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Ecosystem effects of shell aggregations and cycling in coastal waters:
an example of Chesapeake Bay oyster reefs
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Abstract. Disease, overharvesting, and pollution have impaired the role of bivalves on
coastal ecosystems, some to the point of functional extinction. An underappreciated function
of many bivalves in these systems is shell formation. The ecological significance of bivalve shell
has been recognized; geochemical effects are now more clearly being understood. A positive
feedback exists between shell aggregations and healthy bivalve populations in temperate
estuaries, thus linking population dynamics to shell budgets and alkalinity cycling. On oyster
reefs a balanced shell budget requires healthy long-lived bivalves to maximize shell input per
mortality event thereby countering shell loss. Active and dense populations of filter-feeding
bivalves couple production of organic-rich waste with precipitation of calcium carbonate
minerals, creating conditions favorable for alkalinity regeneration. Although the dynamics of
these processes are not well described, the balance between shell burial and metabolic acid
production seems the key to the extent of alkalinity production vs. carbon burial as shell. We
present an estimated alkalinity budget that highlights the significant role oyster reefs once
played in the Chesapeake Bay inorganic-carbon cycle. Sustainable coastal and estuarine
bivalve populations require a comprehensive understanding of shell budgets and feedbacks
among population dynamics, agents of shell destruction, and anthropogenic impacts on
coastal carbonate chemistry.

Key words: alkalinity budget; calcium carbonate cycling; Chesapeake Bay; oyster reef; shell budget.

INTRODUCTION AND BACKGROUND

Importance of shell material

The prolific shell-building, and thus calcium carbonate-

producing, bivalves have long been recognized as

providing important ecosystem services to coastal estua-

rine and marine ecosystems. Harvesting and disease have

reduced their numbers significantly in many locations,

and thus reduced their ecosystem services, such as water

filtration, habitat creation, and food supply. Although

returning the calcium carbonate shells of harvested

bivalves to the benthos has long been recognized as a

resource enhancement strategy (Abbe 1988), we currently

lack a comprehensive understanding of shell cycling and

the contribution to near-shore ecosystem functioning. In

particular the ecosystem-scale role of shells in carbonate

cycling, feedbacks with population dynamics, and effects

on alkalinity fluxes are poorly constrained. Given the

recent attention to the global decline in oyster reefs (Beck

et al. 2009), impacts of ocean acidification on nearshore

habitats (Feely et al. 2010, Waldbusser et al. 2011b,

Barton et al. 2012), and economic importance of bivalve

resources, a greater understanding of shell budgets

(Powell et al. 2006, Mann and Powell 2007) in the

context of coastal carbonate cycling is warranted.

The role of carbonate producers can be expressed in a

triumvirate of themes: provision of habitat, production

of harvestable resources, and buffering of respiratory

acid production. The first two of these are relatively well

understood and documented for oyster reefs. Provision

of habitat by shell producers is clearly articulated by the

taphonomic feedback hypothesis of Kidwell and Ja-

blonski (1983) who first rigorously recognized the

interaction between ecological communities and sedi-

mentary carbonate content. In this conceptual model,

increasing shell content encourages settlement of calci-

fying organisms and their deaths increase the rate of

carbonate addition forming a positive feedback process.

A reversal wherein shell loss exceeds gain can promote

the antithetical negative feedback loop that continually

robs the benthos of shell carbonate thereby impeding the

success of carbonate producers and further reducing

carbonate supply. This appears to be the case in

Chesapeake Bay (Mann and Powell 2007).

Structure of an oyster reef

Although constructed from calcium carbonate, the

structure of an oyster reef differs considerably from an
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analogous coral reef. Corals place tissue between the

overlying seawater and the carbonate skeleton; much of

the surface carbonate exposure is thereby protected as

long as live corals are present. In contrast, the oyster

places the calcium carbonate between the overlying

water and its tissue. As a consequence, the oyster shell

is exposed during life to destructive processes, and upon

the animal’s death the shell is added to the accumulat-

ing reef structure. Thus, oyster reefs are built by a

scaffold of dead shells and contain void spaces of

seawater and organic rich biodeposits (Fig. 1). More-

over, oyster reefs are found in temperate, lower salinity

estuaries that are generally less thermodynamically

stable for calcium carbonate minerals. Shell formation

and the interaction between the organism’s physiolog-

ical processes and the carbonate chemistry of the

surrounding seawater influences the rate of shell

formation and consequently bivalve growth (Gazeau

et al. 2007, Melzner et al. 2011). Formation of calcium

carbonate shell affects the inorganic carbon cycle in

surrounding waters because precipitation of the mineral

removes alkalinity and carbon in a molar ratio of 2:1.

This relationship has been used extensively to measure

calcium carbonate formation in everything from

calcifying organisms to entire coral reefs; however, it

has been well documented that metabolic carbon may

constitute 10–30% of the carbon in calcium carbonate

bivalve shells (Gillikin et al. 2007). Ignoring the

respiratory carbon releases from bivalves, the mass

balance of shell formation requires the production of

CO2 as a result of the buffering of protons (Hþ ions)

produced from the stripping of bicarbonate ions (or

converting metabolic CO2 to carbonate ions), and a loss

of alkalinity due to the incorporation of carbonate ion

into solid phase. If the calcification effect is large

enough relative to the water body it is occurring in, a

decrease in dissolved inorganic carbon and alkalinity,

and an increase in carbon dioxide should be seen.

In opposition to shell formation, oyster shell degrades

over time, a process termed ‘‘taphonomy’’ (Powell et al.

2006), via bioerosion from boring organisms (Carver et

al. 2010) and dissolution (Powell et al. 2006, Waldbusser

et al. 2011a). The degradation of oyster shell in a reef

occurs in a tiered environment (Fig. 1), and results in the

opposite reactions from those just described above,

increasing alkalinity, carbon, and pH. For the reef to

grow, the subsurface framework must increase in

thickness by the accumulation of shell due to burial

and preservation beneath the taphonomically active

zone (TAZ; Davies et al. 1989). Below the TAZ, the

anoxic conditions exclude boring organisms and are

generally more geochemically favorable for calcium

carbonate preservation (Cai et al. 2006, Hu et al.,

2011). Estimates of oyster shell half-life derived from

Delaware Bay time-series data vary between 3 and 10

years (Powell et al. 2006), and were corroborated in a

laboratory study by Waldbusser et al. (2011a). These

half-lives are short in comparison to other bivalve shells

in non-estuarine settings, except mussels (Powell et al.

2011). This rapid rate of degradation requires significant

quantities of shell added via mortality to the reef to

maintain the reef structure. The normal life span of the

oyster results in an optimal shell addition rate necessi-

tating large old animals who contribute more shell

carbonate mass per mortality event (Powell and Klinck

2007, Mann et al. 2009a). Unfortunately, the onset of

disease has reduced life span and compromised this

evolutionary optimization (Powell et al. 2012), thus

compromising the shell budget.

Reefs as buffering agents

A benefit of shell degradation is the buffering of

respiratory acids (carbon dioxide and others), with

biologically produced calcium carbonate resulting in

alkalinity production (or, more correctly, regeneration).

In the variable carbonate chemistry of estuaries and

coastal zones (Hoffman et al. 2011) the regeneration of

alkalinity due to shell dissolution may be an important

effect to provide possible refugia from corrosive

conditions. The buffering effect of clam shells in

metabolically active sediments has been shown to

increase settlement of larval clams (Green et al. 2009,

2012); a similar effect may be true in oyster reefs. An

analogy may be drawn between the calcium carbonate

counter pump of the world’s oceans and the cycling of

oyster shells on a reef (Fig. 2). The dissolution of

biogenic calcium carbonate at depth within the world’s

oceans (due to increased solubility) provides alkalinity

buffering to the weak acids produced by respiration

(Feely et al. 2004, Rost and Riebesell 2004). We propose

that oyster reefs may serve a similar role in coupling

respiration of organic matter and dissolution of calcium

carbonate, resulting in alkalinity regeneration in near-

shore environments (with obvious differences in scale

and scope). The alkalinity sequestered as carbonate ions

in bivalve shells comes from the surrounding waters that

are advecting past due to tides and estuarine circulation,

so the oyster reef carbonate pump functions by

concentrating carbonate in solid form as calcium

carbonate, and some portion of this will later be

regenerated by dissolution into the surrounding waters

as conditions favor shell breakdown. Therefore, tempo-

ral separation (presumably diurnal and seasonal) and

strong concentration gradients over small spatial scales

likely provide localized buffering to these highly variable

estuarine environments. Secondarily, the oysters are also

producing labile substrate (biodeposits) for microbial

communities that will serve to provide the weak acid for

dissolution and ultimately the material to bury shells in

anoxic conditions. The dynamic balance between bio-

deposit and metabolic acid production seems an

important driver for carbon burial as shell and alkalinity

regeneration. However, rates and dynamics of these

processes are poorly understood.

GEORGE G. WALDBUSSER ET AL.896 Ecology, Vol. 94, No. 4



SHELL BUDGET DEVELOPMENT

We developed a shell budget for Chesapeake Bay in

units of alkalinity to highlight the important role eastern

oyster reefs once played on alkalinity and carbon cycling

in this system. The results below are presented to

highlight the potential role of this ecosystem service and

importance in shellfish restoration efforts.

Ocean exchange

The land–ocean interactions in the coastal zone

(LOICZ)-based salt and water six-box model of

FIG. 1. Conceptual depiction of oyster reef structure, adapted from Hargis and Haven (1999). Very limited measurements of
the internal physical and geochemical structure of oyster reefs have been made. Other encrusting calcifiers may also play an
important role in the reef structure; however, limited understanding exists of these interactions and their effects on the geochemical
and physical reef structure.

FIG. 2. Comparison between the ocean’s calcium carbonate pump (redrawn from Fig. 10.7 of the 2007 Intergovernmental Panel
on Climate Change, Fourth Assessment Report [AR4]) and a conceptual oyster reef carbonate pump. Formation of shell material
(calcium carbonate) removes alkalinity from surrounding waters, and shell degradation regenerates alkalinity to surrounding
waters. The general processes driving the pump functions are similar—production of weak metabolic acids and concurrent
dissolution of calcium carbonate; however, the spatial scales and coupling of processes are different. Dissolution of calcium
carbonate in the deep ocean is also driven by increased pressure. In the oyster reef carbonate-pump conceptual model, most
dissolution occurs in the oxic zone; burial in the anoxic zone results in preservation, and additional alkalinity can be produced by
microbial sub-oxic respiration, depending on the fate of the metabolic wastes. Production of biodeposits likely plays a key role in
providing metabolic acids for alkalinity regeneration as well as, ultimately, burial and preservation of calcium carbonate shell.
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Chesapeake Bay by Webb and Smith (1999) was used to

estimate ocean exchange. A nonconservative alkalinity–

salinity relationship from Chesapeake Bay program data

was fit with a second-order polynomial for observations
with salinity values �1 from 1986 to 2008, and applied

to the salt budget (Appendix: Fig. A1, Table A1). The

data set included alkalinity values from all depths which

are skewed to surface waters with ;66% of the ;30 000

observations being from surface waters. The observa-
tions were also skewed toward the freshwater end of the

bay, with the higher salinities having fewer than 25

alkalinity measurements, therefore we used the values

from Wong (1979) to provide an oceanic end member

with a salinity of 30 PSU (practical salinity units).

Riverine input

The river discharge values in the LOICZ model of

Smith and Webb (1999) was used to compute total

freshwater input into Chesapeake Bay. The average

freshwater alkalinity was computed from the alkalinity–
salinity relationship previously derived, and multiplied

by the annual discharge of each river to obtain the total

freshwater alkalinity loading. To confirm these values,

the daily flow rates of the Susquehanna, Potomac, and

James rivers were obtained from the USGS stream
gauges and an average flow rate in liters per second was

computed for each river system. This was scaled to a

yearly discharge for each year and averaged for years

from 1986 to 2007.

Total Chesapeake Bay alkalinity

The total volume of the mesohaline and polyhaline

portions of Chesapeake Bay was obtained from the

‘‘Chesapeake Bay Program Analytical Segmentation

Scheme 2004’’ (a technical EPA report, available online)6

by summing volumes of all mesohaline and polyhaline
segments separately. The average alkalinity for each

segment was determined by computing the average

alkalinity across all monitoring stations within each

salinity section from 1986 to 2007, and multiplying by

the total volume in each section. This alkalinity estimate
was compared to that derived using the LOICZ model of

Webb and Smith (1999) computing the alkalinity for

each box, multiplying by the box volume, and summing

boxes. The two alkalinity estimates were within 10% of

each other, and the LOICZ estimate is presented to
maintain hydrographic consistency with the net ocean

exchange estimate (the other estimate was 10.1 3 1010

m3).

Shell formation rate

Shell formation was computed using two independent

methods for ‘‘precolonial’’ time. The first was to apply a

constant rate (2 mg CaCO3 per gram live mass per day;

Waldbusser et al. 2011b) to the estimated total oyster

biomass (described in the next section) and assuming a

six-month growing period. The second was to compute

the rate at which oyster reefs must grow to maintain

pace with effective sea-level rise multiplied by total reef

area.

The sea-level rise estimate of shell formation was

carried out as follows. Mann et al. (2009a) estimated a

reef accreting in equilibrium with sea-level rise at 3.5

mm/yr, and a shell loss rate of 30%/yr. This rate requires

a production of reef volume at 4.55 L�m�2�yr�1.
DeAlteris (1988) estimated roughly 50% of the reef

scaffold is biodeposits so the shell contribution would be

half of the total, at 2.28 L�m�2�yr�1. This value is

supported by measurements of mass per liter of reef shell

by Mann et al. (2009b). The total area of oyster reefs in

Chesapeake Bay had previously been estimated at

roughly 1.8 3 109 m2 by using values from Baylor

(1896), Yates (1913), and Smith et al. (2001). We assume

these are overestimates given that the Baylor numbers

for Virginia include the coastal bays not connected to

Chesapeake Bay, and these surveys tend to overestimate

the spatial extent of live reefs as they assume the areas

are all uniform reef. Both Yates (1913) for Maryland

and Baylor (1896) for Virginia adopted mapped

boundaries that included oyster habitat (reefs) and

contiguous surrounding bottom as units suitable for

management and regulation. To prevent overestimating

the impact of reef accretion and shell degradation we

used a very conservative estimate of 2.03 108 m2, due to

the discrepancies noted above (inclusion of adjacent

habitat and embayments not connected to Chesapeake

Bay). The per meter estimate of shell reef volume was

multiplied by our areal estimate and corrected for the

approximate density of oyster shell (1.825 kg/L,

Tulshian and Wheaton 1986) to obtain a kilogram per

year estimate of calcium carbonate precipitation in

alkalinity equivalents. These two estimates are within

twofold of each other, and below we will present the

estimate based on biomass.

Oyster biomass/abundance

For the time periods of precolonial, 1880, and 1988

the dry mass estimates of oyster biomass by Newell

(1988) were used in calculations as follows. Dry mass

was converted to fresh tissue mass by assuming that

tissue is ;80% water. This value was then used to

convert to total and shell masses by assuming the shell is

;80% of the total mass of an oyster. The shell mass was

then converted to alkalinity equivalents by the formula

mass of calcium carbonate. To estimate more recent

oyster abundance, the Chesapeake Bay Oyster Popula-

tion Estimation (CBOPE) program data were used for

oyster abundance in both the Maryland and Virginia

portions of Chesapeake Bay in 2002 (data available

online).7 These data were used to convert abundance to

6 http://www.chesapeakebay.net/content/publications/
cbp_13272.pdf 7 http://web.vims.edu/mollusc/cbope/index.htm
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an alkalinity equivalent for 2002 as follows. Shell mass

can be predicted by the equation SM ¼ 0.00041 L2.70

where SM is shell mass and L is the length along the

long axis of shell growth. Assuming the average oyster at

harvest is 76.4 mm, the average shell mass would be 49.4

g for the 2002 CBPOE program data. Historical harvest

and shell planting were estimated using a conversion of

12.9 kg of shell per bushel.

RESULTS AND DISCUSSION

We have estimated an alkalinity budget for Ches-

apeake Bay in relation to the changes in oyster

abundance (Fig. 3). Some prominent features of our

data compilation and calculations are (1) the potentially

important role that oyster reefs may have played in the

pre-harvested and early colonial Chesapeake Bay

alkalinity budget; (2) roughly half of the present-day

incoming alkalinity to Chesapeake Bay via riverine

input could have been taken up by precolonial oyster

reefs; (3) precolonial alkalinity equivalents in live shell

was roughly equal to the current total dissolved

alkalinity in the bay; and (4) the balance of riverine

input vs. net output at the mouth of the bay indicates the

bay is currently a sink of alkalinity (49.5 3 109 mol/yr).

Similar to the loss of ecosystem function via oyster filter

feeding as calculated by Newell (1988), the total amount

of alkalinity sequestered by calcification decreased

roughly 100-fold by 1988 due to overharvesting and

disease. Our estimates indicate oyster calcification for

pre-1870, 1880, 1988, and 2002 to be about 67%, 40%,

0.7%, and 4%, respectively, of the currently estimated

bay-wide alkalinity sink. Although we cannot recon-

struct the alkalinity budget for previous periods of time

this comparison highlights that oyster calcification (and

subsequent shell cycling) had significant impacts on the

bay-wide alkalinity budget during periods of greater

oyster abundance. Conversely, the loss (or removal) of

shell from the system also would result in a loss of

alkalinity regeneration and buffering of metabolic acids,

another seemingly important ecosystem function. If we

assume shell breakdown and dissolution is roughly 10%

per year (Powell and Klinck 2007, Waldbusser et al.

2011a), the estimates of alkalinity regeneration from

precolonial reefs would be roughly 14% of the current

riverine input (perhaps higher during the diminished

alkalinity loading in the early 1900s, Raymond and Oh

2009). Note that we are basing this 10% dissolution on

the live shell biomass estimates; the dead and dissolving

shell within the taphonomically active zone (TAZ)

would be a larger proportion of the total reef, therefore

this 14% alkalinity regeneration is likely an underesti-

mate.

The bay-wide estimate of an alkalinity loss of 49.5 3

109 mol/yr based on river inputs and net ocean efflux

FIG. 3. An open Chesapeake Bay shell–alkalinity budget. Units are moles or mole equivalents (shell) of alkalinity with
exchanges in moles (or mole equivalents) of alkalinity per year. Stocks are in total moles (or mole equivalents) and are indicated by
square brackets. Values computed for four time periods by year are shown as follows: pre-1870 in black, 1880 in blue, 1988 in green,
and 2002 in red. Exchanges derived by difference are noted in the lighter blue arrows with the dashed outline. ‘‘Hydrographic
exchange’’ is the amount of alkalinity carried out with water discharge, and ‘‘Ocean-mixing exchange’’ is what is transported in due
to tidal mixing of higher alkalinity waters with lower alkalinity bay waters. ‘‘Net hydrographic exchange’’ is the difference between
these two ocean–bay exchange terms, and the difference between riverine input and net hydrographic results in an estimated bay-
wide alkalinity uptake/loss of 4.95 3 1010 mol/yr.
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would suggest a per area calcium carbonate formation

rate of 225 g CaCO3�m�2�yr�1, if the loss is entirely due

to calcium carbonate formation. The removal of

alkalinity is illustrated in the concave relationship

between alkalinity and salinity (Appendix). The bay-

wide alkalinity loss is not unreasonable relative to other

estimates of per area calcium carbonate formation by

other calcifiers in temperate estuaries (Chauvaud et al.

2003). Our bay-wide estimate is integrating all possible

alkalinity sinks including all calcifiers, and other

biogeochemical processes that result in alkalinity loss

(reviewed in Soetaert et al. 2007). For example, primary

production and aerobic respiration of organic matter

can raise and lower alkalinity, respectively, due to

changes in nutrient concentrations. Nutrient budgets for

Chesapeake Bay (Boynton et al. 1995) suggest this effect

would be to increase alkalinity due to a bay-wide

nutrient sink and would be ,10% of the estimated

alkalinity loss. The drivers of bay-wide alkalinity change

are poorly constrained, and it is unclear whether

restoring reefs to precolonial extent would result in an

additive effect on alkalinity uptake, or result in a more

dynamic feedback on bay-wide alkalinity.

It may seem initially odd that calcification is roughly

three times greater than the shell loss term, and suggests

oyster reefs as a sink of alkalinity. Healthy, intact oyster

reefs are limited in vertical growth by tidal exposure, so

as compaction occurs and sea level rises, reefs have more

room to grow. Therefore, one may argue that on pre-

anthropogenic reefs burial and preservation may occur

as sea level rises. In the present day, most oyster reefs are

not reaching their upper vertical limit (sensu Beck et al.

2009). Effective sea-level rise in Chesapeake Bay is on

average twice that of the open ocean (and decreases up

bay) as the watershed is subsiding at roughly the same

rate as global sea-level rise. It may be surmised that on

geologic timescales the rate of sea level change

ultimately controls whether oyster reefs are potential

alkalinity (and carbon) sinks or sources, lacking other

impacts on carbonate cycling. Lateral extension is

another mechanism for oyster reefs to grow if they are

limited vertically, however lateral extension is often

restricted by bottom topography and associated hydro-

dynamics (Hine et al. 1988, Powell et al. 1995). These

dynamics on modern day oyster reefs are poorly

understood and we lack the measurements to better

understand the long-term balance of calcium carbonate

accretion vs. loss.

Short-term, diurnal and seasonal, calcification and

dissolution dynamics will likely drive important geo-

chemical fluxes on timescales relevant to oyster settle-

ment and recruitment. On annual and diurnal timescales

oyster reefs may be sources or sinks of alkalinity

depending on bay-wide respiration, population and

disease dynamics, and ultimately the shell budget.

Although we present values per annum, estuaries are

highly variable (Hoffmann et al. 2011) and can serve as

alkalinity producers if respiration is coupled in some

way to carbonate minerals (e.g., Abril et al. 2003,

Burdige et al. 2008). The precolonial oyster shell mass in

Chesapeake Bay appears to have been large enough to

modulate estuarine carbonate chemistry by metabolic

dissolution during bay-wide or reef-wide increases in

CO2 production, or other changes in carbonate chem-

istry resulting in more corrosive conditions. This

potential buffering capacity has been diminished by

over 100-fold since the former days of expansive oyster

reefs within Chesapeake Bay, coupled with a shift from

benthic/oyster-associated respiration to pelagic respira-

tion not associated with shell production (Newell et al.

2005, Condon et al. 2009). Following death and

disarticulation, oyster shells may dissolve more rapidly

initially (Hetch 1933, Glover and Kidwell 1993, Wald-

busser et al. 2011a). Therefore, our estimate of 10% shell

dissolution is an integrated and conservative value, and

does not account for the seasonal timing or feedbacks

that occur on sub-annual timescales. Ultimately, when

considering the role of harvesting and shell planting on

alkalinity in estuarine ecosystems, it is important to

recall that the calcification process generates CO2 and

solid carbonate; thus, removing shell from the system

without replacement produces acidity without concur-

rent production of potential buffering due to the

regeneration of alkalinity during shell breakdown and

dissolution.

In a retrospective reconstruction such as this, several

uncertainties are evident. Applying the LOICZ (land–

ocean interaction in the coastal zone) hydrographic

approach (Smith and Webb 1999) and utilizing an

empirical salinity–alkalinity relationship rely on well-

constrained values for the bay-wide alkalinity exchang-

es. The estimates of oyster biomass and abundance are

also a relatively robust component of our budget. We,

however, have applied constant rates to these biomass/

abundance estimates and caution that these rate values

have likely changed over the last 150 years in response to

myriad processes. We unfortunately lack data on the

alkalinity of Chesapeake Bay (and river end members)

during the precolonial and early colonial days. Ray-

mond and Oh’s (2009) elegant reconstruction of the

Susquehanna alkalinity through the mid-1900s shows an

alkalinity increase following suspension of major mining

activities in the watershed. It is unknown what the

Susquehanna acidification effect due to mining activities

would have had on the oyster shell budget, but

dissolution of shell would have presumably increased

in response to the decreased alkalinity delivered to the

Chesapeake Bay waters. We are treating the fresh water

end member as a single value, whereas differences exist

in alkalinity based on major watershed lithology.

Integrating rates over an annual timescale likely results

in masking important scales of variability for early life-

history dynamics. And although the LOICZ model

treats the boxes as well mixed, Chesapeake Bay is a

vertically stratified system, and it may be possible that

the salinity–alkalinity relationship and subsequent esti-
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mates of bay–ocean exchange we developed could be

improved with a better hydrographic model. These

limitations aside, our results do highlight the importance

of oyster reefs on alkalinity cycling in Chesapeake Bay

and the need to understand the dynamic feedbacks

between alkalinity cycling and oyster shell budgets for

restoration efforts.

Balancing the shell budget

Balancing the degradation and loss of shell from

oyster reefs and maintaining vertical position in the

water column requires large, long-lived oysters that

contribute maximum shell per mortality event (Powell

and Klinck 2007, Mann et al. 2009a). This is a sobering

fact given that natural oyster recruitment is often

infrequent (Southworth and Mann 2004, Kimmel and

Newell 2007, Powell et al. 2008) and the timescales of

strong year-class recruitment are very similar to shell

half-lives. The similar natural timescales of shell input

and loss suggest the persistence of shell might be

imperiled with little additional shell loss from harvesting

or disease (Powell et al. 2012). In a progressive

management approach, the state of Maryland began

extensive replanting of oyster shell in Chesapeake Bay in

1960. A simple accounting of harvest and shell

replacement (Fig. 4) highlights the significant role of

the dredge program in creating an annual surplus of

shells, thus reducing the overall shell deficit. However,

when the shell replacement program ended in 2005, the

shell budget in the Maryland portion of the bay was still

100 million bushels below early-colonial times. This

simple accounting does not take into consideration the

various shell degradation processes that ultimately lead

to shell breakdown in these environments, and the

possibility that dredged shell was more robust to

degradation than fresh shells due to the modification

of the shell surface during burial (Waldbusser et al.

2011a). Shell requirements to ultimately reduce the

current carbonate deficit would be equal to the

harvested amount, plus degradation minus what is

added through growth; these values are all poorly

constrained and require significant work to quantify

(Powell et al. 2012).

Our food, coastal economies, and ecosystems rely on

some of the most prolific shell producers found in

estuarine environments, bivalves. The shell of many

commercially important bivalves may be 80–90% of the

total organism mass and represents a potentially

significant investment of resources on behalf of the

organism. Estimates from other mollusks suggest shell

formation may be equivalent to 75% of the energy

invested in somatic growth (Palmer 1992). With a few

notable exceptions, the shells from bivalves are often

considered waste material and discarded; shells are

rarely managed in a way to protect the shell resource

(Gutiérrez et al. 2003, Green et al. 2009, Kelly et al.

2011). The biogeochemical role shells play in estuarine

and coastal carbon cycling is virtually unexplored. New

research directions are needed to understand the

diminishing shell resource and its ultimate impact on

the coastal ecosystems we rely upon, particularly in light

of recent recognition of the acidification of estuaries

from multiple drivers.
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SUPPLEMENTAL MATERIAL

Appendix

Polynomial regression analysis and data values showing the relationship of alkalinity to salinity in Chesapeake Bay (Ecological
Archives E094-076-A1).
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