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a b s t r a c t

Assessing current Hg pools in forest soils of the northeastern U.S. is important for monitoring changes in
Hg cycling. The forest floor, upper and lower mineral horizons were sampled at 17 long-term upland
forest sites across the northeastern U.S. in 2011. Forest floor Hg concentration was similar across the
study region (274 � 13 mg kg�1) while Hg amount at northern sites (39 � 6 g ha�1) was significantly
greater than at western sites (11 � 4 g ha�1). Forest floor Hg was correlated with soil organic matter, soil
pH, latitude and mean annual precipitation and these variables explained approximately 70% of the
variability when multiple regressed. Mercury concentration and amount in the lower mineral soil was
correlated with Fe, soil organic matter and latitude, corresponding with Bs horizons of Spodosols
(Podzols). Our analysis shows the importance of regional and soil properties on Hg accumulation in
forest soils.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Mercury (Hg) is a global pollutant and is of particular concern to
humans in the northeastern U.S. who consume local fish, as most
states in the region have fish consumption advisories due to their
tissue exceeding levels deemed hazardous by the U.S. Environ-
mental Protection Agency (USEPA, 2011). Mercury is also a threat to
wildlife in general; piscivorous birds, for example, have shown
multiple signs of chronic Hg poisoning (Evers et al., 2004; Driscoll
et al., 2007). Forest soils are a large, potentially mobile reservoir
that may supply Hg to aquatic ecosystems (Aastrup et al., 1991;
Lorey and Driscoll, 1999; Grigal et al., 2000; Schwesig and
Matzner, 2001; Driscoll et al., 2007). This is important for the
northeastern U.S., as forest soils receive comparatively elevated
deposition rates of Hg and are widely forested (Rea et al., 2002;
Miller et al., 2005). The transfer of Hg from forest soils to aquatic
ecosystems in this regionmay be altered by future shifts in regional
emissions and changes in climate. Mercury deposition rates to this
region may be reduced as a result of new measures adopted by the

United States Environmental Protection Agency (USEPA) to reduce
coal-fired power plant Hg emissions to 30% of current values by
2025 (Han et al., 2008; USEPA, 2011). The forest soil Hg pools must
first be characterized in order to establish a baseline uponwhich to
compare with future assessments.

The forest floor, the organic horizons overlying the mineral soil,
is a characteristic feature of forest soils and is dominated by
decomposing litter and woody debris. The forest floor is a strong
accumulator of certain atmospherically-deposited metals and has
been used to assess the distribution and deposition of other metals
such as lead (Johnson et al., 1982; Kaste et al., 2006; Steinnes and
Friedland, 2006; Kaste et al., 2011). However, the mineral soil
often contains greater quantities of metals than the forest floor due
to its greater volume (Grigal, 2003; Gabriel and Williamson, 2004;
Stankwitz et al., 2012). Mercury distribution in the forest floor and
mineral soil has been shown to be dependent on both regional
abiotic factors and soil properties (McNeal and Rose, 1974; Nater
and Grigal, 1992; Lorey and Driscoll, 1999; Grigal, 2003; Demers
et al., 2007; Obrist et al., 2011; Stankwitz et al., 2012; Shi et al.,
2013). It is unclear if the distribution of Hg in the forest floor
across the northeastern U.S. is dependent on the same regional
factors and soil properties as identified by previous Hg studies in
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other regions, at different scales. In addition, few studies have
conducted a spatial approach to study Hg in the mineral soil.

At the regional scale, Hg distribution has been reported to be
dependent on soil temperature and precipitation (Nater and Grigal,
1992; Smith-Downey et al., 2010; Obrist et al., 2011; Tipping et al.,
2008). Soil temperature may affect Hg accumulation in soils by
controlling soil organic matter (SOM) dynamics among other pro-
cesses. The dependence of Hg accumulation on SOM in forest soils
has been described by Obrist et al. (2011) as the ‘legacy effect’. In
the legacy effect, SOM at colder climates has a slower decomposi-
tion rate and is exposed to a longer duration of Hg deposition, and
accumulates more Hg. Another temperature dependent process is
Hg0 volatilization, which is greater at higher soil temperatures
(Schlüter, 2000). Furthermore, precipitation may also influence Hg
accumulation because wet deposition is a major pathway by which
Hg reaches the forest soil (Rea et al., 2002; Demers et al., 2007;
Obrist et al., 2011; Juillerat et al., 2012; Stankwitz et al., 2012). In
addition, physical and chemical soil properties have also been
shown to influence Hg accumulation in soils (Grigal, 2003; Gabriel
andWilliamson, 2004; Demers et al., 2007). Soil organicmatter, soil
pH, clay-sized particle abundance and metal oxides can influence
the surface sorption of Hg in soils (Schuster, 1991; Yin et al., 1996;
Roulet et al., 1998; Han et al., 2003; Grigal, 2003; Gabriel and
Williamson, 2004; Liao et al., 2009; Obrist et al., 2011; Shi et al.,
2013).

It is unclear which regional factors (latitude, longitude, climate,
mean annual precipitation) or soil properties (SOM, pH, Fe, clay) are
important for Hg accumulation in the forest soils of the north-
eastern U.S. The objectives of this study were to determine the
spatial and vertical distribution of Hg in the forest floor andmineral
soil at seventeen long-term forest research sites across the north-
eastern U.S. and identify the regional and soil properties that
explain the pattern of Hg accumulation.

2. Materials and methods

2.1. Site descriptions

Twenty-five long-term, upland forest research sites were established in 1980 as
part of a larger study on metals in the forest floor (Johnson et al., 1982). Sites were
situated in undisturbed forests, mostly in higher elevation regions, with many
located within National and State forests. Seventeen of the twenty-five original sites
were relocated using GPS and resampled in 2011 and are shown in Fig. 1. Sites were
grouped into three sub-regions: western, central and northern (Fig. 1). The range of
elevations at each sub-region was not significantly different for the three sub-
regions. Site elevation ranged from 305 to 820 m (Table 1) with a mean of

562� 35m. The soil temperature regime for each sitewas determined frommapped
soils on Web Soil Survey (Soil Survey Staff). Soils were from the frigid (mean annual
soil temperature < 8 �C) and mesic (mean annual soil temperature > 8 �C) tem-
perature regime. Northern sites were primarily frigid while western sites were all
mesic (Table 1). Precipitation for each site was interpolated from the mean annual
precipitation (1981e2010) spatial model from the PRISM climate group (Prism
database; PRISM Climate Group, 2012).

Vegetation at each site was mixed; sites ranged from primarily deciduous
vegetation such as oak (Quercus spp.), beech (Fagus spp.), maple (Acer spp.), and
birch (Betula spp.), to coniferous such as pine (Pinus spp.), spruce (Picea spp.), and
hemlock (Tsuga spp.) (Table 1). Northern sites were generally more conifer-
dominated while western and central sites were deciduous-dominated. The soils
were developed from glacial till, outwash deposits, or outcrops of weathered
bedrock (c.f. Siccama, 1974; Kaste et al., 2006). The soils were well-drained and on
level to shallow slopes (<12%). Soils were primarily classified as either Spodosols
(Podzols in FAO/UNESCO) or Inceptisols (Cambisols in FAO/UNESCO) (Table 1),
except Site #1 and 3, which were classified as Ultisols (Acrisol in FAO/UNESCO). In
general, western sites were Ultisols, central sites were Inceptisols and northern sites
were Spodosols (Table 1).

2.2. Soil collection

Soils were sampled in a 30 m by 30 m plot at each site between July and
September 2011 (Fig. 1). Sites were relocated using GPS and instructions from pre-
vious investigators. Five forest floor (Oi þ Oe þ Oa) and upper mineral soil (A or E
horizons) were collected from all sites. Lower mineral soil (Bw or Bs horizons) was
sampled at most sites except sites 4, 6, 7, 10, and 17 due to hardpan layer, extreme
rock content, or lithic contact. The forest floor sampling technique was the same as
those described by Johnson et al. (1982). In brief, five 15 � 15 cm square sections of
forest floor were separated from the underlying mineral horizons and collected. In
an adjacent location, a pit was excavated to allow access to the mineral soil. To avoid
mixing or contaminating samples, the lower mineral horizon was sampled from the
soil pit face using hand trowels first, followed by the upper mineral soil. Upper
mineral soils were classified as either an A or E horizon and lower mineral soils were
classified as either Bw or Bs horizon following the USDA Soil Taxonomy guidelines
(Soil Survey Staff, 2010). High-density polypropylene tubes were used to collect
intact soil cores samples for bulk density measurements.

2.3. Soil processing

Forest floor and mineral soil samples were air-dried to a constant weight and
roots >5 mm in diameter were removed. The forest floor total mass was calculated
using oven-dried sub-samples and the volume was calculated using the area of the
template and measured depths. Soil mass was calculated using the bulk density and
the mass of the sieved, oven-dried 100 � C sample. Forest floor and mineral soil
samples were milled and sieved, respectively, to �2 mm. Mineral soil mass was
corrected for rock and coarse fragments using bulk cores and visual soil pit esti-
mates. It should be noted that both methods may underestimate the rock fraction
because soil pits and soil cores could not include cobbles and boulders, leading to an
overestimation of total soil mass (Huntington et al., 1988). To determine the soil pH,
4 g of soil was added to 10 g of water for a 2:5 soil�water gravimetric ratio and
shaken for 1 h using a wrist-action shaker and allowed to settle for 10 min. The soil
pH of the supernatant wasmeasured using a pHmeter (8015 VWR) (Table 2). Loss on
ignitionwas used to estimate the % SOM present in the samples (Table 2). For loss on
ignition, 4 g of soil was held at 475 �C for 8 h and % SOM was determined from
change in mass from thermal oxidation. Soil particle size distribution was deter-
mined using a modified Bouyoucos hydrometer method (Gee and Bauder, 1986). For
the process, 30 g of soil were treated with 30% w/w hydrogen peroxide to oxidize
SOM aggregates and dispersed with 100 mL of 0.08 M sodium hexametaphosphate
overnight. Soil pH, % SOM, and % Clay are given for each sub region and soil horizon
in Table 2.

2.4. Metal analyses

The U.S. EPA method 3051A was used to quantify Hg through direct digestion.
Homogenized 2 g sub-samples of organic and mineral soil samples were dried to a
constant weight at 45 �C for 5 days. 250 mg (�1 mg) sub-samples were digested
with 5 mL of a 1:9 ratio of trace metal grade hydrochloric acid:nitric acid (HNO3,
70%; HCl, 70%). The digest solutions were allowed to de-gas overnight in lightly
sealed 50 mL polypropylene centrifuge tubes. The solutions were then heated using
a CEMMARS digestion system at 90 �C for 45 min (CEMMathews, NC). After cooling,
the digested samples were brought to a 50ml final volumewith DI water. Digested O
horizon samples were filtered using 0.45 mm polypropylene Whatman syringe fil-
ters. The digests were diluted a further 10�with deionized water and then analyzed
by an Agilent 7500 series ICP-MS (Agilent Technologies Santa Clara, CA). With every
20 digested samples we included: one randomly spiked sample with 50 mL of 1 ppm
HgCl2 (3.7 nM HgCl2); one replicate; one preparation blank; and one standard
reference material (SRM). Peach leaves SRM 1547 and Montana soil SRM 2711 from
the National Institute of Standards and Technology (National Institute of Standards

Fig. 1. Location of the upland forest, long term research sites and their sub-region
across the northeastern United States.
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and Technology Gaithersburg, MD) were used as reference Hg values for forest floor
and mineral soil samples, respectively. All measured Hg concentrations for SRM
materials were within 7% of their certified values. Recovery rates for spiked samples
were>95%. Hg concentration in the preparation blank samples was below detection
limits. The digests were also analyzed for extractable Fe using an IRIS Intrepid II XSP
ICP-OES (Thermo Electron Franklin, MA). Iron concentrations were within 8% of the
Peach leaves SRM 1547 and Montana soil SRM 2711 reported values.

2.5. Data analyses

Descriptive statistics for soil Hg and soil properties were calculated usingMatlab
(Matlab INC Natick, MA). Correlative relations between Hg concentration and
amount with regional factors (mean annual precipitation, latitude and longitude)
and soil properties (% SOM, pH, Fe concentration, % clay) were investigated using
stepwise regressions and multiple regression in Matlab. Non-continuous data (e.g.
soil temperature regime) were not included in the stepwise regression models.
Variables from the stepwise regressions were linearly regressed with each other and
the variables with R2 values greater than 0.25 and a causal relationship were
determined to covary and not included in the multiple regressions. The independent
variables found to be significantly correlated with Hg concentration or Hg amount in
the stepwise regression were used in multiple regression models and shown in

Table 3. The variation in Hg with soil order, and sub-region, were determined with
the KruskaleWallis test. Post-hoc tests utilized include Student’s two-sample t-tests
and Wilcoxon rank signed tests. An alpha-level of 0.05 was used for all tests and
mean values given in text and figures show �1 standard error.

3. Results and discussion

3.1. Mercury in the forest floor

Forest floor Hg concentration ranged from 118 to 373 with a
mean of 274 � 13 mg kg�1 and did not vary significantly at the
forested sites across the study region as shown in Fig. 2. These
concentrations are similar to those reported by Evans et al. (2005),
Obrist et al. (2011), and Juillerat et al. (2012) for forest floor samples
from the northeastern U.S. Forest floor Hg amount ranged from 4 to
51 g ha�1 with a mean of 30 � 4 g. The observed Hg amounts were
similar to those reported by Evans et al. (2005) and Demers et al.
(2007), with their values ranging from 26 to 46 g ha�1. The total
mass of Hg in the forest floor was significantly greater at northern
sites (39 � 6 g ha�1) compared to western sites (11 � 4 g ha�1)
(P < 0.05). The elevated concentration and amount of Hg in the
forest floor in the northeastern U.S. has been considered to be
largely anthropogenic, as human activities have significantly
increased Hg deposition rates to forests (Fitzgerald et al., 1998;
Grigal, 2003; Seigneur et al., 2003; Driscoll et al., 2007). Although

Table 1
Site location, vegetation type, and soil taxonomy.

Sub-regiona Site Site name Elev.(m) Mean annual
precipitationb

(mm yr�1)

Latitude Longitude Vegetation Soil order Soil temperature
regime

W 1 Heart’s Content,PA 580 1170 41.689 �79.252 Pine/Hemlock Ultisol Mesic
W 2 Cook’s Forest, PA 430 1163 41.347 �79.212 Pine/Hemlock Inceptisol Mesic
W 3 Tionesta, PA 520 1141 41.477 �79.379 Oak Ultisol Mesic
C 4 Balsam Lake, NY 820 1268 42.067 �74.574 N. Hardwood Inceptisol Frigid
C 5 Mohonk, NY 366 1288 41.770 �74.158 N. Hardwood Inceptisol Mesic
C 6 Mt Tremper, NY 305 1365 42.071 �74.312 Pine/Hemlock Inceptisol Mesic
C 7 Windham, NY 580 1215 42.301 �74.170 N. Hardwood Inceptisol Frigid
C 8 Mohawk, CT 503 1192 41.820 �73.297 Oak Inceptisol Frigid
C 9 Mt. Everett, MA 790 1276 42.102 �73.431 Oak/Pitch Pine Inceptisol Frigid
N 10 Appalachian Gap, VT 778 1533 44.211 �72.931 Spruce/Fir Spodosol Frigid
N 11 Sherburne Pass, VT 671 1467 43.662 �72.833 N. Hardwood Spodosol Frigid
N 12 Bromley, VT 625 1465 43.214 �72.967 N. Hardwood Spodosol Frigid
N 13 Bristol Cliffs, VT 555 1112 44.140 �73.064 Pine/Hemlock Spodosol Frigid
N 14 Mt Cardigan, NH 579 1306 43.645 �71.933 Spruce/Hemlock Spodosol Frigid
N 15 Valley Way, NH 433 1217 44.369 �71.287 Spruce/N. Hardwood Spodosol Frigid
N 16 Gale River, NH 440 1181 44.232 �71.608 N. Hardwood Inceptisol Frigid
N 17 Wildcat Mt, NH 590 1527 44.266 �71.238 Spruce/N. Hardwood Inceptisol Frigid

a W ¼ western region, C ¼ central region, N ¼ northern region.
b Precipitation values interpolated from PRISM database (PRISM Climate Group, 2012).

Table 2
Selected chemical properties of the forest soils by sub-region for the three depths
sampled (�1 standard error). The value n is number of sites.

n Thickness
cm

Soil pHa % SOMb

g g�1
% Clayc

g g�1
Fe
mg kg�1

Fe
kg ha�1

Western Region
Forest floor 3 3.2 � 0.5 4.48 � 0.35 52 � 5 n.a. 9 � 3 0.2 � 0.1
Upper mineral

soil
3 4.1 � 0.6 4.43 � 0.37 9 � 2 11 � 2 12 � 6 6 � 3

Lower mineral
soil

3 5.9 � 0.5 4.38 � 0.32 5 � 1 12 � 3 15 � 6 12 � 6

Central Region
Forest floor 6 6.9 � 1.4 4.24 � 0.10 67 � 5 n.a. 6 � 1 0.6 � 0.2
Upper mineral

soil
6 5.9 � 0.4 4.10 � 0.06 15 � 4 12 � 3 14 � 4 6 � 1

Lower mineral
soil

4 9.7 � 1.2 4.12 � 0.19 9 � 3 6 � 2 16 � 3 20 � 1

Northern Region
Forest floor 9 8.7 � 1.8 3.97 � 0.04 73 � 3 n.a. 4 � 1 0.7 � 0.2
Upper mineral

soil
9 6.4 � 0.9 3.69 � 0.03 9 � 2 14 � 2 12 � 5 7 � 3

Lower mineral
soil

7 7.5 � 0.6 4.13 � 0.14 11 � 1 12 � 2 28 � 2 25 � 2

a measured in a 2:5 soil water extract.
b estimated from loss on ignition.
c determined by particle size distribution.

Table 3
Calculated multiple-regression model outputs for Hg concentration and amount
with significant site characteristics and soil properties from stepwise-regressions for
all 17 sites.

Variables R2 P

Forest floor
Mercury concentration % SOM, pH and latitude 0.77 <0.01
Mercury amount Mean annual precipitation,

pH and % SOM
0.65 <0.01

Upper mineral soil horizon
Mercury concentration Fe concentration 0.35 0.06
Mercury amount Fe amount 0.21 0.38
Lower mineral soil horizon
Mercury concentration Latitude, % SOM and Fe

concentration
0.80 < 0.01

Mercury amount Latitude, % SOM and Fe
amount

0.73 0.02

J.B. Richardson et al. / Environmental Pollution 182 (2013) 127e134 129



increased deposition due to human activity has been documented
(e.g. Fitzgerald et al., 1998), the sources of Hg in this study were not
distinguished and should be assumed to be both geogenic and
anthropogenic.

The spatial distribution of Hg in the forest floor has been hy-
pothesized to be dependent on both regional (latitude, longitude,
climate, precipitation) and soil properties (SOM, pH, Fe, clay), with
temperature and precipitation being the two dominant regional
factors (Evans et al., 2005; Obrist et al., 2011). Soil temperature may
influence Hg accumulation in the forest floor by controlling kinetics
of chemical processes and SOM dynamics (Nater and Grigal, 1992;
Grigal, 2003). When sites were grouped by their soil temperature
regime, forest floor Hg concentrationwas not significantly different
between mesic and frigid soils. However, frigid soils had greater
forest floor Hg amount (33 � 5 g ha�1) compared to mesic forest
floor (18 � 5 g ha�1) (P < 0.05). Further, frigid soils had a greater
mean forest floor depth (10 � 2 cm) compared to mesic soils
(5 � 1 cm) (P < 0.05).

The dependence of Hg on SOM dynamics has been observed in
previous spatial studies (Nater and Grigal, 1992; Obrist et al., 2011;
Stankwitz et al., 2012; Shi et al., 2013). The cooler frigid soil tem-
perature regime may have promoted the accumulation of Hg
through multiple mechanisms. Cooler forest floor temperatures
generally lead to longer turnover times due to slower decomposi-
tion rates of SOM (Berg et al., 1993;Moore et al., 1999; Schwesig and
Matzner, 2001; Obrist et al., 2011; Stankwitz et al., 2012). This
legacy effect was further supported by Stankwitz et al. (2012), who
observed greater Hg accumulation in soils with longer 210Pb resi-
dence times. The forest floor at northern sites may have a corre-
sponding longer turnover time than at western sites and may be
exposed to longer periods of Hg deposition. Assuming that forest
floor depth is roughly proportional to turnover rate regionally, then
our results also may be a result of the legacy effect. Thus, it is hy-
pothesized that the forest floor at northern sites has a longer
turnover rate, was exposed to a longer duration of Hg deposition
and has accumulated greater amounts of Hg.

Soil temperature may also influence Hg accumulation in the
forest floor by controlling the kinetics of Hg0 re-emission or vola-
tilization (Schlüter, 2000; Schwesig and Matzner, 2001; Demers
et al., 2007; Tipping et al., 2008). Volatilization has been recog-
nized as an unconstrained pathway of Hg loss from soils (Johnson
and Lindberg, 1995; Grigal et al., 2000; Grigal, 2003; Obrist et al.,
2011; Demers et al., 2013). Estimates for Hg volatilization using
mass balances have varied widely and ranged from 0 to
300 mg ha�1 yr�1 (Carpi and Lindberg, 1998; Grigal et al., 2000;
Demers et al., 2007). Volatilization rates for Hg in northeastern

U.S. soils are poorly understood with few empirical studies in North
America and volatilization may control local accumulation of Hg in
soil (Demers et al., 2013). Demers et al. (2007) reported 95% of
atmospherically deposited Hg was retained in forest soils of New
York. The METALLICUS project in the Experimental Lakes Area of
Ontario, Canada reported losses of 8% of Hg amended to soil
(Hintelmann et al., 2002). Lindqvist et al. (1991) and Driscoll et al.
(1994) both estimated that approximately 5% of the annual atmo-
spherically deposited Hg to Spodosols in southern Sweden would
be lost via volatilization. From these estimates, the influence of re-
emission and volatilization of Hg may be considered limited but
requires further attention to determine the effect of soil tempera-
ture on Hg accumulation in the forest soils.

Wet deposition is a major pathway in which Hg reaches forest
soils and may explain the spatial variation of Hg in the forest floor
(Tipping et al., 2008). Miller et al. (2005) has concluded that rural,
upland forests of the northeastern U.S. receive elevated rates of Hg
in precipitation, with estimates >120 mg ha�1 yr�1. Further, total
Hg deposition projected for these sites by data from Miller et al.
(2005) suggest values from 200 to 350 mg ha�1 yr�1. It must be
noted that this study and Miller et al. (2005) have considered only
Hg deposition estimates for forested ecosystems; land-use and
vegetation cover significantly affects Hg deposition to soils and was
not considered extensively in this study (Smith-Downey et al.,
2010). For a rough estimate of wet deposition of Hg, the interpo-
lated mean annual precipitation from the PRISM database was
assumed to be proportional to the wet deposition of Hg (Prism
database; PRISM Climate Group, 2012). The PRISM database does
not account for many site-specific Hg deposition fluxes for total
deposition such as litterfall (Hall and St. Louis, 2004), but may be
used as a general estimate for wet Hg deposition (Tipping et al.,
2008). The PRISM database is used by the National Atmospheric
Deposition Program and Mercury Deposition Network for this
purpose. When regressed, forest floor Hg concentration was found
to be poorly correlated with mean annual precipitation. However,
forest floor Hg amount was moderately correlated with interpo-
lated mean annual precipitation amount with an R2 value of 0.46
(P < 0.05) (Fig. 3). There are advantages and disadvantages with
using interpolated mean annual precipitation amounts; 30 year
averaged data is less susceptible to the problems associated with
annual variations and error from sample collection. The primary
disadvantage of using the interpolated values to estimate the mean
annual precipitation at each site is the lack of comprehensive
measurements for validation (Miller et al., 2005). Despite this
drawback, a general association can be observed between forest
floor Hg amount and mean annual precipitation, suggesting sites

Fig. 2. The means � 1 standard errors for Hg concentrations (mg kg�1) and Hg amounts (g ha�1) are shown for the three sub-regions. Letters group values by statistical significance
(P < 0.05).

J.B. Richardson et al. / Environmental Pollution 182 (2013) 127e134130



that receive greater precipitation have a greater forest floor Hg
mass.

Although only wet deposition was evaluated in this study, dry
deposition may be an equally important but complex flux of Hg to
forest soils (Miller et al., 2005; Demers et al., 2013). The dry
deposition of Hg in forests of the northeastern U.S. has been esti-
mated to be equal to or greater than Hgwet deposition (Miller et al.,
2005). Rea et al. (2002) estimated dry deposition of Hg was nearly
33% of the total Hg entering the Lake Champlain watershed in
northern Vermont. Dry deposition of Hg at our study sites was not
estimated because of its complex variance with parameters at the
landscape scale to leaf stomata scale (Ericksen et al., 2003; Miller
et al., 2005; Smith-Downey et al., 2010). Furthermore, dry depos-
ited Hg is readily washed off during precipitation making it difficult
to quantify and generally it is integrated into throughfall (Rea et al.,
2002; Miller et al., 2005). Dry deposition may explain variation in
Hg concentration and amount in the forest floor and should be
considered in future studies.

Winter fluxes of Hg are a less-understood mechanism that may
influence Hg accumulation in the forest floor. Mean annual pre-
cipitation includes all forms of precipitation. However, Hg in snow
may not permeate into the forest floor and mineral soil during
winter months as effectively as rainfall (Schwesig and Matzner,
2001). In addition, Hg has been observed to transfer from the soil
into overlying snow (Susong et al., 2003). The precipitation type,
snowpack and snowmelt across the northeastern U.S. are likely
different in total amount and temporally. This may influence the
amount of Hg reaching the forest floor and entering themineral soil
(Schwesig and Matzner, 2001; Demers et al., 2007).

Many investigators have observed a strong correlation between
Hg with % SOM and soil pH in the forest floor (Schuster, 1991;

Gabriel and Williamson, 2004; Szopka et al., 2011; Obrist et al.,
2011; Shi et al., 2013). Mercury accumulation is influenced by
SOM and pH as they control sorption capacity of soil (Schuster,
1991; Gabriel and Williamson, 2004). Northern sites had signifi-
cantly higher % SOM and lower pH compared with western sites
(P < 0.05) (Table 2). The higher % SOM may have increased the
sorption capacity for Hg (Gabriel and Williamson, 2004). Further,
our results suggest lower pH promoted higher Hg concentration
and amount, which does not agree with other studies (e.g. Gabriel
and Williamson, 2004). The mechanism responsible for the nega-
tive correlation between forest floor Hg and pH is unclear but may
be due to a soil properties not investigated in this study such as
biological activity of fungi or annelid. Greater % SOM did not
correlate with lower pH (R2 ¼ 0.19) and is presumed not to be the
masking mechanism for greater pH correlating with greater Hg.

A stepwise regression was used to rank the relative importance
of each regional factor (mean annual precipitation, latitude and
longitude) and soil property (pH, SOM, and Fe concentration and
amount) on forest floor Hg concentration and amount. Forest floor
Hg concentration was significantly correlated with % SOM, pH, and
latitude while forest floor Hg amount was correlated with % SOM,
pH and precipitation (Table 2). These regressions correspond with
the variables used in spatial Hg models by Smith-Downey et al.
(2010) and Obrist et al. (2011). In addition, the stepwise re-
gressions also suggest the importance of soil pH in the northeastern
US, a variable not used in models by Obrist et al. (2011) or Smith-
Downey et al. (2010).

A multiple regression of Hg concentration in the forest floor was
calculated using % SOM, pH, and latitude, with an R2 value of 0.77
(P < 0.01) (Table 3). Similarly, a multiple regression to describe
forest floor Hg amount was determined using mean annual

Fig. 3. Forest floor Hg amount at 17 sites (in circles) displayed with mean annual precipitation (1981e2011) map graphics from the PRISM Climate Group. Copyright � 2011, PRISM
Climate Group, Oregon State University, http://prism.oregonstate.edu, Map created 10 21 2012.

J.B. Richardson et al. / Environmental Pollution 182 (2013) 127e134 131

http://prism.oregonstate.edu


precipitation, % SOM and pH with an R2 value of 0.65 (P < 0.01)
(Table 3). The dependence of forest floor Hg on latitude, precipi-
tation, pH and % SOM demonstrate that regional and soil properties
are both integral to Hg accumulation in forest soils. Regional factors
(latitude and precipitation) likely control Hg deposition to the
forest floor while soil properties (SOM and pH) may dictate the
retention of Hg in the mineral soil.

3.2. Mercury in the mineral soil

The mean Hg concentrations in the upper and lower mineral
horizons were 45 � 6 and 71 � 13 mg kg�1, respectively. The Hg
concentrations are similar to those reported by previous studies in
the northeastern U.S. (McNeal and Rose, 1974; Rea et al., 2002;
Obrist et al., 2011; Juillerat et al., 2012). Mercury concentration in
the upper mineral horizon was similar across the study region
(Fig. 2). In the lower mineral horizon, Hg concentration was
significantly higher at the northern sites (Fig. 2). Mercury concen-
tration in the upper and lower mineral horizons were significantly
lower compared with the forest floor (P < 0.01) (Fig. 2). The mean
Hg amount in the upper and lower mineral horizons were 23 � 5
and 64 � 12 g ha�1, respectively. These values are similar with
Evans et al. (2005) but are much lower than those reported by
Demers et al. (2007), likely due to site-specific characteristics of the
soil profiles (i.e. profile depth and rock content). Mercury amount in
the lowermineral horizon at northern sites was significantly higher
than all other soil horizons at all sub-regions (Fig. 2).

Many of the soil properties of the upper and lower mineral soil
also varied significantly across the study region. Soil horizons were

thinner at western sites compared to central and northern sites
(Table 2). Soil pH was highest in the upper mineral soil of the
western sites and lowest in the upper mineral soil of the northern
sites (Table 2). % SOM in the upper mineral was similar across
the study sites with an average of 12% and a median of 10%.
However, the lower mineral horizons at western sites were
significantly lower in % SOM than central and northern sites
(P < 0.05) (Table 2). The clay content of the soil was generally low
and ranged from 6 to 23% with a mean of 13 � 1.4%. Iron concen-
trations in the upper mineral soil were similar across sites with a
mean of 13 � 3 mg kg�1. In the lower mineral horizons, northern
sites contained greater Fe concentrations than western and central
sites (P< 0.01) (Table 2). Similarly, Fe amounts in the uppermineral
horizons were comparable, with a mean of 7� 2 but, northern sites
were significantly greater than western and central sites (P < 0.05)
(Table 2).

The accumulation of SOM and Fe in the lowermineral horizon at
northern sites is indicative of Spodosols and their presence may
explain the higher Hg concentration and amount at northern sites.
Central and northern sites were grouped by soil order, to determine
if Hg concentration and amount in the soil profile varied substan-
tially between the two dominant soil orders: Inceptisols and Spo-
dosols (Fig. 4). For the Inceptisols, Hg concentration followed the
SOM distribution and decreased with depth (Fig. 4). Mercury
amount however, was nearly uniform through the profile of
Inceptisols. Mercury concentration and amount in the Bs horizons
of the Spodosols were significantly higher compared to all other
mineral horizons (P< 0.01, Fig. 4). Maximum accumulation of Hg in
the Bs horizon is consistent with other studies of Hg in Spodosols in

Fig. 4. Mercury and soil properties displayed by depth for three horizons for Spodosols and Inceptisols at central and northern sites. (*) designates a significant difference (P < 0.05)
using the Wilcoxon rank signed test.
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other regions (e.g. Ma et al., 1997; do Valle et al., 2005; Grimaldi
et al., 2008) and explains the significantly higher Hg in the lower
mineral horizons at the northern sites. The importance of spodic
horizons on lead accumulation in the mineral soil has been
observed in previous studies in the northeastern U.S. (e.g. Johnson
and Petras, 1998; Kaste et al., 2011) and inwarmer climates (e.g. Ma
et al., 1997). This is a finding that has not been reported for Hg in
other regional studies in the northeastern U.S.

Podzolization, the process of SOM complexing and eluviating
Fe and other metals from the E horizon to the Bs horizon (Lundstöm
et al., 2000), is likely responsible for the elevated Hg accumulation
in the Bs horizon (do Valle et al., 2005; Kaste et al., 2011; Bushey
et al., 2013). The accumulation of SOM and Fe oxides in the Bs
horizon promote greater Hg accumulation due to increased surface
binding sites (Schuster, 1991; Yin et al., 1996; Roulet et al., 1998;
Han et al., 2003; Grigal, 2003; Gabriel and Williamson, 2004; Liao
et al., 2009; Obrist et al., 2011). The mean SOM amount in the Bs
horizons was significantly greater compared to the all other min-
eral soil horizons (P < 0.05) (Fig. 4). Similarly, the mean extractable
Fe concentration in the Bs horizons (31 � 2 kg ha�1) was higher
compared to the E horizons (9� 3 kg ha�1) (P< 0.05) (Fig. 4). The Bs
horizons have greater Fe oxides than the other soil horizons,
assuming that the extracted Fe concentration is roughly represen-
tative of Fe oxide abundance.

Regional factors (mean annual precipitation, latitude and
longitude) and soil properties (pH, % SOM, Fe content, and clay
content) were stepwise regressed with Hg concentration and
amount in the mineral soil. Mercury concentration and amount in
the upper mineral horizon were only correlated with Fe concen-
tration and amount, respectively. The correlation between Fe con-
centration and amount in the upper mineral horizons with Hg are
arbitrary because they only explained 35% and 21% of the variation
in Hg in the upper mineral horizon, respectively (Table 3). For the
lower mineral horizon, Hgwas correlated with latitude, % SOM, and
Fe. Soil pH and % SOM may not have been correlated with mineral
soil Hg concentration and amount due to the small range in values.
Iron was correlated with Hg concentration and amount in the soil
for two possible reasons: 1) factors that promote the sorption of Fe
and Hg in the lower mineral horizons are similar (e.g. similar af-
finity for SOM); or 2) Fe, present in the lower mineral horizon as an
oxide or hydroxide, may promote Hg sorption, with the assumption
that Fe concentration is roughly representative of Fe oxide abun-
dance. The % clay may not have been correlated with Hg in the soil
due to the mineralogy of the clay-sized particles. Soils of the
northeastern US, especially at northern sites, generally lack clay
minerals known to strongly sorb metals (Coen and Arnold, 1972;
April and Newton, 1983). Mean annual precipitation was not
correlatedwith Hg concentration or amount in the upper and lower
mineral soil horizons, suggesting that deposition processes may be
less important to the spatial distribution of Hg in the mineral soil.
This finding agrees with the conclusion by Obrist et al. (2011) that
Hg distribution in the mineral soil does not coincide with variables
associated with Hg deposition.

The significantly correlated variables from the stepwise re-
gressions were used in multiple regressions to estimate Hg con-
centration and amount in the mineral soil. As described earlier, Hg
concentration and amount in the upper mineral horizon was
inadequately explained by Fe concentration and amount, respec-
tively (Table 3). For the lower mineral horizons, Hg concentration
and amount were well explained using latitude, % SOM and Fe
concentration and amount with R2 values of 0.80 and 0.73,
respectively (Table 3). The significant correlation of SOM, Fe, and
latitude in the lower mineral horizon is suggestive of the impor-
tance of Spodosols, which only occurred in northern sites and had
greater % SOM and Fe concentrations in the lower mineral horizons.

The strong correlation among Hg concentration, Fe concentration,
and % SOM in the Bs horizon, coupled with the greater accumula-
tion of Hg in the Bs horizon compared with Bw horizons in
Inceptisols, suggests that podzolization promoted Hg accumula-
tion. We hypothesize that podzolization has transferred Hg bound
to SOM in the forest floor through the E horizon and into the Bs
horizon. Based upon the strong contrast in the vertical distribution
of Hg, soil orders were more indicative of the spatial pattern of Hg
in the mineral soil than a multiple regression of soil properties (e.g.
% SOM). This is a finding that has not been elaborated on by pre-
vious studies modeling Hg in soils (e.g. Obrist et al., 2011). Future
studies on Hg in forest soils should consider incorporating soil or-
ders into spatial estimates of Hg as a contrast to regressions with
only regional factors and soil properties.

4. Conclusions

The findings of this study indicated that Hg accumulation in the
forest floor varied with regional factors: soil temperature and
precipitation; and physicochemical properties: pH, SOM, and
depth. Soil temperature influenced Hg accumulation in the forest
floor through multiple possible mechanisms: forest floor turnover
rate, Hg volatilization, or winter Hg flux. The variables that corre-
lated with Hg in other studies were also found to be important for
multiple regressions in this region, with the addition of soil pH. The
variation in Hg distribution in the mineral soil horizons was best
explained by comparing the two dominant soil orders rather than
by multiple regressions of regional factors and soil properties. The
Spodosols had greater Hg in their Bs horizons compared to all other
mineral horizons, as they occurred at higher latitudes with signif-
icant accumulations of SOM and Fe oxides. This result suggests the
importance of soil order on Hg accumulation in themineral soil and
may provide an alternative approach to spatial modeling of Hg in
forest soils. With this assessment of current Hg levels in forest soils
of the northeastern U.S., the effect of future changes in Hg depo-
sition or cycling at these sites may be monitored.
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