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High-Frequency Stimulation of Excitable Cells and
Networks
Seth H. Weinberg*

Department of Applied Science, The College of William and Mary, Williamsburg, Virginia, United States of America

Abstract

High-frequency (HF) stimulation has been shown to block conduction in excitable cells including neurons and cardiac
myocytes. However, the precise mechanisms underlying conduction block are unclear. Using a multi-scale method, the
influence of HF stimulation is investigated in the simplified FitzhHugh-Nagumo and biophysically-detailed Hodgkin-Huxley
models. In both models, HF stimulation alters the amplitude and frequency of repetitive firing in response to a constant
applied current and increases the threshold to evoke a single action potential in response to a brief applied current pulse.
Further, the excitable cells cannot evoke a single action potential or fire repetitively above critical values for the HF
stimulation amplitude. Analytical expressions for the critical values and thresholds are determined in the FitzHugh-Nagumo
model. In the Hodgkin-Huxley model, it is shown that HF stimulation alters the dynamics of ionic current gating, shifting the
steady-state activation, inactivation, and time constant curves, suggesting several possible mechanisms for conduction
block. Finally, we demonstrate that HF stimulation of a network of neurons reduces the electrical activity firing rate,
increases network synchronization, and for a sufficiently large HF stimulation, leads to complete electrical quiescence. In this
study, we demonstrate a novel approach to investigate HF stimulation in biophysically-detailed ionic models of excitable
cells, demonstrate possible mechanisms for HF stimulation conduction block in neurons, and provide insight into the
influence of HF stimulation on neural networks.
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Introduction

Electrical signaling is fundamental to the physiological function

of excitable cells such as neurons and cardiac myocytes. Irregular

electrical patterns in the brain and heart can lead to life-

threatening conditions including epileptic seizures and ventricular

fibrillation. External stimulation can terminate these irregular

rhythms [1,2]; however large strength stimuli are often associated

with detrimental effects such as pain [3] and impaired cardiac

function following defibrillation [4].

In the 1960s, it was shown that kilohertz-range high frequency

(HF) sinusoidal stimulation could reversibly block conduction in

neurons [5]. The use of 1–40 kHz HF-induced neural conduction

block has recently been exploited in clinical studies for diagnostic

and therapeutic purposes, improving bladder function [6,7] and

mitigating pain associated with peripheral nerve activity [8–10].

Despite the clinical usage of HF stimulation treatment, the

mechanisms underlying therapeutic success in these physiological

and pathological settings are unclear. Simulation studies in

neurons have suggested two mechanisms: reduced sodium channel

availability due to transmembrane potential depolarization and

persistent activation of potassium channels [8–14]. However, the

relative significance of the two mechanisms varies with the

properties of the neuron, as well as the specific species and model.

Further, in simulation studies, the transmembrane potential, ionic

currents, and channel gating variables oscillate on the fast time

scale of the HF stimulus, varying throughout the HF stimulation

period, such that distinguishing the precise influence of the HF

stimulus is difficult.

Alternatively, one can apply a multi-scale method, separating

the fast time scale dynamics—due to the HF stimulus—and the

slow dynamics of the excitable cell, and derive an averaged model,

which accounts for the HF stimulus but does not contain a high-

frequency term [15]. Using this type of approach, several studies

have analyzed the influence of a HF stimulus in the simple

FitzHugh-Nagumo (FHN) model [16]. Cubero and colleagues

demonstrated that the model cell cannot repetitively fire when the

HF stimulus amplitude-frequency ratio is above a critical value

[17]. Ratas and Pyragas showed that this ratio also influenced

conduction speed in a nerve axon and above a critical value led to

conduction block [18,19]. The FHN model is minimalistic,

reproducing many important aspects of cellular excitability [20],

and ideal for analysis, as the model only contains two variables,

permitting the use of standard nonlinear dynamics techniques such

as phase-plane analysis. However, in general biophysically-detailed

models of excitable cells are more complex than represented by

the simple two-dimensional FHN model.

In this study, we first illustrate the multi-scale method to derive

the averaged FHN (AFHN) model equations and use phase-plane

analysis to determine critical HF stimulus thresholds above which

the model cannot exhibit repetitive firing or elicit a single action

potential. We then extend this approach to simulate the dynamics

of the classical Hodgkin-Huxley (HH) neuron model [21] and

illustrate similarities and differences between the AFHN and
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averaged Hodgkin-Huxley (AHH) model. Further, we demon-

strate that HF stimulation alters the ionic current activation and

inactivation dynamics, illustrating possible mechanisms for con-

duction block in a single neuron. Finally, we simulate HF

stimulation in a network of neurons and demonstrate that HF

stimulation alters network synchrony and, above a critical

stimulation strength, terminates persistent network activity,

suggesting implications for clinical therapy.

Results

Averaged Fitzhugh-Nagumo model
We begin by deriving and analyzing a simplified model of

spiking which accounts for the influence of HF stimulation. We

consider the FitzHugh-Nagumo (FHN) model [16] with the

addition of a constant current I and a time-varying HF stimulus

_vv~f (v){wzIzrv cos (vt) ð1aÞ

_ww~E(vzb{cw) ð1bÞ

where v is the frequency of the HF stimulation, r is the HF

amplitude-frequency ratio,

f (v)~v{
v3

3
,

and the dot indicates differentiation with respect to time t. The

HF stimulation term is defined in terms of r and v with the

foresight that the influence of the HF stimulation depends on r,

not specifically the amplitude rv. The FHN model is a simplified

model that reproduces many important properties and dynamics

of excitable cells. The simplicity of the model permits a geometric

illustration—through phase plane analysis—of many important

biophysical phenomena such as repetitive spiking and depolariza-

tion block. In the model, v is the dimensionless transmembrane

potential, and w represents the degree of refractoriness. Through-

out the paper, we fix E~0:008, b~0:8, and c~0:5, such that in

the absence of any external stimuli, the neuron is excitable.

If the period of the fast HF stimulus is much smaller than all

characteristic times of the FHN model, according to the method of

averaging [15], an approximation to the slow system can be

obtained by averaging over the period of the HF stimulus. As

shown in the Methods, the variables of the averaged Fitzhugh-

Nagumo model (AFHN), �vv and �ww, are governed by the following

system of equations:

_�vv�vv~�ff (�vv){�wwzI:F (�vv,�ww; r,I) ð2aÞ

_�ww�ww~"(�vvzb{c�ww):G(�vv,�ww) ð2bÞ

where

�ff (�vv)~
1

2p

ð2p

0

f ½�vvzr sin (h)�dh

~c(r)�vv{
�vv3

3

and

c(r)~1{
r2

2
:

The AFHN model is very similar to the FHN model, with the

only difference being the modification of the cubic function �ff that

influences the dynamics of �vv. In the absence of HF stimulation, i.e.,

r~0, the two models are identical. In the following sections, we

investigate how the HF stimulus parameter r influences the

properties of repetitive action potential firing. In Figure 1, we plot

v from simulations of the FHN model (black) for various values of

the HF stimulation frequency v and compare with �vv from a

simulation of the AFHN neuron model (red), for fixed values for r
and I . In general, as v increases, �vv from AFHN model becomes a

better approximation of the average value of v from the FHN

model simulation, validating our formulation.

Repetitive firing in the AFHN model. In the parameter

region considered in this study, the cell is excitable, that is, in the

absence of an external stimulus, the cell is at rest, and the addition

of a stimulus can induce a single or multiple action potentials. In

this study, we will consider two types of applied current stimuli: a

constant applied current and a brief applied current pulse, in

addition to the HF stimulation.

We first consider the case of a constant applied current I . In

Figure 2A, we plot �vv for a constant current I~1:3 and various

values of r. For no HF stimulus (r~0), the cell fires repetitively.

Increasing the amplitude of the HF stimulation parameter r
decreases the action potential amplitude and increases the firing

frequency. Consistent with previous studies [17], increasing r
further results in cessation of repetitive firing, following a single

action potential at the stimulus onset. Conditions for cessation of

firing are derived as follows.

For the parameters chosen, the AFHN model has a single

steady-state (�vv�,�ww�), which satisfies the implicit expression

F(�vv�,(�vv�zb)=c; r,I)~0, ð3aÞ

Figure 1. Validation of the AFHN model. Simulated v traces from
the FHN (black) and AFHN (red) models for varying HF stimulus
frequency v. Parameters: Radial frequency v is identified in each panel,
I~1:3, r~1.
doi:10.1371/journal.pone.0081402.g001

High-Frequency Stimulation of Excitable Cells
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�ww�~(�vv�zb)=c, ð3bÞ

and shown in Figure 3. As r increases, the resting potential �vv�
becomes more depolarized and approaches 0 for large r. The

degree of refractoriness also increases as r increases, such that �ww�
approaches b=c for large r.

Using standard techniques from linear stability analysis [22], the

stability of the steady-state (�vv�,�ww�) can be determined by

linearizing around (�vv�,�ww�), and evaluating the matrix of partial

derivatives, the Jacobian J , at the steady-state,

J(�vv�,�ww�)~
c(r){�vv2

� {1

E {Ec

 !
: ð4Þ

When the steady-state becomes unstable, specifically the real

part of the eigenvalues of J , c(r){�vv2
�{Ecw0, a stable limit cycle

emerges, which can be interpreted biophysically as repetitive

action potential firing. The critical parameter value at which the

limit cycle emerges is known as a Hopf bifurcation. Many previous

studies have shown that in the FHN model (i.e., r~0), as the

applied current I increases, there are two critical values for I , I{

and Iz, which correspond to the onset and offset of the stable limit

cycle, respectively [23–25]. Below I{, the steady-state is stable

corresponding to the cell at rest, between I{ and Iz the steady-

state is unstable and the cell repetitively fires, and above Iz, the

steady-state is stable again and the cell is in depolarization block

[23].

In Figure 2B, we plot the nullclines of the AFHN model for

several values of I and r. The �vv-nullcline (green)—given by the set

of all points (�vv,�ww) such that _�vv�vv~0—is a cubic function of �vv, while

the �ww-nullcine (blue)—similarly defined as the set of all points (�vv,�ww)

such that _�ww�ww~0—is linear, and the nullclines intersection denotes

the location of the steady-state. For a given value of r, increasing I
shifts the �vv-nullcline upwards, while the �ww-nullcline is independent

of both I and r.

If I is such that the steady-state is located on the middle branch

of the �vv-nullcline, and if �ww is sufficiently slow compared to �vv, that

is, E%1, then it can be shown that the steady-state is unstable, and

a stable limit cycle exists [23]. From a geometric illustration, we

can anticipate a critical value of r, rs, above which a stable limit

cycle and repetitive firing cannot exist, consistent with Figure 2A

Figure 2. Repetitive firing in the AFHN model. (A) Simulated �vv traces for I~1:3 and different values for r. The dashed lines indicate �vv~0. (B)
Phase-plane portrait for variable I and r. In each panel, the �vv-nullcline (green) is shown for 3 values of I . The �ww-nullcline (blue) is independent of I
and r. (C) I -r parameter space, denoting regions of rest, repetitive firing, and block. The limit cycle lower and upper limits (I+, Eq. 6 ) and rheobase
(Irh, Eq. 9 ) as functions of r. (D) Frequency and amplitude of action potentials, as functions of I and r.
doi:10.1371/journal.pone.0081402.g002

Figure 3. Steady-state of the AFHN model. The steady-state
transmembrane potential �vv� and degree of refractoriness �ww� are shown
as functions of the HF stimulation parameter r. Critical values of r for
repetitive firing rs and for evoking a single action potential following a
brief applied current pulse rc are identified. See text for description of
critical values.
doi:10.1371/journal.pone.0081402.g003

High-Frequency Stimulation of Excitable Cells
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(bottom panel). As r increases, the slope of the middle branch of

the �vv-nullcline decreases, and the ‘‘knees’’ of the nullcline move

towards the steady-state (�vv�,�ww�). When the slope at (�vv�,�ww�) equals

0, the middle branch of the nullcline no longer exists and,

therefore regardless of I , a stable limit cycle also does not exist.

Using the slope of the �vv-nullcline alone as a criterion for the critical

value of r, rs&
ffiffiffi
2
p

.

From linear stability analysis, we can more precisely determine

the necessary condition for a limit cycle, c(r)wEc, such that rs is

given by

rs~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(1{Ec)

p
: ð5Þ

For all values of r§rs the steady-state is always stable,

regardless of I , as previously shown by [17]. Further, for rvrs,

the critical stimulus upper and lower limits, Iz and I{,

respectively, are given by

I+(r)~bc{1+½c{1{c(r)�(c(r){Ec)1=2+
1

3
(c(r){Ec)3=2: ð6Þ

The I+ curves separate the regions of rest, repetitive firing, and

depolarization block in the I-r parameter space and coalesce

when r~rs at a double Hopf bifurcation (Figure 2C). For the

parameters used in this study, rs&1:411.

In the regime for repetitive firing, we derive an approximation

for the action potential frequency and amplitude in the AFHN

model (see Methods). For a given value of r, the frequency first

increases then decreases as I increases (Figure 2D), while the

amplitude is constant, consistent with a relaxation oscillator.

Increasing r increases frequency and decreases the action

potential amplitude, consistent with Figure 2A.

Excitability in the AFHN model. We next consider the

excitability of the AFHN model following a brief applied current,

in the presence of HF stimulation, by determining the strength-

duration curve, the relationship between the duration d of an applied

current pulse and the minimum amplitude I0 such that an action

potential fires [26].

With the system initial at rest, i.e., �vv(t~0)~�vv�, we make the

assumption that an action potential is fired when �vv(t) reaches some

threshold j. Although it has been shown that the FHN model does

not strictly exhibit all-or-none threshold behavior [23], when �ww is

sufficiently slow compared with �vv, the middle root of the �vv-

nullcline is a reasonable approximation for an action potential

threshold, which we show increases as r increases (see Methods for

details and references on firing threshold, Eq. 44, Figure 4C). This

threshold-like behavior is illustrated in Figure 4. We plot �vv as a

function of time following brief d~0:1 current pulses for r~0 and

1. For both values of r, an action potential is elicited if �vv(t)wj
during the brief pulse, while if �vv(t)vj during the current pulse, �vv
returns to rest �vv�. Increasing r increases both the �vv threshold for

evoking an action potential, j, and the stimulus threshold I

necessary to elicit an action potential (Figure 4C).

In the Methods section, we show a critical value for r, rc, exists,

which for all values of r,

rwrc~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1z

3

c
1z

b

vj

� �� �s
ð7Þ

the AFHN model cannot be excited by a brief applied current,

where vj is defined in Eq. 27. Using the parameters used in this

study, rc&1:302. For rwrc, regardless of the magnitude of the

stimulus pulse I , �vv(t) relaxes back towards the steady-state value �vv�
following the applied current pulse, without a large amplitude

excursion typical of an action potential (Figure 4A, right panel).

For rƒrc, and the strength-duration curve is approximated by

I0~
�ff 0(�vv�)½�vv�{j(r)�
1{ exp½�ff 0(�vv�)d�

, ð8Þ

where the prime indicates differentiation with respect to �vv, such

that

�ff 0(�vv�)~c(r){�vv2
�:

We plot the strength-duration curves in Figure 4B for several

values of r. For all values of r, I0 decreases linearly with d when

presented on a logarithmic scale and approaches a constant value

for long d, a relationship typical of excitable cells. For a given

stimulus duration d, the strength required to elicit an action

potential I0 increases as r increases. Two important values are

typically determined from the strength-duration curves: rheobase

(Irh), defined as I0 for an infinite duration pulse, and chronaxie

(tc), defined as the pulse duration having a threshold that is twice

the rheobase. From Eq. 8, Irh and tc are given by

Irh(r)~�ff 0(�vv�)½�vv�{j(r)� ð9Þ

and

tc(r)~{
ln(2)
�ff 0(�vv�)

, ð10Þ

respectively. We plot Irh and tc as a function of r in Figure 4C.

Both Irh and tc are fairly constant for small r. Irh increases and tc

decreases, as r further increases towards rc. We also plot Irh in

Figure 2C for comparison with I{, and note that for all values of

r, IrhvI{, that is, a smaller I is required to elicit a single action

potential than to elicit repetitive spiking, as expected. We note that

the derivation of Eq. 8 assumes the stimulus I0 is brief—that is, Eq.

8 is strictly valid for small d—therefore, rc should not be

interpreted as a critical r above which no action potentials can be

elicited by longer duration stimuli. Indeed, rcvrs, and therefore,

the cell can repetitively fire during long duration stimuli for

rcvrvrs, and a single action potential can be elicited by long

duration stimuli for rwrs. Further, since rheobase is defined as a

stimulus threshold for infinite d, Eqs. 9 and 10 should be

interpreted as approximations derived from Eq. 8, which

nonetheless provide qualitative relationships between the

strength-duration curve parameters Irh and tc and HF stimulation

parameter r that can be compared with a biophysically-detailed

model, as discussed in the next section.

High-Frequency Stimulation of Excitable Cells
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In summary, increasing the HF stimulation parameter r
increases the thresholds for both repetitive firing and a single

action potential, I{ and Irh, respectively. We derive expressions

for critical values of r and determine the influence of HF

stimulation on the resting potential, firing frequency and

amplitude, action potential threshold, rheobase, and chronaxie.

These theoretical relationships provide references that can be

compared to results from a more realistic neuron model described

in the next section.

Averaged Hodgkin-Huxley model
We next derive and analyze the influence of HF stimulation on

a biophysically-detailed model of the neuron, utilizing the

techniques described in the previous section. We consider the

classical space-clamped Hodgkin-Huxley (HH) neuron model of

the giant squid axon [21], with the addition of an applied current I

and HF stimulus, given by the following system of equations:

_vv~½Izrv cos (vt){gNam3h(v{ENa){gK n4(v{EK )

{gL(v{EL)�=C
ð11aÞ

_mm~am(1{m){bmm~(m?{m)=tm ð11bÞ

_hh~ah(1{h){bhh~(h?{h)=th ð11cÞ

_nn~an(1{n){bnn~(n?{n)=tn ð11dÞ

where HF stimulus parameters r and v are defined as before. In

the HH neuron model, v~Vm{Vrest represents the transmem-

brane voltage Vm relative to the resting potential Vrest, m the

sodium activation gating variable, h the sodium inactivation gating

variable, and n the potassium activation variable. Current

conductances, reversal potentials, and gating variable dynamics

are described in the Methods.

Assuming that the period of the fast HF stimulation is much

shorter than the characteristic times of the dynamics of v and the

gating variables, as in the previous section, we approximate the

dynamics of the slow variables by averaging over the period of the

HF stimulus. The variables of the averaged Hodgkin-Huxley

(AHH) model, �vv, �mm, �hh, and �nn, are governed by the following system

of equations:

_�vv�vv~½I{gNa �mm3�hh(�vv{ENa){gK �nn4(�vv{EK ){gL(�vv{EL)�=C ð12aÞ

_�mm�mm~�aam(1{�mm){�bbm �mm~( �mm?{�mm)=�ttm ð12bÞ

_�hh�hh~�aah(1{�hh){�bbh
�hh~(�hh?{�hh)=�tth ð12cÞ

_�nn�nn~�aan(1{�nn){�bbn�nn~(�nn?{�nn)=�ttn ð12dÞ

where

�aax(�vv,r)~
1

2p

ð2p

0

ax½�vvzr sin (h)=C�dh, ð12eÞ

�bbx(�vv,r)~
1

2p

ð2p

0

bx½�vvzr sin (h)=C�dh, ð12fÞ

Figure 4. Excitability in the AFHN model. (A) Simulated �vv traces during brief d~0:1 stimuli pulses of amplitude I for r~0, 1, and 1.5. In
simulations that �vv exceeds the threshold j, an action potential is elicited. Inset shows an expanded time course. (B) Strength-duration curve ( Eq. 8 )
for several values of r. (C) Rheobase (Irh , Eq. 9 ) and chronaxie (tc , Eq. 10 ) as functions of r.
doi:10.1371/journal.pone.0081402.g004
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�xx?~
�aax

�aaxz�bbx

, ð12gÞ

and

�ttx~
1

�aaxz�bbx

, ð12hÞ

for x[fm,h,ng. Because of the simplicity of the FHN model, we

could derive analytical expressions for the dynamics of the AFHN

model variables. In the HH model, the expressions for the ax and

bx terms that govern the dynamics of the gating variables are

complex, and as such, it is not possible to derive analytical

expressions for Eqs. 12e and 12f without using approximations for

the exponential function. Therefore, Eqs. 12e and 12f are

computed by numerical integration for particular values of �vv and

r.

As with the FHN model, we plot Vm from simulations of the

HH model (black) for various values of the HF stimulation

frequency and compare with �VVm~�vvzVrest from a simulation of

the AHH neuron model (red), for fixed values for r and I (Figure

5). Below an HF stimulus frequency v of 5 kHz, there is significant

disagreement between the averaged and original model. As v

increases, �VVm from the AHH model becomes a better approxi-

mation of the average value of Vm from the HH model simulation,

validating the use of the averaging method.

Repetitive firing in the AHH model. As in the previous

section, we consider the influence of an applied current I in the

AHH model, in the presence of HF stimulation. In Figure 6A, we

plot �VVm for different values of r, such that the neuron is

repetitively firing, i.e., IwI{. For sufficiently large r, the neuron

does not repetitively fire.

We plot the I-r parameter space for the AHH model in Figure

6B. The parameter space is qualitatively similar to the AFHN

model, such that the range of I for which the neuron repetitively

fires becomes smaller as r increases, and above a critical value of

r, rs, the neuron does not repetitively fire. In the HH model, it has

been shown that action potential frequency increases and the

action potential amplitude decreases for increasing I [23], and we

find that this is true for a given value of r. For a given I , as r
increases, in agreement with the AFHN model, action potential

amplitude decreases. However, in contrast with the AFHN model,

the frequency decreases as r increases (Figure 6C).

Excitability in the AHH model. We next consider

excitability in the AHH model following brief applied current

pulses. Here, we consider both positive (cathodal) and negative

(anodal) applied current stimuli. As with the FHN model, the HH

model is known to not exhibit a strict all-or-none firing threshold.

However, especially for brief (0.1 ms) pulses, the HH model

demonstrates a threshold-like response. In Figure 7A, we plot �VVm

for different values of r and I . Consistent with the AFHN model,

the �VVm threshold for evoking an action potential, j, increases for

increasing r (left, middle panels). Further, above a critical value of

r, rc, an action potential cannot be evoked, regardless of I (right

panel). Although �VVm reaches levels near 0 mV, these responses

should not be considered action potentials, as the depolarization of
�VVm does not arise as a consequence of the regenerative activation

of inward currents but rather solely as a perturbation due to the

large applied stimulus. Specifically, above rc, regardless of

stimulus amplitude I , �VVm is maximally depolarized as the end of

the stimulus pulse and does not become further depolarized

following the pulse.

We also consider the influence of HF stimulation on excitability

following anodal break stimulation, also known as post-inhibitory

rebound. In the classical HH model (i.e., r~0), a negative (anodal)

applied current pulse I hyperpolarizes the steady-state resting

transmembrane potential �VVm,� (Figure 7B), which permits sodium

inactivation recovery, i.e., �hh moves closer to 1. Following the pulse

offset (break), �VVm returns towards the more depolarized initial

resting potential, and due to the slower sodium inactivation

kinetics, �VVm rebound can be sufficiently large to evoke an action

potential. As with cathodal stimulation, the threshold for

stimulation, j (determined as the magnitude of the hyperpolar-

ization necessary for a post-inhibitary rebound), increases for

increasing r (left, middle panels), and above a critical value of r,

ra an action potential cannot be evoked (right panel). j is larger

for anodal stimulation (Figure 7D top panel, red), compared with

cathodal stimulation (black), and the difference increases as r
increases, meaning a relatively larger anodal stimulation is

necessary to evoke an action potential. Consistent with this

finding, we find that ra&0:21vrc&0:69 mA=cm2:Hz.

Strength-duration curves for cathodal and anodal stimulation in

the AHH model are shown in Figure 7C. Consistent with the

AFHN model, for a given duration, the necessary cathodal applied

current strength I0 increases as r increases. Further, rheobase Irh

increases and chronaxie tc decreases as r increases, as in the

AFHN model (Figure 7D, black traces, middle and bottom panels).

As r approaches rc, the strength-duration curve becomes flatter,

consistent with a decreasing chronaxie, and illustrating that for

Figure 5. Validation of the AHH model. Simulated Vm traces from the HH (black) and AHH (red) models for varying HF stimulus frequency v.

Parameters: v~2pf rad/s (where f is the frequency identified in each panel), I = 30 mA=cm2 , r~0:1 mA=cm2:Hz.
doi:10.1371/journal.pone.0081402.g005
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large r the magnitude of the applied pulse, and not the duration,

determine whether an action potential is evoked. For a given r,

anodal rheobase is slightly larger compared with cathodal

rheobase (Figure 7C, D). As r approaches ra, in contrast with

cathodal strength-duration curves, the anodal curves become

steeper, such that chronaxie increases as r increases (Figure 7D,

bottom panel), illustrating that short duration anodal pulses

become relatively less effective for evoking post-inhibitory rebound

action potentials.

Dynamics of the AHH model. For the AFHN model, we

demonstrate that rs and rc can be approximated via theoretical

analysis of the two-dimensional dynamical system, based primarily

on analysis of the influence of r on the phase plane. Various

approaches have been used to simplify the HH model to a FHN-

like two-dimensional system, often assuming fast sodium activation

and a linear relationship between gating variables h and n for a

given I [20]. However, we found that a similar phase plane

analysis using this type of reduction of the AHH model was only

moderately successful at reproducing AHH dynamics, likely due to

the complex relationship between the gating variables dynamics

over a wide range of I and r (not shown).

In the AFHN model, the HF stimulation parameter r influences

the dynamics of �vv through the cubic function �ff . In contrast, in the

AHH model the dynamics of �vv are altered indirectly through the

influence of r on the gating variables. In Figure 8A, we plot the

steady-state activation, inactivation, and time constant curves as

functions of �VVm for different values of r. As r increases, the sodium

activation �mm? and inactivation �hh? steady-state curves are shifted

to the right, the potassium activation �nn? steady-state curve is

shifted to the left, and all three curves are less steep (Figure 8A).

The time constants �ttm, �tth, and �ttn all decrease as r increases.

Shifts in the activation, inactivation, and time constant curves

alter the AHH system steady-state (Figure 8B). As r increases, the

steady-state transmembrane potential �VVm,� becomes more hyper-

polarized, reaching a minimum of *10 mV hyperpolarized below the

baseline resting potential Vrest~{80 mV. As r increases further,
�VVm,� is gradual depolarized, approaching a maximum value of

*10 mV depolarized above Vrest. The steady-state sodium activation

gate �mm� decreases and approaches 0 as r increases. Despite �VVm,�
becoming more hyperpolarized for small r, the steady-state

sodium inactivation gate �hh� also decreases, and then increases and

approaches 1 for large r. The steady-state potassium activation

gate �nn� is also complex, first increasing then decreasing and

approaching 0 as r increases.

Mechanisms of conduction block
The influence of the HF stimulus parameter r on the dynamics

of the gating variables provides significant insight into the

mechanism of conduction block in neurons and the various

thresholds for repetitive firing and excitability (rs, ra, and rc)

(Figure 8). For small rƒrs (the critical value of r for repetitive

firing), the neuron can repetitively fire for some range of the

applied current I[½I{,Iz�. As r increases, the resting sodium

channel activation gate �mm� and inactivation gate �hh� decrease and

the resting potassium channel activation gate �nn� increases, which

all drive the neuron towards being less prone to firing.

As r increases for small rƒra (the critical value of r for anodal

stimulation), the time constant for sodium channel inactivation �tt�h
also decreases, that is, following a negative applied current pulse, �hh
will return to its resting value in a shorter amount of time.

Combined with a more hyperpolarized resting transmembrane

potential �VVm,� and decreasing �hh�, the threshold for anodal

Figure 6. Repetitive firing in the AHH model. (A) Simulated �VVm traces for I~50 mA=cm2 and different values for r. The dashed lines indicate
�VVm~0 mV. (B) I -r parameter space, denoting regions of rest, repetitive firing, and block. The limit cycle lower and upper limits (I+) and rheobase

(Irh) as functions of r. (C) Action potential frequency and amplitude, as functions of I and r. r in units of mA=cm2:Hz.
doi:10.1371/journal.pone.0081402.g006
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excitation j increases dramatically as r increases (Figure 7). r~ra

when �hh� is at a minimum and �tt�h has decreased by approximately a

factor of 2.

As r increases for rƒrc (the critical value of r for cathodal

stimulation), the sodium activation curve �mm? is right shifted, and

combined with a more hyperpolarized �VVm,� and decreasing �tt�h,

results in an increasing threshold for cathodal simulation j (Figure

7). r~rc when �VVm,�&{90 mV and �mm�&0 are at a minimum,
�hh�&1 and �nn�&0:6 are at a maximum and gating dynamics are

fast, that is, the time constants for sodium activation �tt�m and

inactivation �tt�h are near 0. Rapid and persistent activation of the

potassium current opposes the sodium current and prevents

sufficient depolarization to reach the threshold for evoking an

action potential. As r increases for large rwrc, �nn� and �tt�n
decrease, as �VVm,� gradually transitions from hyperpolarized to

depolarized, relative to Vrest. For very large r&rc, all three time

constants are essentially equal to 0, such that the gating variable

kinetics can be defined by instantaneous functions of �vv. In this

regime, the four-dimensional AHH model (Eqs. 12a–12h) is

reasonably approximated by a one-dimensional system, for which

a large amplitude excursion typical of an action potential is no

longer possible. Indeed, for a system with a single stable steady-

state (as is the case for large r), all perturbations from the steady-

state are followed by a gradual relaxation back to rest, as observed

for large r in Figure 7A and B (right panels).

The AHH model suggests that there are different mechanisms

of conduction block, depending on the strength of the HF

stimulus. For small rƒrs, repetitive firing ceases due to decreased

sodium channel activation (decreased �mm) and availability (de-

creased �hh) and increased potassium channel activation (increased

�nn). For intermediate rsƒrƒrc, gating variable dynamics are fast

(i.e., the time constants approach 0), and therefore eliciting a single

action potential via anodal and cathodal excitation fails due to

rapid sodium current inactivation, in addition to decreased sodium

activation and increased potassium activation. For large r&rc,

sodium and potassium currents are persistently de-activated (i.e.,

�mm&0 and �nn&0), preventing an action potential from being

evoked, and �VVm,� is depolarized due to the influence of the leak

current.

In summary, the influence of the HF stimulation parameter r
on the properties of action potential firing in the AHH model is

similar to that demonstrated in the AFHN model, however with

differences in the influence on the resting potential and firing

frequency. Further, simulation and analysis of the biophysically-

detailed model provides insight into the mechanisms of conduction

block. We determined three critical values for r, which above the

neuron cannot repetitively fire (rs), and an action potential cannot

be evoked by cathodal (rc) or anodal (ra) stimulation. Below the

critical values, we demonstrated that the thresholds for evoking

repetitive firing or a single action potential increase as r increases.

HF stimulation of an AHH neuronal network
Finally, we consider the influence of HF stimulation on a

random network of 100 neurons, each with, on average, 10

connections, coupled via both excitatory and inhibitory synapses

Figure 7. Excitability in the AHH model. (A) �VVm traces following brief (0.1 ms) cathodal and (B) anodal stimulus pulses, for different values of r.
Threshold j indicated in each panel. (C) Cathodal and anodal strength-duration curves for different values of r. (D) Cathodal and anodal threshold j
(for 0.1 ms stimuli), rheobase, and chronaxie, as functions of r. Current pulse amplitudes in (A): 64-66 (left); 633-635 (middle); 600, 800, 1000 (right); in

(B): 198-200 (left); 397-399 (middle); 400, 600, 800 (right); in mA=cm2 .
doi:10.1371/journal.pone.0081402.g007
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(see Methods for description of synaptic currents and network

architecture). Following a single initial applied current pulse, in the

absence of HF stimulation (i.e., r~0), a rastergram shows that

most neurons in the network fire repetitively (Figure 9A), while a

few neurons remain quiescent due to the absence of incoming

excitatory synaptic connections (arrows). The pseudo-electroen-

cephalogram (pEEG, Eq. 32 ) becomes disorganized after an initial

time period of synchronization following electrical activity

initiation.

We plot the pEEG and the corresponding power spectrum for

the same network as r increases (Figure 9B). In general, the

average neuron firing rate tends to decrease as r increase,

although though this trend is not strictly monotonic with r (Figure

9B, middle panels). In general, decreased firing rate is associated

with increased network synchronization (Figure 9B, right panels),

illustrated by the narrowing of the dominant peak in the power

spectrum and increase in the synchrony measure x ( Eq. 33 ).

When r increases further above a critical value of r, rn, network

electrical activity ceases immediately following the initial initiation

(Figure 9B, bottom panel, rn~0:05mA=cm
2:Hz for this example).

The critical value rn for complete cessation of network electrical

activity was highly dependent on the specific architecture of the

network and the relative proportion of excitatory and inhibitory

synaptic connections (see Methods). We determined rn as

functions of pexcit, the probability that each synaptic connection

was excitatory, and the specific network architecture. For each

value of pexcit, Nsim~10 different networks were randomly

constructed with the same average connection properties but

different connections. The mean value for rn, plus/minus one and

two standard errors of the mean (SEM, standard deviation divided

by
ffiffiffiffiffiffiffiffiffi
Nsim

p
) are shown as functions of pexcit (Figure 10). For all

network architectures, rn~0 for all networks with pexcit~0 or

pexcit§0:5, that is, the network does not exhibit persistent activity,

even in the absence of HF stimulation. In this specific type of

network, persistent network activity requires both excitatory and

inhibitory synaptic connections, and indeed that a majority of

synapses are inhibitory. For 0vpexcitv0:5, rn is an inverted U-

shaped function of pexcit, with a maximum near pexcit~0:2. In all

networks, the values of rn are less than the single cell critical values

for repetitive spiking rs, and cathodal and anodal stimulation, rc

and ra, respectively.

Discussion

Summary of main findings
In summary, we find that HF stimulation alters the dynamics of

excitable cells and networks, resulting in conduction block and

electrical quiescence. In a simplified excitable cell model, we

identify analytical expressions for HF stimulation strength critical

values for repetitive firing and evoking action potentials. In a

biophysically-detailed neuronal model, we demonstrate that HF

stimulation alters the dynamics of ionic current gating, leading to

reduced cellular excitability and conduction block. HF stimulation

of a neural network reduces the overall network activity and

Figure 8. Steady-state of the AHH model. (A) Steady-state gating variables �mm?, �hh?, �nn? and time constants �ttm , �tth , �ttn as functions of �VVm in the
AHH neuron model for different r values. (B) Steady-state values for the transmembrane potential �VVm and the gating variables (left), and gating
variable time constants at �VVm,� (right), as functions of r. Vertical dashed lines indicate rs , ra , and rc (see text for description). In the top panels, the

horizontal dashed line indicates Vrest~{80 mV for r~0. Time constants in units of ms, and r in units of mA=cm
2:Hz.

doi:10.1371/journal.pone.0081402.g008
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increases network synchronization, leading to network quiescence

for a sufficiently large HF stimulus.

Relation to prior work
Previous studies have investigated the mechanisms underlying

conduction block in neurons [8–14]. In these studies, two primary

mechanisms for conduction block are posed: persistent potassium

current activation of potassium opposing sodium current and

preventing the neuron transmembrane potential from reaching a

threshold; and reduced sodium channel availability due to a

baseline depolarization of the transmembrane potential. It is noted

in several studies that these mechanisms are not mutually exclusive

and indeed both likely play a role, depending on the species and

specific cell type. Our findings are generally consistent with these

previous studies, in that we find persistent potassium current

activation and reduced sodium channel availability (or de-

inactivation). However, a multi-scale method approach permits

us to identify how changes in ionic current gating result in different

critical thresholds. Further, we are able identify the influence of

HF stimulation on the gating variable kinetics, i.e. the gating

variable steady-state activation, inactivation and time constant

curves, as a significant and novel factor regulating conduction

block.

The method of averaging has been previously used to

investigate the influence of HF stimulation in the FHN model

[17–19]. Cubero and colleagues previously demonstrated that HF

stimulation can lead to cessation of repetitive firing above a critical

threshold (a finding reproduced in the present study) [17]. Ratas

and Pyragas determined conditions for which HF stimulation

results in slowed and failed propagation. [18,19]. Here, we extend

the approach of these prior studies to demonstrate the influence of

HF stimulation on the threshold for evoking a single action

potential and additionally to investigate HF stimulation in a

biophysically-detailed neuronal single-cell model and network.

The FHN model is ideal for mechanistic studies, as the two-

dimensional model enables phase-plane analysis and often permits

analytical expressions for critical values. We demonstrate that

many aspects of HF stimulation of FHN model neurons are

similarly reproduced in the HH model, specifically qualitatively

similar I -r parameter space for repetitive firing; influence of HF

stimulation on the action potential threshold; and the existence of

critical HF stimulation amplitudes above which neurons cannot

repetitively firing or trigger a single action potential.

However, some important properties of HF stimulation of the

AHH model are not qualitatively reproduced by the AFHN

model, which paints a simpler picture for the mechanism of

conduction block. In the AFHN model, the resting potential is

gradually depolarized and the gating variable �ww gradually

Figure 9. Electrical activity in a network of AHH model neurons. (A) Rastergram of action potentials and the pseudo-electroencephalogram
(pEEG). Arrows indicated quiescent neurons. Parameters: r~0, pexcit~0:3. (B) pEEG (left, Eq. 32 ), the corresponding power spectrum (middle, value

indicates the average neuron firing rate), and synchrony measure x (right, Eq. 33 ), as functions of r. r in units of mA=cm2:Hz.
doi:10.1371/journal.pone.0081402.g009

Figure 10. HF stimulation of a network of AHH model neurons.
The critical value rn for repetitive activity in a AHH model neural
network, as a function of the probability of excitatory synaptic
connections pexcit. The mean rn (thick black) over Nsim~10 simulations,
+ 1 (solid black) and 2 (thin black) SEM (standard error of the mean,

standard deviation of
ffiffiffiffiffiffiffiffiffi
Nsim

p
) are shown. Single cell critical values of r

(rc,ra, and rs) are identified (see text for description). r in units of

mA=cm2:Hz.
doi:10.1371/journal.pone.0081402.g010
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increases as r increases, suggesting that conduction block occurs to

do the collective influence of transmembrane potential depolar-

ization and a larger degree of refractoriness. In the AHH model,

the resting potential is hyperpolarized for small r and depolarized

as r increases. Additionally, the gating variable steady-state values

and time constants are altered in a complex manner, such that

conduction block is due to both altered refractoriness and the

time-dependent dynamics of the refractory variables. The AFHN

model also not does reproduce the influence of HF stimulation on

firing frequency. In the AFHN model, the frequency increases as r
increases. However, in the AHH model, frequency decreases,

likely due to the reduced sodium channel availability, i.e. the

decrease in �hh�, that occurs as r increases for small rvrs.

Understanding how HF stimulation influences firing frequency is

significant and necessary for optimizing HF stimulation therapy, as

frequency plays a significant role in neural computing [27].

Physiological significance of findings
The term, high frequency stimulation, is often used in different

clinical settings with different meanings. HF stimulation frequen-

cies range several orders of magnitude from 100 Hz—typical of

studies of deep brain stimulation to treat movement disorders such

as Parkinson’s disease and other neurological disorders such as

epilepsy [28,29]—to 40 kHz—including clinical applications such

as pain mitigation and improved bladder voiding [8–10]. An

inherent assumption in the derivation of the averaged excitable

cell models is that the time scale of the HF stimulus is significantly

shorter than the time scale of cellular dynamics. We show that the

averaged and original HH model begin to agree when the HF

stimulation frequency is near 5 kHz (Figure 5), consistent with

*0:5 ms (*2 kHz) time-scale for sodium channel activation, and

there is greater agreement as the HF frequency increases. This

suggests that the method of averaging approach may not be strictly

appropriate to the investigation of deep brain stimulation using

lower frequency HF in the 100–200 Hz range but highly relevant

to the study of peripheral nerve stimulation and clinical

applications typically utilizing kilohertz-range HF stimulation.

Recently, Weinberg and colleagues demonstrated that HF

stimulation in the 100–200 Hz range could block electrical

conduction in cardiac tissue, a novel approach to terminate

arrhythmias [30,31]. Since the time scale of cardiac dynamics is

generally slower than neuronal dynamics, future work is necessary

to determine the validity of the averaging method for investigation

of the influence of HF stimulation in cardiac tissue.

In this study, we found that HF stimulation could prevent

persistent network electrical activity at lower HF stimulation

amplitudes necessary for single cell quiescence, which suggests

network activity may cease due to HF stimulation sufficiently

reducing excitability in a subset of neurons that prevents re-

excitation throughout the network. We only considered network

activity that persists (or ceases) following a single initial applied

current at the simulation onset. The network response to a

constant, repetitive, or random (Poissonian) applied current, in

addition to the HF stimulation, may be significantly different. We

additionally only consider sparsely connected random network

architectures. In this study, we found that the specific network

architecture was highly important in determining the response to

HF stimulation, and thus it is reasonable to speculate that the

network response in highly connected and/or directed neural

networks could be different from our findings. Several studies of

models including more detailed network architecture and specific

cell types have suggested mechanisms underlying deep brain

stimulation treatment using HF stimulation in the 100–200 Hz

range. Rubin and Terman demonstrated that HF stimulation of

the subthalamic nucleus can regularize globus pallidus firing and

eliminate pathological thalamic rhythmicity [32]. Using a systems

theoretic approach, Agarwal and Sarma demonstrate that HF

deep brain stimulation improves reliability of thalamic relay [33].

As noted above, the averaging method may not be strictly

appropriate in this frequency range. However, investigation of

more physiological neural network architectures and cell types

may suggest alternative deep brain stimulation therapies within a

higher frequency (kilohertz) regime or provide insight into the role

of specific network components with different responses to HF

stimulation, as in the aforementioned studies.

In this study, we investigate a simple network with a random

architecture and consider the influence of HF stimulation as

function of the relative fraction of excitatory synaptic connections.

We illustrate a general approach to study HF stimulation in a large

neural network which does not require simulation of the HF

stimulation term and thus does not require a prohibitively small

simulation time step. Here, we consider HF stimulation in the

context of only a few network parameters. However, neural

networks can exhibit rich and complex dynamics, and much work

has demonstrated that the local network architecture can have

significant influence on global behavior, e.g., the small-world

phenomenon [34–36], and network architecture will likely

significantly influence our findings. Additional work is necessary

to understand the influence of HF stimulation in the context of

networks of varying degrees of connectivity and structure.

The critical values for repetitive firing and evoking action

potentials are defined in terms of the HF stimulus frequency-to-

amplitude ratio; that is, as the HF stimulus frequency increases, so

must the HF stimulus amplitude for the same response. In a

therapeutic device, it is ideal to minimize the amplitude of an

applied stimulus, to minimize power consumption and mitigate

safety issues for both the patient and device. Thus, determining the

optimal frequency regime to minimize the amplitude for optimal

HF stimulation is an important and practical issue. Future work

will consider these complications, which must also include analysis

of HF stimulation at frequencies approaching the same time scales

as cellular dynamics.

Limitations
In most clinical settings of interest, HF stimulation is applied in

the form of an external electrical field stimulus. In this study, we do

not account for the influence of an external electrical field nor

account for the spatial extent of the nerve axon. Such levels of

details are significant for studies of local neural conduction block

[8–14], as spatial gradients in the extracellular space create virtual

electrodes resulting in non-uniform HF stimulation through the

nerve axon [37]. It has been shown in multi-compartment models

that somatic and axonal firing can become decoupled during 100–

200 Hz HF stimulation, such that somatic quiescence does not

necessarily preclude activation in neuronal processes [38].

Simulation studies in one-dimensional nerve axons have shown

that as the amplitude of a kilohertz-range HF stimulation is

increased, the system can transition from regimes of conduction

block to rapid firing several times, such that a strict conduction

block threshold is not clearly defined [39]. As such, non-uniform

stimulation could lead to conduction block in one region of a

neuron and rapid activation in another. Further studies of

kilohertz-range HF stimulation in more spatially-detailed neuronal

models are necessary to investigate these complex issues.

The HH model of the giant squid nerve axon is a classical

model of an excitable cell, highly studied and well-characterized,

and thus it was a reasonable biophysically-detailed ionic model to

characterize the influence of HF stimulation using the method of
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averaging approach. However, several more detailed neuronal

models relevant to mammalian physiology have been described,

incorporating more detailed and multiple sodium, potassium, and

calcium currents [40–42]. Indeed, the interaction between voltage-

gated calcium channels and calcium-mediated synaptic transmis-

sion may be important for understanding the influence of HF

stimulation on network activity and designing an optimal therapy

and warrants further study.

Finally, the simulation results presented here are deterministic

and do not account for stochastic fluctuations inherent in neuronal

signaling at both the cellular and subcellular levels. Indeed, studies

have shown that noise-induced firing can be enhanced by HF

stimulation for sufficiently large noise levels, termed vibrational

resonance [17], closely related to the well-known phenomenon of

stochastic resonance [43]. Further work is necessary to investigate

the influence of stochastic fluctuations on spiking in biophysically-

detailed averaged neuronal models.

Methods

Derivation of AFHN model
We derive the AFHN model equations, following the approach

in [19]. See [18,19] for a more details. For HF stimuli with large

frequencies v&1, the period of HF oscillations is much less than

the characteristic time scales of the FHN neuron. Therefore, we

seek to eliminate the HF stimulus term rv cos (vt) from Eq. 1a

and obtain an autonomous system which approximates the

original system on the time scale of the FHN neuron. First, we

change the variables in Eqs. 1a and 1b, substituting

v~Vzr sin (vt), ð13aÞ

w~W , ð13bÞ

and derive the following equations for V and W :

_VV~f ½Vzr sin (vt)�{WzI , ð14aÞ

_WW~E(Vzr sin (vt)zb{cW ):

Mathematically, we are interested in the limit v??, for a fixed

r. By rescaling time t~vt, we can transform the system to

dV

dt
~v{1ff ½Vzr sin (t)�{WzIg ð15aÞ

dW

dt
~v{1E(Vzr sin (t)zb{cW ) ð15bÞ

The variables V and W vary slowly relative to the periodic

function sin t, due to the small parameter w{1%1. According to

the method of averaging [15], an approximate solution to the

system can be obtained by averaging over the fast periodic

function, and the averaged variables �vv and �ww satisfy the following

ODEs:

d�vv

dt
~

1

2pv

ð2p

0

ff ½�vvzr sin (h)�{�wwzIgdh ð16aÞ

d �ww

dt
~

E
2pv

ð2p

0

½�vvzr sin (h)zb{c�ww�dh ð16bÞ

After calculating the integrals and returning to the original time

scale, the averaged system is as given above in Eqs. 2a and 2b.

Importantly, we note that the assumption implicit in stating Eq.

13a, specifically that the original system voltage v can be expressed

as the sum of slow varying V and high frequency term rsin(vt),
underlies an important conclusion of the method of averaging

theorem [44]: an equilibrium point in the averaged system (e.g.,

rest or depolarization block) corresponds to a periodic solution in

the original system (due to the additional HF term superimposed

on top of the averaged system equilibrium). Similarly, a periodic

orbit in the averaged system (e.g., repetitive firing) corresponds to

a more complex oscillation or tori, observed in the v traces of the

FHN and AFHN models in Figure 1.

Firing frequency and amplitude in the AFHN model
Following a similar approach as described in [24], expressions

for the firing frequency and action potential amplitude in the

AFHN model are derived as follows. Recall from Eqs. 2a and 2b

that the �vv-nullcline F (�vv,�ww)~0 is cubic in shape. Therefore, over

the finite range of values for �ww[½w1,w2�, there are three solutions of

the equation F (�vv,�ww)~0, which we can denote by �vv~V{(�ww),
�vv~V0(�ww), and �vv~Vz(�ww) (see Figure 11). The minimal value of �ww
for which V{(�ww) exists is w1, the maximal value of w for which

Vz(�ww) exists is w2, both of which are functions of r and I .

�vv~V+(�ww), the left and right branches, are termed the stable

branches of the �vv-nullcline, and �vv~V0(�ww), the middle branch, is

termed the unstable branch, because, in the limit that v is much

faster than w, a steady-state located on the (un)stable branch is

(un)stable.

The locations of (v1,w1) and (v2,w2) are given by the local

minimum and maximum, respectively, of the v-nullcline, given by

v1=2~+
ffiffiffi
c
p

and

w1=2~I+
2

3
c3=2

Because �vv is fast compared to �ww, �vv rapidly moves between stable

branches of the �vv-nullcline, V+(�ww). We can approximate the

period of an oscillation T by the time required to travel along the

two stable branches V+(�ww)

T~

ðtB

tA

dtz

ðtD

tC

dt ð17Þ

where points A-D are indiciated in Figure 11. Along the stable

branches, the dynamics of w are determined by
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_�ww�ww~G(V+(�ww),�ww)~G+(�ww), ð18Þ

and, therefore, Eq. 17 is equivalently given by

T~

ðw2

w1

1

Gz(�ww)
{

1

G{(�ww)

� �
d �ww: ð19Þ

Note that both terms of the integral are positive, since

Gz(�ww)w0 and G{(�ww)v0 over the range of values ½w1,w2�. The

frequency of oscillations is given by 1=T .

From Figure 11, we observe that the amplitude of the limit

cycle—and thus, of the action potential—is given by �vvA{�vvC , the

difference between the values of �vv at points A and C, respectively.

�vvA is the non-repeated root solution of

�ff (�vvA)zI~w1, ð20Þ

and �vvC is similarly the non-repeated root solution of

�ff (�vvC)zI~w2: ð21Þ

Strength-duration curve in the AFHN model
An approximation for the strength-duration for the AFHN

model is derived as follows. Near the steady-state (�vv�,�ww�), the

dynamics of �vv can be approximated by

_�vv�vv~Iz�ff 0(�vv�)(�vv{�vv�) ð22Þ

where the dot indicates differentiation with respect to time and

the prime indicates differentiation with respect to �vv, such that

�ff 0(�vv�)~c(r){�vv2
�:

and �ww~�ww�. Solving Eq. 22 with the initial condition

�vv(t~0)~�vv�,

�vv(t)~�vv�{
I

�ff 0(�vv�)
1{ exp½�ff 0(�vv�)t�
� �

: ð23Þ

We set �vv(t)~j(r), the �vv threshold for eliciting an action

potential, and after rearranging, we arrive at the strength-duration

curve relationship in Eq. 8.

To evaluate Eq. 8, we must determine the dependence of the

threshold j on r. Many studies have discussed the absence of a

well-defined threshold in the FHN model [45–47]. Izhikevich

notes that canard trajectories following the repelling slow manifold

provide the best approximation to the excitability threshold [45].

Recent work has show that this manifold is well approximated by

inflection sets (regions of flow lines with zero curvature in the

phase plane) [46]. For simplicity, we approximate the threshold j
by the middle solution of

�ff (�vv)zI~�ww�, ð24Þ

which, as shown in Figure 12 (left panel), does reasonably well-

approximate the action potential threshold. We are interested in

the threshold j from a non-stimulated state, i.e., I~0. Therefore,

Eq. 41 can be written as

0~
1

3
�vv3{c(r)�vvz�ww� ð25aÞ

~
1

3
(�vv{�vv�)(�vv

2zD�vvzC), ð25bÞ

where Eq. 25b is implied, since �vv� by construction is a solution

of Eq. 25a. Matching coefficients, D~�vv� and C~{3�ww�=�vv�, and

using the quadratic formula, j(r) is given by

j(r)~
{�vv�{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�vv2
�z12�ww�=�vv�

p
2

, ð26Þ

where the dependence of j on r is due to the dependence of �vv�
and �ww� on r. Further, from the definition of j(r), if the terms

under the radical equal 0, �vv� is equal to a critical value, which we

will call vj—above which the threshold is ill-defined, that is, the

system cannot be excited by a brief perturbation from the steady-

state. Using Eq. 3b, vj is the real solution of the cubic equation

Figure 11. Period of a stable limit cycle in the AFHN model. For
r~0, the period T of the stable limit cycle is approximately the sum of
the time required to traverse the two stable branches of the �vv-nullcline,
V+(w), denoted by the points A{B and C{D, respectively. As r
increases, the amplitude and period of the stable limit cycle, indicated
by the second set of points labeled A0{D0 , both decrease. See text for
description of other variables in figure. Parameters: I~1:6.
doi:10.1371/journal.pone.0081402.g011
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cv3
jz12vjz12b~0: ð27Þ

Note that vj does not depend on r, only the system parameters.

Using Eqs. 25a and 27, for all values of r, if

c(r)v{
3

c
1z

b

vj

� �
,

and therefore,

rwrc~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1z

3

c
1z

b

vj

� �� �s
ð28Þ

the system cannot be excited by a brief stimulus pulse, illustrated

in Figure 12 (right panel).

Hodgkin-Huxley model equations
The equations governing the dynamics of the gating variables

m,h, and n are given by

am~
2:5{0:1v

exp (2:5{0:1v){1
bm~4 exp ({v=18)

ah~0:07 exp ({v=20) bh~
1

exp (3{0:1v)z1

an~
0:1(1{0:1v)

exp (1{0:1v){1
bn~0:125 exp ({v=80)

where v is the shifted transmembrane potential, in which the

resting potential Vrest has been subtracted. The standard

parameters for the HH model are given in Table 1.

Neuronal network model and architecture
A network of N~100 AHH neurons are simulated by adding a

synaptic current to the AHH model, such that the �vv dynamics of

the i-th neuron are governed by the following equation:

_�vv�vvi~½Ii{gNa �mm3�hh(�vvi{ENa){gK �nn4(�vvi{EK ){gL(�vvi{EL)

{�IIsyn,i�=C
ð29Þ

where

�IIsyn,i~
X
j[Sex

gsyn�ssji(�vvi{Esyn,ex)z
X
j[Sin

gsyn�ssji(�vvi{Esyn,in),

and Sex and Sin are the set of presynaptic neurons with

connections to neuron i, with excitatory and inhibitory, respec-

tively, synapses. �ssji is the averaged gating variable for the

postsynaptic conductance, and assumed to be an instantaneous,

sigmoidal function of the presynaptic cell potential with a

Figure 12. Sub- and super-threshold brief stimuli in the AFHN
model. (Left) For r~0, j indicates the threshold for evoking an action
potential. Two trajectories starting near j are identified by arrows: (1,
left arrow) when the initial condition �vv(t~0)vj, �vv returns quickly to the
resting potential �vv� ; (2, right arrow) when �vv(t~0)wj, an action
potential is evoked: the system follows a counterclockwise trajectory,
quickly approaching the �vv-nullcline, following the right stable branch
until reaching the right knee, quickly reaching the left stable branch,
and then returning to rest. (Right) When r~rc , j~vj , the critical value
above which an action potential cannot be evoked by a brief
perturbation from the steady-state.
doi:10.1371/journal.pone.0081402.g012

Table 1. Hodgkin-Huxley model current parameters.

Parameter Definition Units Value

gNa maximum Naz current conductance mS/cm2 120

gK maximum Kz current conductance mS/cm2 36

gL maximum leak current conductance mS/cm2 0.3

ENa Naz current reversal potential mV 115

EK Kz current reversal potential mV –12

EL leak current reversal potential mV 10.6

Vrest resting potential mV –80

C capacitance mA=cm2 1

Parameters for ionic currents in the HH model.
doi:10.1371/journal.pone.0081402.t001

Table 2. Synaptic current parameters.

Parameter Definition Units Value

gsyn maximum synaptic conductance mS/cm2 0.3

Esyn,ex excitatory synapse reversal potential mV 80

Esyn,in inhibitory synapse reversal potential mV –12

Vsyn presynaptic cell potential threshold mV 50

ksyn threshold parameter mV 2

Parameters for excitatory and inhibitory synaptic currents in a network of AHH
model neurons.
doi:10.1371/journal.pone.0081402.t002
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threshold Vsyn [48], that is

�ssji~
1

2p

ð2p

0

s?½�vvjzr sin (h)=C�dh, ð30Þ
where

s?(�vv)~
1

1z exp½{(�vv{Vsyn)=ksyn�
ð31Þ

Parameters are in Table 2. The specific synaptic connections

between neurons are determined randomly, as follows. The

number of presynaptic connections to the i-th neuron is drawn

from a Gaussian distribution with mean m~10 and standard

deviation s~1, rounded to the nearest whole number. The

presynaptic neuron indices j are chosen at random. The type of

each synapse, excitatory or inhibitory, is determined at random,

such that the probability of an excitatory synapse is pexcit[½0,1�.
Electrical activity is evoked in the neural network by applying a

200-mA=cm
2
, 0.1-ms applied current in 50 randomly selected

neurons at time t~0.

The collective activity of the neural network can be represented

by the pseudo-electroencephalogram (pEEG) [49], given by L(t),

L(t)~
1

N

XN

i~1

�vvi(t), ð32Þ

the transmembrane potential averaged over all neurons. The

frequency-domain representation of the pEEG is computed by the

Fast Fourier Transform.

The synchrony of the electrical activity in the network is given

by the synchrony measure x[½0,1� [50],

x2~
s2

v

1
N

PN
i~1 s2

vi

, ð33Þ

where the variance of the time fluctuations of the average

transmembrane potential, L(t),

s2
v~S(L(t){SL(t)T)2T,

the variance of the time fluctuations of the individual

transmembrane potentials �vvi(t),

s2
vi
~S(�vvi(t){S�vvi(t)T)2T,

and Sx(t)T~(1=T)

ðT

0

x(t)dt denotes time-averaging over the

duration of the simulation T . Note that if �vvi(t) are identical for all

i, then x~1.

Numerical simulations
All numerical simulations were performed in MATLAB. For

simulations of the AHH model, the modified gating variable rate

functions (Eqs. 12e–12f) were pre-calculated for a given value of r

for �vv[½{100,200� mV ( �VVm[½{180,120� mV), and values were

linearly interpolated from look-up tables during simulations.
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