

W&M ScholarWorks

Data

Virginia Institute of Marine Science

2019

High-frequency CO2-system observations from a moored sensor in the York River

Elizabeth H. Shadwick Virginia Institute of Marine Science

Olivia A. De Meo Virginia Institute of Marine Science

Follow this and additional works at: https://scholarworks.wm.edu/data

Part of the Oceanography Commons

Recommended Citation

Shadwick, Elizabeth H. and De Meo, Olivia A., "High-frequency CO2-system observations from a moored sensor in the York River" (2019). https://doi.org/10.25773/63nx-vz39

This Data is brought to you for free and open access by the Virginia Institute of Marine Science at W&M ScholarWorks. It has been accepted for inclusion in Data by an authorized administrator of W&M ScholarWorks. For more information, please contact scholarworks@wm.edu.

Dataset Information

Authors: Include full name and affiliated institution

Elizabeth H. Shadwick^{1,2} Olivia A. De Meo¹

¹Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, USA ²Now at CSIRO Oceans & Atmosphere, Hobart, TAS, Australia

Academic Department and/or Research Group:

Physical Sciences

Title of Dataset:

High-Frequency CO₂-system observations from a moored sensor in the York River

Publication Date:

2019

Description: Include information of data format and file types, software required to run/analyze files, and information about data collection methods, site location, etc.

These are CO₂-system data from a moored sensor in the York River, a tributary of the Chesapeake Bay. Temperature, salinity and pH were acquired hourly over two deployments lasting several months. Sensor data were then averaged to 24-hour resolution. Data were calibrated with discrete dissolved inorganic carbon (TCO₂) and alkalinity samples analyzed at the Virginia Institute of Marine Science, following standard procedures. The pH sensor data were then combined with salinity data, and a relationship between alkalinity and salinity, to compute the remaining CO₂-system parameters (TCO₂, CO₂ partial pressure (pCO₂), and saturation state of aragonite, Ω ar. There is one file for each deployment (D1, and D2); the data are in a comma-separated (csv) format. Hourly measured temperature, salinity, and pH are given, as well as derived alkalinity, TCO₂, pCO₂, and Ω ar are included. Units are in the first row of each file.

Files: Deployment 1 data : YR_buoy_D1.csv Deployment 2 data : YR_buoy_D2.csv

Funding: Acknowledge your funding source, including grant # if applicable

This research was funded by the National Science Foundation (grant #OCE-1537013 and OCE-1536996) and supported by the NOAA Chesapeake Bay Office and the Chesapeake Bay Interpretive Buoy System (CBIBS).

Keywords:

CO2-system; pH; estuarine acidification; SeapHOx

Associated Publications:

Shadwick, E.H., Friedrichs, M.A.M., Najjar, R.G., De Meo, O.A., Friedman, J.R., Da, F. and Reay, W.G (2019) High-frequency CO₂-system variability over the winter-to-spring transition in a large coastal plain estuary, J. Geophys. Res. – Oceans – in revision August 2019.

Additional information: