i /= j). It follows that, for every Sii ∈
Bii,

(Φ(Aij + Aji) − Φ(Aji))Sii = Sii(Φ(Aij + Aji) − Φ(Aji))
∗,

so QjΦ(Aij + Aji)Qi = Φ(Aji) and there exists ξ ∈ R such that QiΦ(Aij + Aji)Qi = ξQi. Similarly, it

follows from [Aij + Aji, Tjj]∗ = [Aij , Tjj]∗ (∀Tjj ∈ Ajj) that QiΦ(Aij + Aji)Qj = Φ(Aij) and QjΦ(Aij +
Aji)Qj = μQj for some μ ∈ R. Thus

Φ(Aij + Aji) = Φ(Aij) + Φ(Aji) + ξQi + μQj. (2.11)

Take a nonzero element Tij ∈ Aij (i /= j), it follows from Eqs. (2.10) and (2.11) that

Φ(AjiTij) + Φ(−TijA
∗
ij) = Φ(AjiTij − TijA

∗
ij)

= Φ([Aij + Aji, Tij]∗)
= [Φ(Aij + Aji),Φ(Tij)]∗
= [Φ(Aij) + Φ(Aji) + ξQi + μQj ,Φ(Tij)]∗
= Φ(AjiTij) + Φ(−TijA

∗
ij) + (ξ − μ)Φ(Tij),

and hence (ξ − μ)Φ(Tij) = 0, so ξ = μ.

For all Tii ∈ Aii, it follows from Eq. (2.11) again that there exist η ∈ R such that

Φ(TiiAij) + Φ(−AjiT
∗
ii ) + ηQi + ηQj

= Φ(TiiAij − AjiT
∗
ii )

= Φ([Tii, Aij + Aji]∗)
= [Φ(Tii),Φ(Aij) + Φ(Aji) + ξQi + ξQj]∗
= Φ(TiiAij) + Φ(−AjiT

∗
ii ) + ξ(Φ(Tii) − Φ(Tii)

∗).

It follows that

ηQi + ηQj = ξ(Φ(Tii) − Φ(Tii)
∗) for all Tii ∈ Aii.

Multiply Qj in the above expression, then ηQj = 0, and hence η = 0 and

0 = ξ(Φ(Tii) − Φ(Tii)
∗) for all Tii ∈ Aii,

which implies that ξ = 0. Therefore

Φ(Aij + Aji) = Φ(Aij) + Φ(Aji).

Claim 9. Let Aij ∈ Aij (i, j = 1, 2). Then Φ
(∑2

i=1 Aij

)
= ∑2

i=1 Φ(Aij).

For every Tii ∈ Aii, since [Aii + Aij + Aji, Tii]∗ = [Aii + Aji, Tii]∗ (i /= j), it follows from Claim 7 that,

for every Sii ∈ Bii,

(Φ(Aii + Aij + Aji) − Φ(Aii + Aji))Sii = Sii(Φ(Aii + Aij + Aji) − Φ(Aii + Aji))
∗.
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Hence Claims 6–8 and Lemma 1 imply that QjΦ(Aii + Aij + Aji)Qi = Φ(Aji) and

QiΦ(Aii + Aij + Aji)Qi = Φ(Aii) + αQi for some α ∈ R.

For every Tjj ∈ Ajj , it follows from [Aii + Aij + Aji, Tjj]∗ = [Aij , Tjj]∗ (i /= j) and Claim 7 that, for every

Sjj ∈ Bjj ,

(Φ(Aii + Aij + Aji) − Φ(Aij))Sjj = Sjj(Φ(Aii + Aij + Aji) − Φ(Aij))
∗.

So QiΦ(Aii + Aij + Aji)Qj = Φ(Aij) and there exists β ∈ R such that QjΦ(Aii + Aij + Aji)Qj = βQj .

Thus

Φ(Aii + Aij + Aji) = Φ(Aii) + αQi + Φ(Aij) + Φ(Aji) + βQj. (2.12)

For every Tii ∈ Aii, it follows from Eq. (2.12) that there exist γ , δ ∈ R such that

Φ(TiiAii − AiiT
∗
ii ) + Φ(TiiAij) + Φ(−AjiT

∗
ii ) + γQi + δQj

= Φ(TiiAii + TiiAij − AiiT
∗
ii − AjiT

∗
ii )

= Φ([Tii, Aii + Aij + Aji]∗)
= [Φ(Tii),Φ(Aii) + αQi + Φ(Aij) + Φ(Aji) + βQj]∗
= Φ(TiiAii − AiiT

∗
ii ) + Φ(TiiAij) + Φ(−AjiT

∗
ii ) + α(Φ(Tii) − Φ(Tii)

∗).

So α = γ = δ = 0. On the other hand, for every Tjj ∈ Ajj , it follows from Eq. (2.12) and Claim 8 that

Φ(TjjAji) + Φ(−AijT
∗
jj ) = Φ(TjjAji − AijT

∗
jj )

= Φ([Tjj , Aii + Aij + Aji]∗)
= [Φ(Tjj),Φ(Aii) + Φ(Aij) + Φ(Aji) + βQj]∗
= Φ(TjjAji) + Φ(−AijT

∗
jj ) + β(Φ(Tjj) − Φ(Tjj)

∗),

and hence β = 0. So

Φ(Aii + Aij + Aji) = Φ(Aii) + Φ(Aij) + Φ(Aji). (2.13)

For every T11 ∈ A11,wehave [T11, A11 + A12 + A21 + A22]∗ = [T11, A11 + A12 + A21]∗. So, for every
S11 ∈ B11, it follows that

S11(Φ(A11 + A12 + A21 + A22) − Φ(A11 + A12 + A21))

= (Φ(A11 + A12 + A21 + A22) − Φ(A11 + A12 + A21))S
∗
11.

This, together with Eq. (2.13), ensures that

P1Φ(A11 + A12 + A21 + A22)P1 = Φ(A11),

P1Φ(A11 + A12 + A21 + A22)P2 = Φ(A12),

P2Φ(A11 + A12 + A21 + A22)P1 = Φ(A21).

By Claim 7, there exists C22 ∈ A22 such that

P2Φ(A11 + A12 + A21 + A22)P2 = Φ(C22).

Thus

Φ(A11 + A12 + A21 + A22) = Φ(A11) + Φ(A12) + Φ(A21) + Φ(C22).

For every T22 ∈ A22, it follows from the above expression and Eq. (2.13) that

Φ(T22A21) + Φ(−A12T
∗
22) + Φ(T22A22 − A22T

∗
22)

= Φ(T22A21 − A12T
∗
22 + T22A22 − A22T

∗
22)

= Φ([T22, A11 + A12 + A21 + A22]∗)
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= [Φ(T22),Φ(A11) + Φ(A12) + Φ(A21) + Φ(C22)]∗
= Φ(T22A21) + Φ(−A12T

∗
22) + Φ(T22C22 − C22T

∗
22).

So T22(C22 − A22) = (C22 − A22)T
∗
22 for every T22 ∈ A22, and hence, C22 = A22 and the claim holds.

Claim 10. Let Aii, Bii ∈ Aii and Aij , Bij ∈ Aij (i /= j). Then

Φ(Aij + Bij) = Φ(Aij) + Φ(Bij) and Φ(Aii + Bii) = Φ(Aii) + Φ(Bii).

It follows from [Pi + Aij , Pj + Bij]∗ = Aij + Bij − A∗
ij − BijA

∗
ij , Claim 8 and Eq. (2.13) that

Φ(Aij) + Φ(Bij) − Φ(Aij)
∗ − Φ(Bij)Φ(Aij)

∗

= [Qi + Φ(Aij),Qj + Φ(Bij)]∗
= [Φ(Pi + Aij),Φ(Pj + Bij)]∗
= Φ([Pi + Aij , Pj + Bij]∗)
= Φ(Aij + Bij − A∗

ij − BijA
∗
ij)

= Φ(Aij + Bij) + Φ(−A∗
ij) + Φ(−BijA

∗
ij).

Multiplying respectively Qi and Qj from the left side and right side of the above expression, one has

Φ(Aij + Bij) = Φ(Aij) + Φ(Bij).

Let Tij ∈ Aij (i /= j) be arbitrary. Applying the above expression, we have

Φ(Aii + Bii)Φ(Tij) = [Φ(Aii + Bii),Φ(Tij)]∗
= Φ([Aii + Bii, Tij]∗) = Φ(AiiTij + BiiTij)

= Φ(AiiTij) + Φ(BiiTij)

= Φ([Aii, Tij]∗) + Φ([Bii, Tij]∗)
= [Φ(Aii),Φ(Tij)]∗ + [Φ(Bii),Φ(Tij)]∗
= (Φ(Aii) + Φ(Bii))Φ(Tij).

Claim 6 implies that (Φ(Aii + Bii) − Φ(Aii) − Φ(Bii))Sij = 0 for all Sij ∈ Bij , and henceΦ(Aii + Bii) =
Φ(Aii) + Φ(Bii).

Claim 11. Let Aii, Bii ∈ Aii and Aij , Bij ∈ Aij (i /= j). Then

Φ(AiiBii) = Φ(Aii)Φ(Bii), Φ(AijBji) = Φ(Aij)Φ(Bji),

Φ(AiiBij) = Φ(Aii)Φ(Bij), Φ(AijBjj) = Φ(Aij)Φ(Bjj).

Let X ∈ Aij (i /= j) be arbitrary. Then Φ(AiiX) = Φ([Aii, X]∗) = Φ(Aii)Φ(X), and hence,

Φ(AiiBii)Φ(X) = Φ(AiiBiiX) = Φ(Aii)Φ(BiiX) = Φ(Aii)Φ(Bii)Φ(X)

for all X ∈ Aij . Now Claim 6 implies that

Φ(AiiBii) = Φ(Aii)Φ(Bii). (2.14)

From Claim 6, it follows that

Φ(AijBji) = Φ([Aij , Bji]∗) = [Φ(Aij),Φ(Bji)]∗ = Φ(Aij)Φ(Bji).

Thus, for every Tji ∈ Aji (j /= i), the above expression and Eq. (2.14) imply that

Φ(AiiBij)Φ(Tji) = Φ(AiiBijTji) = Φ(Aii)Φ(BijTji) = Φ(Aii)Φ(Bij)Φ(Tji),

and therefore,
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Φ(AiiBij) = Φ(Aii)Φ(Bij).

Similarly, for every Tji ∈ Aji (j /= i),

Φ(Tji)Φ(AijBjj) = Φ(TjiAijBjj) = Φ(TjiAij)Φ(Bjj) = Φ(Tji)Φ(Aij)Φ(Bjj).

So

Φ(AijBjj) = Φ(Aij)Φ(Bjj).

Claim 12. Φ : A → B is a ∗-ring isomorphism.

Claims 9 and 10 imply that Φ is additive. Next, we prove that Φ is multiplicative. For any A, B ∈ A,

write A = ∑2
i=1 Aij and B = ∑2

i=1 Bij . Then

AB = (A11B11 + A12B21) + (A11B12 + A12B22)

+ (A21B11 + A22B21) + (A21B12 + A22B22).

It follows from Claims 9, 10 and 11 that Φ(AB) = Φ(A)Φ(B).

For every A ∈ A, we have A = A+A∗
2

+ i A−A∗
2i

, where A+A∗
2

and A−A∗
2i

are self-adjoint. It follows from

Φ(iA) = ±iΦ(A) (∀A ∈ A) that Φ(A∗) = Φ(A)∗ for every A ∈ A, so Φ is a ∗-ring isomorphism.

The following corollary generalized the result in [1], where the author assume that the Hilbert

space is at least of dimension 3.

Corollary 1. Let A and B be type I factor von Neumann algebras acting on complex Hilbert spaces H and

K , respectively. Then a bijective map Φ : A → B satisfying Φ(AB − BA∗) = Φ(A)Φ(B) − Φ(B)Φ(A)∗
if and only if there exists a unitary or conjugate unitary operator U : H → K such that Φ(A) = UAU∗ for

every A ∈ A.

Proof. Since every ring isomorphism from A onto B is spatial, the result follows from Main

theorem. �

Corollary 2. LetA andB be vonNeumann algebras acting on complex Hilbert spaces H and K , respectively.
Assume thatA andB are finite factors. Then a linear bijective mapΦ : A → B satisfyingΦ(AB − BA∗) =
Φ(A)Φ(B) − Φ(B)Φ(A)∗ if andonly if there exists aunitaryoperatorU : H → K such thatΦ(A) = UAU∗
for every A ∈ A.

Proof. The result follows fromMain Theorem and [3, Proposition 10, pp. 304], which states that every

isomorphism between finite factors is spatial. �
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