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Abstract
The Trump administration has proposed replacing the CleanWater Rule, a 2015 regulation that defined the statutory term Bwaters of
theUnited States^ to clarify the geographic jurisdiction of the CleanWaterAct. Since its promulgation, the CleanWater Rule has been
subjected to numerous judicial challenges. We submitted an amici curiae brief to the United States Court of Appeals for the Sixth
Circuit, explaining why the Clean Water Rule, and its definition of Bwaters of the United States,^ is scientifically sound. The
definition of Bwaters of the United States^ is a legal determination informed by science. The best available science supports the
Clean Water Rule’s categorical treatment of tributaries because compelling scientific evidence demonstrates that tributaries signifi-
cantly affect the chemical, physical, and biological integrity of traditional navigable waters (primary waters). Similarly, the best
available science supports the Clean Water Rule’s categorical treatment of adjacent waters based on geographic proximity.
Compelling scientific evidence demonstrates that waters within 100 ft of an ordinary high water mark (OHWM) significantly affect
the chemical, physical, and biological integrity of primary waters, as do waters within 100-year floodplains and waters within 1500 ft
of high tide lines of tidally influenced primary waters or OHWMs of the Great Lakes. This review article is adapted from that amici
brief.

Keywords CleanWater Act .Waters of the United States .Wetlands . Navigable waters . Significant nexus . Regulation

The Clean Water Act (CWA) (2018) is the primary wetland
protection law in the United States (33 U.S.C. §1251 et seq.).
If a wetland is considered to be Bwaters of the United States^
under the CWA, then no one may discharge pollutants into that
wetland without a federal permit. The geographic scope of the
Clean Water Act—i.e., the extent of waters of the United
States—has long been subject to controversy and litigation
(Gardner 2011).

In 2015, the Obama administration issued the Clean Water
Rule, a regulation that clarified the geographic scope of the CWA
(U.S. Army Corps of Engineers and U.S. EPA 2015). This reg-
ulation was based upon an analysis of over 1200 scientific pub-
lications in Connectivity of Streams and Wetlands to
Downstream Waters: A Review and Synthesis of the Scientific
Evidence (U.S. EPA Office of Research and Development
2015). This analysis was performed to comply with the
Administrative Procedure Act (2018), which prohibits federal
agencies from acting arbitrarily or capriciously (5 U.S.C.
§706). Courts have interpreted this language to require agencies
to consider the scientific basis behind their decisions (see, e.g.,
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Motor Vehicle Mfrs. Ass’n v. State Farm Mut. Auto. Ins. Co.,
463 U.S. 29 (1983), which mandates that agencies Barticulate a
satisfactory explanation for [their] action[s],^ provide a
Breasoned analysis^ for their decisions, consider all Brelevant
factors^ in reaching their decisions, and explore Balternative
ways of achieving^ the purpose of their rules).

Nevertheless, the Clean Water Rule was immediately chal-
lenged by industry groups and others on procedural, statutory,
and constitutional grounds. A major claim—raised under the
Administrative Procedure Act—was that the U.S.
Environmental Protection Agency (EPA) and the U.S. Army
Corps of Engineers (Corps) failed to adequately provide scien-
tific support for the regulation, thereby rendering it arbitrary and
capricious.1 In January 2017, the authors, a group of twelve
wetland and water scientists and their attorneys, filed an amici
curiae brief in the United States Court of Appeals for the Sixth
Circuit in support of the scientific basis behind the Clean Water
Rule. An objective of the amici brief was to educate the court
about basic wetland and water science.

Since then, the debate over what constitutes waters of the
United States has become more complicated through a series of
Trump administration rulemakings and judicial decisions
(Gardner and Okuno 2018). In February 2018, the Trump ad-
ministration attempted to suspend the Clean Water Rule for 2
years and, in doing so, expressly refused to consider the scien-
tific basis on the Clean Water Rule (U.S. Army Corps of
Engineers and U.S. EPA 2018a). In December 2018, the
Trump administration announced its intent to replace the
Clean Water Rule with a more restrictive definition of waters
of the United States, again diminishing the importance of sci-
ence (U.S. Army Corps of Engineers and U.S. EPA 2018b). In
this context, we believe it is critical to emphasize the impor-
tance of science in CWA rulemaking.

As professionals who have spent their careers studying
streams, wetlands, and other aquatic ecosystems, the amici and
their attorneys have long explored the ways in which human
activities that affect one part of a watershed can also affect—
and damage—other parts of that watershed. In doing so, the
amici have applied the basic tools of the profession: literature
review, on-site observations, measurements, experimental ma-
nipulations, studies of Bnatural experiments,^ and modeling
based on observations and understanding of the physical sci-
ences. Based upon these tools, we believe that current science
provides sound support for the Clean Water Rule.

In this review, which is adapted from our brief (and supple-
mented with additional studies), we elaborate on the scientific

basis behind efforts to address human activities that alter the
integrity of aquatic ecosystems. Damage to these systems can
affect society in a number of ways, including: harming human
welfare and property via flooding; impairing human health and
reducing recreational opportunities via water pollution; and
threatening species, including commercial species harvested in
fisheries, via water pollution and a loss of connectivity (Sarukhán
et al. 2005; Pendleton 2008; Moreno-Mateos and Palmer 2016;
Gardner and Finlayson 2018). We believe that the Clean Water
Rule’s definition of Bwaters of the United States^ is a scientifi-
cally justified approach to address these impacts.

The Clean Water Rule Is Scientifically Sound

In drafting the Clean Water Rule, the EPA and the Corps
utilized many methodologies commonly employed by wet-
land and water scientists. The agencies studied key chemical,
physical, and biological features of water systems and relied
upon studies that used rigorous and respected methodologies
in researching aquatic ecosystems.

Key Chemical, Physical, and Biological Features Are
Used to Study Water Systems

An early major National Research Council report, Wetlands:
Characteristics and Boundaries, which amici Joy Zedler and
Carol Johnston co-authored, outlined three structural compo-
nents of wetlands that apply generally to all water systems: water,
substrate (physical and chemical features), and biota (animals,
plants, and microorganisms) (National Research Council 1995).
Each component interacts with the others to shape the functions
(services) of water systems. In the study underlying the Clean
Water Rule, the EPA and the Corps examined connections
among the three components to provide an integrated, scientific
perspective on water systems (U.S. EPA Office of Research and
Development 2015).

Rigorous Research Methods Are Used to Study these
Attributes, and to Study Aquatic Ecosystems
as a Whole

The study of water systems integrates several scientific disci-
plines. In the context of understanding wetlands, hydrology,
geology, and chemistry are used to examine how wetlands
regulate stream flow, filter pollutants and sediment, incorpo-
rate excess nutrients, act to control flooding, and connect to
groundwater (see, e.g., Johnston 1991; Hey and Philippi 2006;
Hancock et al. 2009). Ecological research can be used to ex-
amine the role of wetlands as habitats for fish and wildlife, and
their support of food webs within and among interconnected
water systems (see, e.g., Sierszen et al. 2012b; Gray et al.
2013). Underlying this cross-disciplinary approach is a focus

1 The groups also argued that the EPA and the Corps, in promulgating the
Clean Water Rule, violated the Administrative Procedure Act by acting Bin
excess of statutory jurisdiction, authority, or limitations, or short of statutory
right,^ 5 U.S.C. §706. Such arguments were based on the claim that the Clean
Water Rule contravened the jurisdiction set forth in the Clean Water Act, the
statute upon which the Clean Water Rule was grounded. These more legal—
versus scientific—arguments are beyond the scope of this article.
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on the various methodologies noted above. Scientists do not
apply these methods independently of each other, but rather
actively compare them to ensure that the results are robust and
reproducible (cf. Goodstein 2011).

To study water systems, scientists use a wide range of sam-
pling and analytical methods to make on-site observations and
measurements (see DeLaune et al. 2013). These methods in-
clude examining the chemical and physical characteristics of
the waters, characterizing soil and sediment samples, sam-
pling plant and animal communities, and quantifying the di-
rection and movement of water and materials (dissolved and
particulate) in stream networks and to/from wetlands (see
generally DeLaune et al. 2013; see also Kondolf and Piégay
2016). These sampling and analytical methods are well-
established, rigorous, and refined over time; they are used to
enhance scientific understanding of the relationships between
the various components of water systems.

Watershed or hydrologic studies may make use of Bnatural
experiments^ (a form of observational study), which focus on
comparing a natural event or feature with areas (or times) with
and without the event or feature (Breyer et al. 2011; see also
Layzer 2008). In studying developed and undeveloped water-
sheds, for example, the assignment of subjects (e.g., watersheds)
to groups (e.g., developed or not) is akin to randomization. Such
natural experiments are often necessary because ethical consid-
erations (i.e., concerns of deliberately damaging those systems),
size, and cost create barriers for actual experiments on existing
systems (see Haack 2003). Rather than disrupting existing sys-
tems, scientists focus on variability to extrapolate the effects of
differences on the overall water system. Scientists who study
freshwater ecosystems also use naturally occurring and injected
tracers that do not cause any harm to the system but move with
the water and allow us to identify the direction andmagnitude of
water transport as well as the rates of many ecological processes
(Mulholland et al. 1990; Bertrand et al. 2014; Martínez-Carreras
et al. 2015). This has been increasingly important in
documenting flow paths and connectivity and the role of systems
in global biogeochemical cycles (Abbott et al. 2016). Leibowitz
et al. (2018) provide an extensive review of hydrologic connec-
tivity and describe field-based, modeling, and remote sensing
methods to detect stream and wetland connectivity to
downstream waters. Rinderer et al. (2018) provide a detailed
overview of the mathematics and statistics useful for assessing
connectivity from time-series of groundwater and streamflow.

Modeling approaches also enhance scientific understanding
of the water-system relationships (seeNational Judicial College
2010, describing computer-based models as Bessential^ for un-
derstanding water systems). Models serve multiple purposes.
First, they enable scientists to test their understanding of inter-
relationships between different components of a water system
(National Judicial College 2010). Second, they enable scientists
to predict the outcomes of potential human activities that may
cause damage—without modifying those systems (National

Judicial College 2010). Models also make it possible to study
processes at scales ranging from watersheds to continents that
are too extensive to be investigated by observations alone, and
to simulate scenarios of hydrologic and other wetland/
watershed processes drawn from the historical record (e.g.,
Wu and Johnston 2008). A number of modeling tools are di-
rectly relevant to advancing scientific understanding of hydro-
logic connectivity between isolatedwetlands and surface waters
(Golden et al. 2014; Jones et al. 2018).

As noted above, the Clean Water Rule was based on, inter
alia, an analysis entitledConnectivity of Streams andWetlands to
Downstream Waters: A Review and Synthesis of the Scientific
Evidence (U.S. EPA Office of Research and Development
2015), which considered over 1200 scientific publications. The
Connectivity Report reached its conclusions using studies that
applied all of these methodologies. Indeed, the EPA, in its
Connectivity Report, compiled these studies in a manner to en-
sure the use of high-quality, relevant research (U.S. EPA Office
of Research andDevelopment 2015; see alsoU.S. EPA andU.S.
Department of the Army 2015, describing the extensive process
of peer review of the Connectivity Report itself, including the
use of a panel of 27 technical experts from an array of relevant
fields, as well as other public processes). Moreover, the
Connectivity Report included only studies that were peer
reviewed or otherwise verified for quality assurance (U.S. EPA
Office of Research and Development 2015; U.S. EPA and U.S.
Department of the Army 2015). The focus on high standards and
verification through peer review means that the Connectivity
Report used the best available science to develop the Clean
Water Rule (see 80 Federal Register 37,054; see also, e.g.,
Sullivan et al. 2006, describing assurance of data quality and
use of rigorous peer review as aspects of best available science).

BWaters of the United States^ Is a Legal
Determination Informed by Science

Jurisdiction under the CWA has both legal and scientific com-
ponents. The CWA defines the term Bnavigable waters^ as
Bwaters of the United States,^ which has been further refined
by case law, regulation, and agency guidance (Congressional
Research Service 2019). There is no question that traditional
navigable waters, such as rivers, lakes, and the territorial seas
(hereinafter collectively referred to as Bprimary waters^) are
Bwaters of the United States.^ There is also no question that
the chemical, physical, and biological integrity of these pri-
mary waters are affected by activities upstream (e.g., Zhang
et al. 2012). As Congress recognized, B[w]ater moves in hy-
drologic cycles, and it is essential that discharge of pollutants
be controlled at the source^ (U.S. Senate 1972). Scientific
research plays a critical role in determining how upstream
tributaries and waters adjacent to those tributaries affect the
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integrity of primary waters, and thus whether these upstream
waters should qualify for CWA protection.

As a Legal Matter, CWA Jurisdiction Requires
a BSignificant Nexus^ to a Primary Water

Interpreting the CWA, theU.S. SupremeCourt has observed that
the Bregulation of activities that cause water pollution cannot
rely on ... artificial lines ..., but must focus on all waters that
together form the entire aquatic system^ (United States v.
Riverside Bayview Homes, Inc., 474 U.S. 121 (1985)). How
far upstream from a traditional navigable water the EPA and
the Corps may regulate has been controversial, in part because
federalism concerns may be invoked (Owen 2017).
Accordingly, while Bwaters of the United States^ include more
than primary waters, the CWA’s jurisdictional scope has limits.
In Solid Waste Agency of Northern Cook County v. U.S. Army
Corps of Engineers, the U.S. Supreme Court noted that the term
Bnavigable^ has some import in CWA jurisdictional determina-
tions (531 U.S. 159 (2001)). As a result, agencies and courts
have employed the Bsignificant nexus^ analysis endorsed by
Justice Kennedy in Rapanos v. United States (547 U.S. 715
(2006) (Kennedy, J., concurring in the judgment)) to assess
whether an upstream water has a sufficient chemical, physical,
or biological connection to a traditional navigable water to war-
rant asserting CWA jurisdiction. This approach recognizes that
upstream waters must be protected to ensure the integrity of
primarywaters (Rapanos v. United States, 547U.S. 715 (2006)).

As a Scientific Matter, the Clean Water Rule’s
Approach to BSignificant Nexus^ Is Sound

The Clean Water Rule relies on the best available science to
establish criteria for the requisite Bsignificant nexus^ between
primary waters and other waters. Primary waters do not exist
in isolation (National Research Council 2001). Rather, they
are heavily influenced by their interactions with streams, wet-
lands, and open waters within their watersheds. As the
Connectivity Report correctly emphasizes:

The structure and function of downstream waters highly
depend on materials—broadly defined as any physical,
chemical, or biological entity—that originate outside of
the downstream waters. Most of the constituent mate-
rials in rivers, for example, originate from aquatic eco-
systems located upstream in the drainage network or
elsewhere in the drainage basin, and are transported to
the river through flowpaths[.]

(U.S. EPA Office of Research and Development 2015). The
Clean Water Rule appropriately defines Bsignificant nexus^
using scientifically supported functions to demonstrate strong
chemical, physical, and biological connections between

upstream waters and primary waters. Since the Clean Water
Rule was developed, a number of reviews have been published
that provide overviews and updates on these connections and
their importance (e.g., Cohen et al. 2016; Fritz et al. 2018; Lane
et al. 2018). Although these recent studies were not part of the
scientific record that formed the basis of the CleanWater Rule,
they demonstrate that accumulating scientific evidence con-
tinues to substantiate the Clean Water Rule.

Scientific literature strongly supports the nine functions
listed in the CleanWater Rule’s Bsignificant nexus^ definition,
each of which relates to the chemical, physical, and/or biolog-
ical integrity of primary waters. Wetlands enhance the chem-
ical integrity of downstream waters through trapping,
transforming, and filtering pollutants (see Johnston et al.
1990). Wetlands also recycle nutrients and export organic ma-
terial important for downstream food webs (seeMcClain et al.
2003; Smucker and Detenbeck 2014). For example, streams
that flow intermittently are critical to certain life history stages
of fish, including coho salmon (Larsen and Woelfle-Erskine
2018) as well as many invertebrates (Schofield et al. 2018).
Microbially available organic matter in stream networks can
be traced to seasonally connected wetland sources based on
the molecular composition of its carbon (Hosen et al. 2018).

Similarly, the functions of streams, wetlands, and open wa-
ters affect the physical integrity of downstreamwaters (see, e.g.,
Fletcher et al. 2014). These waters contribute flow to primary
waters (see, e.g., Johnston and Shmagin 2008). Research has
shown that many wetlands without a year-round surface con-
nection to primary waters flow into perennial streams a signif-
icant amount of the time, thereby contributing water and other
materials downstream (see, e.g., Golden et al. 2014;
McDonough et al. 2015; Hosen et al. 2018; Epting et al.
2018; Evenson et al. 2018). For example, researchers used di-
rect field measurements of connectivity to demonstrate that
prairie pothole wetlands contribute significant amounts of water
to receiving perennial streams through surface water connec-
tions (Brooks et al. 2018; Neff and Rosenberry 2018). Focusing
on ten catchments across the United States, Thorslund et al.
(2018) used chloride tracers to demonstrate that geographically
isolated wetlands are hydrologically connected and integral el-
ements in flow-generating networks. Recent advances in re-
mote sensing have also allowed scientists to detect and quantify
physical connections that provide temporally variable surface
water flows between streams and wetlands that were previously
considered isolated (Vanderhoof et al. 2016, 2017).

Wetlands also retain and attenuate floodwaters, as well as
store runoff (see Ogawa and Male 1986; Johnston 1993).
Hydrological modeling recently showed that depressional
wetlands in the Prairie Pothole Region attenuate peak flows,
thus decreasing the probability of downstream flooding
(Evenson et al. 2018). In addition, wetlands trap sediment
and nutrients, thereby substantially reducing the degradation
of downstream water quality (see Johnston et al. 1984).
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Extensive evidence demonstrates that wetlands act to remove
nutrients, thereby regulating the movement of excess nitrogen
and phosphorus to downstream waters (McClain et al. 2003;
Jordan et al. 2011). As a recent study showed, at the catchment
scale, geographically isolated wetlands can provide substan-
tial water storage capacity that can optimize these wetland
functions (Jones et al. 2018). Furthermore, research has con-
firmed that, like small streams in some regions (Alexander
et al. 2000; Peterson et al. 2001), small wetlands play a dis-
proportionately large role in landscape-scale nutrient process-
es (Cheng and Basu 2017). These are exactly the wetlands that
are likely to be filled in and developed and thus are at greater
risk without protection (Van Meter and Basu 2015).

The Clean Water Rule’s definition of Bsignificant nexus^
also recognizes how streams, wetlands, and open waters affect
the biological integrity of downstream waters. Such waters
provide important foraging, nesting, breeding, spawning, and
nursery habitat for species that occur in primary waters (see
Semlitsch and Bodie 1998; Sheaves 2009; Pittman et al. 2014).

Connectivity refers to Bthe degree to which components of a
watershed are joined and interact by transport mechanisms that
function across multiple spatial and temporal scales^ (U.S. EPA
Office of Research and Development 2015). Whether the func-
tions of a particular stream, wetland, or open water (or a group
of Bsimilarly situated^ waters) satisfy the legal threshold of
Bsignificant nexus^ depends on the extent of its connectivity
with primary waters. We examine the Clean Water Rule’s cat-
egorical application of the Bsignificant nexus^ test below.

Best Available Science Supports the Clean
Water Rule’s Categorical Treatment
of Tributaries

Scientific research demonstrates extensive connections be-
tween tributaries and their downstream primary waters suffi-
cient to warrant categorical inclusion under the Clean Water
Rule (see Turner and Rabalais 2003). TheU.S. SupremeCourt
has held that federal agencies may craft a categorical rule to
assert CWA jurisdiction over certain waters (United States v.
Riverside Bayview Homes, Inc., 474 U.S. 121 (1985)). The
Court noted that so long as Bit is reasonable ... to conclude
that, in the majority of cases^ the category of waters has
Bsignificant effects on water quality and the aquatic ecosys-
tem, its definition can stand^ (United States v. Riverside
Bayview Homes, Inc., 474 U.S. 121 (1985)).

The Clean Water Rule’s Definition of Tributary Is
Scientifically Sound

TheCleanWater Rule defines Btributary^ in amanner consistent
with scientific understanding. At its most basic level, a tributary
is simply a waterbody that flows into a larger waterbody. From a

scientific perspective, Ba tributary is the smaller of two
intersecting channels, and the larger is the main stem^ (Benda
et al. 2004). A standard stream ordering system classifies the
smallest streams as first-order streams; when two streams meet,
they form a second-order stream and so on (see Strahler 1957).
The smaller waters are intrinsically linked to primary waters
both structurally and functionally (see Whigham et al. 1988).
Indeed, B[t]he great majority of the total length of river systems
is comprised of lower-order or headwater systems^ (Allan and
Castillo 2007; see also Fritz et al. 2013).

Under the Clean Water Rule, a Btributary ... contributes
flow, either directly or through another water^ to primary wa-
ters and is Bcharacterized by the presence of the physical in-
dicators of a bed and banks and an ordinary high water mark^
(80 Federal Register 37,054). The CleanWater Rule notes that
tributaries may be natural or human-made and include Brivers,
streams, [and] canals,^ as well as ditches that are not other-
wise excluded by the Rule (80 Federal Register 37,054). From
a scientific perspective, whether a tributary is natural or
human-made is immaterial; what matters is whether the water
contributes flow to another waterbody.

Under the CleanWater Rule, a water meets the definition of
a tributary even if it contributes flow to a primary water
through a non-jurisdictional water. This approach is also
sound because the scientific definition of tributary focuses
on the hydrologic connection between waters.

From a scientific perspective, the Clean Water Rule’s def-
inition of Btributary^ could be considered conservative. In
addition to requiring a bed and banks (channels), it also pro-
vides that a tributary must have an ordinary high water mark
(OHWM). In comments to the EPA, however, the Scientific
Advisory Board noted that not all tributaries have OHWMs
(U.S. EPA Scientific Advisory Board 2014). The OHWM
requirement (which is ultimately a limitation on what consti-
tutes a water of the United States) is not dictated by science,
but we recognize that the agencies must set boundaries along
gradients to apply the CWA on a national basis.

Compelling Scientific Evidence Demonstrates that
Tributaries Significantly Affect the Chemical, Physical,
and Biological Integrity of Primary Waters

The National Academy of Sciences has extensively docu-
mented the connections between tributaries and downstream
waters (see, e.g., National Research Council 2000, 2011a, b).
Scientific studies demonstrate how tributaries significantly af-
fect the functions and integrity of downstream waters through
chemical, physical, and biological interrelationships, especial-
ly regarding how physical aspects (e.g., flow) can influence
chemical processes (e.g., pesticide contamination), which in
turn can affect the biological features (e.g., species) of a water.
Below we highlight a few examples of connections between
tributaries and primary waters.
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Scientists find evidence of strong chemical connections
between tributaries and downstream primary waters in the
movement of contaminants and pathogens. Sediment-laden
waters typically transport some contaminants (such as mercu-
ry) from tributaries to downstream waters (see Salomons and
Förtsner 1984). Waterborne pathogens (such as bacteria and
viruses) that originate from agricultural and municipal wastes
are also transported to downstream waters through tributaries
(see Jokinen et al. 2012; Pandey et al. 2014; Jalliffier-Verne
et al. 2016). Pathogens may pose a risk to human health,
highlighting the importance of regulating and protecting trib-
utaries to ensure the integrity of primary waters.

Tributaries also have important physical connections with
downstream primary waters. The water flow from tributaries
helps to create and maintain river networks. Indeed, most of
the water in most rivers comes from tributaries (see, e.g.,
Alexander et al. 2007).

Furthermore, tributaries support the metabolism of river
ecosystems. For example, they export organic matter (dis-
solved and particulate) that is incorporated into the food webs
of downstream waters (Hosen et al. 2018), and the resulting
turbid water may shade and protect fish and amphibians from
damage by ultraviolet radiation (e.g., Frost et al. 2006). Other
biological connections relate to the passive and active trans-
port of living organisms (see Meyer et al. 2007 (discussing
how organisms rely on streams); Moreno-Mateos and Palmer
2016; Johnston 2017; Schofield et al. 2018).

Accordingly, the Clean Water Rule’s categorical treatment
of tributaries reflects scientific reality.

Best Available Science Supports the Clean
Water Rule’s Categorical Treatment
of Adjacent Waters Based on Geographic
Proximity

Scientific research demonstrates that adjacent waters warrant
regulation under the Clean Water Rule because of their chem-
ical, physical, and biological connections to downstream pri-
mary waters.

Compelling Scientific Evidence Demonstrates that
Waters within 100 Ft of an OHWM Significantly Affect
the Chemical, Physical, and Biological Integrity
of Primary Waters

Waters, including wetlands, ponds, oxbows, and impound-
ments, within 100 ft of an OHWM are Bhotspots^ of species
diversity with important ecological functions that affect the
flux of materials (water, sediment, energy, organic matter, pol-
lutants, and organisms) to primary waters (see Groffman et al.
2003). These adjacent waters affect the movement of pollut-
ants from uplands into streams and rivers; regulate stream

temperatures, light, and flow regimes; reduce downstream
flooding; and provide nursery areas and critical habitat for
aquatic biota, including threatened and endangered species
(seeWard et al. 2002). Riparian wetlands act as buffers, effec-
tively reducing concentrations of nutrients and other pollut-
ants. For example, riparian wetlands may remove up to 100%
of the nitrate-nitrogen that enters them (see Fennessy and
Cronk 1997). Nitrate is a serious water pollutant and a major
contributor to coastal algal blooms, such as the Gulf of
Mexico’s hypoxic Bdead zone,^ as well as nuisance algal
blooms in many other surface waters (see Mitsch et al. 2005;
see also Kosten et al. 2012).

These adjacent waters can act as sources, sinks, or trans-
formers of materials from upland habitats. As sources, adja-
cent waters contribute organic materials, such as leaf litter, that
provide food (energy) for many in-stream species (see
Vannote et al. 1980). They also carry woody debris, which
increases habitat complexity and biodiversity (see Allan
1995; Ward et al. 2002).

Adjacent waters are also major sinks for materials. By cap-
turing and storing sediment eroded from nearby uplands, they
reduce downstream sediment transport and its negative effects
on fish feeding and spawning, macroinvertebrate communi-
ties, and overall habitat quality (see Newcombe and
MacDonald 1991). These adjacent waters convert materials
from one form to another; plants and algae can can take up
nutrients and bind them in their tissues, reducing the risk of
downstream eutrophication. Wetlands in particular mitigate
nonpoint source pollution, such as insecticides and fertilizers,
thus protecting stream water quality and drinking water sup-
plies (e.g., Mitsch et al. 2005; Everich et al. 2011). Adjacent
waters also slow the movement of materials and biota by
providing temporary storage of excess water during times of
high precipitation; this storage dissipates the energy of flows
(reducing erosion and soil loss) and attenuates flood peaks
(see Mitsch and Gosselink 2015).

Hydrologic connections do not need to be continuous to
have a substantial effect on downstream primary waters.
Hydrologic connectivity involves longitudinal, lateral, and
vertical exchange, and adjacent waters are intimately linked
to streams and rivers both in space (i.e., proximity to the
OHWM) and time (e.g., by means of high water and flood
events). Seasonal high water levels increase connectivity, pro-
moting the lateral movement of animals between lakes, wet-
lands, stream channels, and their adjacent waters. This move-
ment facilitates use of critical spawning and nursery habitats
by fish and supports the biological integrity of the system.
Many fish are sustained by varied habitats dispersed through-
out the watershed for spawning, nurseries, growth, and matu-
ration (see Fausch et al. 2002).

Overall, the benefits of protecting waters within 100 ft of
an OHWM accrue both locally (at that point on the river
system) and cumulatively (at the watershed scale). The

408 Wetlands (2019) 39:403–414



Clean Water Rule’s categorical inclusion of these adjacent
waters reflects scientific reality.

Compelling Scientific Evidence Demonstrates that
Waters within 100-Year Floodplains Significantly
Affect the Chemical, Physical, and Biological Integrity
of Primary Waters

The Clean Water Rule’s coverage of waters within 100-
year floodplains is based on scientific understanding of
watershed dynamics. These dynamics include not only sur-
face expressions of connectivity (floods), but also under-
lying hydrologic conditions.

Every primary water has a watershed, which can be de-
scribed as the land area that drains into that primary water
and its tributaries (see Bierman and Montgomery 2014).
During any flood event, primary waters and their tributaries
may overflow their banks (Bierman and Montgomery 2014).
The proportion of land that becomes obviously flooded (the
Bfloodplain^) depends upon the rate and total amount of rain-
fall. The geographic extent of the floodplain also depends
upon the watershed’s topography, soil saturation, and geolog-
ical characteristics (see Osterkamp and Friedman 2000). A
landscape with more topographic relief (steeper) will have a
smaller floodplain than a flatter landscape where floodwaters
more readily spread outward (see Howard 1996).

Although every flood is unique in extent and duration,
scientists describe floodplains statistically to characterize oth-
er hydrologic (non-flooding) features (see Pandey and
Nguyen 1999). For example, the B100-year floodplain^ rep-
resents the land area that has a 1% chance of being inundated
by floodwaters in any given year (1/100 likelihood). This
definition is entirely statistical; such floods can occur more
often in a 100-year floodplain, even 2 years or more in a
row. It is incorrect to conclude that waters on a 100-year
floodplain have a connection with a primary water only once
in a century because the hydrologic connections extend be-
yond surface flooding alone and into belowground material.

Furthermore, changes in land use can affect flood dynam-
ics. Increasing the proportion of the landscape that is covered
with impermeable surfaces (such as streets and roofs) may
increase flood intensity and duration (see Bedan and
Clausen 2009).

Floodwaters are only the surface expressions of a flood.
Rainfall permeates into the soil and often moves underground
toward open waterbodies, such as primary waters (see Alley
et al. 2002; Malard et al. 2002). Groundwater movement also
contributes to baseflow in the absence of a flood. This under-
standing results from tracer techniques that show large pro-
portions of streamflow are derived from groundwater (e.g.,
Alley et al. 2002).

Factors other than surface flooding determine the actual
extent of hydrologic connections between waters in a

floodplain. The direction of movement and the rate at which
the water moves depend upon topography, geology, and rain-
fall (see Stanford and Ward 1993; Alley et al. 2002).
Impermeable subsurface layers, like clay layers, can reduce
the downward movement of water and force it to move later-
ally (see Bush and Johnston 1988). Often subsurface imper-
meable (or semi-permeable) layers are not level; they may
slope toward waterbodies, and this subsurface lateral flow
may re-emerge in a surface waterbody, such as a primary
water. However, subsurface lateral flow can occur even with-
out sloping impermeable layers; when more water pools in a
particular subsurface location, lateral flow will occur from
areas of higher pressure to areas of lower pressure, which
may be river channels, wetlands, or lakes (Bear 2012).

Many different types of waterbodies can occur in 100-year
floodplains. Tributaries and other waters can be connected to a
primary river in more than one way (seeAmoros and Bornette
2002). Headwaters and tributaries may flow directly into pri-
mary waters, adding organic matter and constituents that cre-
ate unique water chemistry in the primary water (see Gomi
et al. 2002). Wetlands may border primary waters, buffering
the input of floodwaters, altering the water chemistry of flood-
waters and the primary water itself, and providing habitat and
resources for local biota (see Zedler 2003).

Even other waterbodies with no obvious surface connec-
tions to primary waters may still be hydrologically connected
to them. Lakes, ponds, wetlands, and streams that flow into
these apparently isolated waterbodies may have no surface
connections to the primary water but, in addition to storing
water as previously described, can have subsurface connec-
tions through groundwater (Bear 2012). These subsurface con-
nections can carry water to primary waters; for example, water
seeping down out of an apparently isolated waterbody may hit
an impermeable layer and move laterally until it emerges in the
primary waterbody (see Poole 2002). Therefore, loss of a su-
perficially isolated waterbody can reduce water volume and
alter flow characteristics of a primary water.

Evidence for these connections can be observed in the
physical and chemical properties of primary waters (see
Malard et al. 2002). Temperature, alkalinity, salinity, nitrate,
other chemicals and pollutants, and dyes have been used as
tracers to show the impact of groundwater connections to
surface waters (see Soulsby et al. 2007). Furthermore, addi-
tions of pollutants into apparently isolated waterbodies or dis-
parate areas of the watershed can affect primary waters (see
Lerner and Harris 2009). Tracer and stable isotope studies
have established paths and rates of water movements, substan-
tiating that a distant source can pollute primary waters (see
Badruzzaman et al. 2012). These studies highlight the chem-
ical, physical, and biological connections between a primary
water and other waterbodies that are located within its 100-
year floodplain, thus justifying the inclusion of these adjacent
waters in the Clean Water Rule.
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Compelling Scientific Evidence Demonstrates that
Waters within 1500 Ft of High Tide Lines of Tidally
Influenced Primary Waters or OHWMs of the Great
Lakes Significantly Affect the Integrity of these
Primary Waters

Scientific evidence strongly supports protecting waters locat-
ed within 1500 ft of such primary waters. These waters have
the same types of connections and functions as the tributaries
and other adjacent waters discussed supra. Adjacent waters
within 1500 ft of primary waters have important chemical
connections to those waters. Adjacent waters that were
thought to be isolated have become more saline, providing
empirical data regarding the groundwater connection between
adjacent waters and primary waters (see, e.g., Wood and
Harrington 2014). In addition, adjacent waters in the 1500-ft
zone may release freshwater into coastal waters, thereby re-
ducing the salinity of these waters (see, e.g., Sklar and
Browder 1998).

Indeed, the inputs of groundwater into coastal waters are
quite large, and groundwater can contain high levels of dis-
solved solids and nutrients (see, e.g., Moore 1996; Krest et al.
2000; Charette et al. 2001). As in inland systems, coastal
wetlands remove nutrients, such as nitrate, thereby reducing
down-gradient eutrophication in primary waters (see Ardón
et al. 2013). Thus, adjacent waters protect and improve the
quality of primary waters by removing harmful contaminants
or transforming and transporting nutrients to primary waters
(see Dahm et al. 2016).

Adjacent waters also physically influence primary waters
through surface and subsurface connections. Adjacent waters
contribute flow to nearby primary waters and retain floodwa-
ters and sediments (see, e.g., Barlow 2003). Further, adjacent
waters have a significant impact on the biological integrity of
primary waters. Wetlands near tidally influenced primary wa-
ters can serve as a critical source of freshwater for some spe-
cies that use wetlands and coastal waters (see U.S. EPA and
U.S. Department of the Army 2015). Adjacent wetlands,
lakes, ponds, and other waters also provide important foraging
and breeding habitat for coastal species and are an important
refuge from predators (see, e.g., Jude and Pappas 1992;
Sierszen et al. 2012a).

Distance is but one factor that affects the connectivity be-
tween waters, and as with the other geographical distance
limitations discussed supra, the agencies’ selection of
1500 ft as the distance limitation is conservative from a scien-
tific perspective. Indeed, waters located beyond this threshold
can be chemically, physically, and biologically connected to
tidally influenced primary waters or the Great Lakes. While
the categorical jurisdictional line could have been drawn far-
ther from high tide lines, science supports connecting the ma-
jority of lakes, wetlands, ponds, and other waters located with-
in this 1500-ft area to primary waters.

Once again, the CleanWater Rule’s categorical inclusion of
these adjacent waters reflects scientific reality.

Conclusion

The U.S. Supreme Court has held that federal agencies
may protect waters on a categorical basis if most waters
in that category have a significant effect on primary waters.
The best available science overwhelmingly demonstrates
that the waters treated categorically in the Clean Water
Rule have significant chemical, physical, and biological
connections to primary waters. Accordingly, we support
the Clean Water Rule. Any effort to suspend or revise the
Clean Water Rule must take into account this scientific
record and explain how any proposed changes would con-
tribute to furthering the goals of the Clean Water Act.
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