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In Response: Challenges for statistical evaluation of
ecotoxicological experiments—An industry perspective

There have been many calls within the ecotoxicological
community to replace hypothesis testing methods to determine
a no-observed-effect concentration (NOEC) with regression
models to estimate an effects concentration (ECx) at which a
specific percentage of effect, x, is expected to occur. Advances
in statistical methodology and software have expanded the
types of models that can be used. One such promising approach
is generalized linear mixed models to capture the nested
structure and overdispersion and to treat count data as such
rather than through transforms to mimic normality-based
models. Bayesian models have also been shown to provide
good descriptions of the data from some types of responses.

It is critically important that the regression approach be
evaluated carefully in each proposed application before
abandoning the NOEC to avoid replacing what is widely
perceived as a flawed approach by another approach that is also
flawed and subject to abuse. Without intending to dismiss

regression models for many common responses, Green et al.
[1–3; J.W. Green et al., DuPont Applied Statistics Group,
Newark, DE, USA, unpublished manuscript] provide examples
of data that are problematic for the regression approach.
Problems occur when the concentration–response shape is very
shallow so that ECx estimates have great uncertainty, partly
indicated by extremely wide confidence bounds. Point estimates
of ECx in such cases are meaningless. Another problem exists
when the control response is highly variable. If there is 20%
standard error in the control mean, estimation of EC10 is absurd
at face value. The fact that once a mathematical model has been
fit, it is possible to estimate ECx for any positive value of x does
not imply that all such estimates are meaningful or useful.
Another problematic area is a response which has no pattern at
all except at the highest 1 or 2 test concentrations. In such a
situation, there might be no basis for proposing a model, yet the
ECx estimate is highly model-dependent.

In evaluating fish early–life stage experiments for the revised
Organisation for Economic Co-Operation and Development’s
test guideline 210, more than 100 studies were evaluated for size
and mortality responses. For between 75% and 90% of the
studies, good EC10 estimates for size and EC20 estimates for
mortality could be obtained. “Good” in the Organisation for
Economic Co-Operation and Development’s evaluation of
studies refers to estimates with tight confidence intervals and
point estimates within a few percentages of the observed
percentage effects in adjacent test concentrations based on
regression models that agree well with the data over most of the
concentration range, especially at the control, and do not exhibit
significant lack of goodness-of-fit. For the remaining studies,
either no model could be fit or the confidence interval for ECx
spanned the entire range of tested concentrations including the
control. In those cases, it was nonetheless possible to obtain a
NOEC that appeared consistent with the data and corresponded
to an observed effect of modest magnitude. A conclusion from
the Organisation for Co-Operation and Development’s investi-
gation is that the NOEC approach must be retained as an
alternative when regression fails to provide a useful result.

In proposing a modeling approach for a response from a
specific type of study, it is important to do a computer
simulation study based on a substantial, representative database
of studies of the same type so as to capture the variability and
concentration–response shapes likely to be encountered. Then it
is possible to develop a distribution of ECx estimates that could
be obtained so as to evaluate the viability of the proposedmodel.
Such computer modeling is quite helpful in developing an
understanding of what can be expected from experiments and
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for comparing alternative approaches. Figure 1 shows the
distribution of log(EC10) estimates from 2 alternative models
for snail reproduction. The true log(EC10) value is known in the
simulation and shown as a vertical line. The distribution of
model 1 estimates is symmetric about the true value and visually
appealing; the distribution of model 2 estimates is skewed, but
the model 2 estimates are much less variable. In particular,
model 2 is much less likely to grossly underestimate EC10 and
no more likely to overestimate. Such simulation studies must be
set up with care to avoid unintentional bias, and all likely
scenarios of shape and variability need to be modeled. It is this
author’s contention that many people have unrealistic confi-
dence in the estimates from regression models that are not
sufficiently grounded in real study experience.

One of the challenges in evaluating ecotoxicological studies
is that at the present time there are responses for which no
suitable regression models are available. One example is
histopathological severity scores, which are required in 2 new
test guidelines to be issued soon: the medaka multigeneration
test, larval amphibian growth and development assay, as well as
the fish short-term reproduction assay (Organisation of
Economic Co-Operation and Development, test guideline
229)—and likely in the Japanese quail 2-generation toxicity
test, which also should be issued in the near future. Severity
scores are not numeric (other than as labels) and should not be
treated as such. An analysis approach is given in Green et al. [3].
Currently, it is not clear whether an ECx can be defined for such
scores that correspond in a meaningful way to ECx in other
contexts.

Another challenge is time-to-event data. Survival analysis
methods have been well developed for decades [4]. Recent
advances allow modeling that captures the replicate nature of
most ecotoxicity studies [5–8]. The challenge is that the range of

event times is often very limited in ecotoxicity studies. Instead
of a 2-yr rodent study or long-duration human clinical trial,
one has a span of 5 to 6 event times over a 14-d or 21-d
Daphnia study or short reproduction time in a Japanese quail
2-generation toxicity test or a short time span to reach
Nieuwkoop and Faber stage 62 in a larval amphibian growth
and development assay study. With such limited time spans,
models from survival analysis can be uninformative, and new
approaches are needed if NOECs are to be replaced.

John W. Green
DuPont Applied Statistics Group

Newark, DE, USA
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In Response: Regression or significance tests: What other
choice is there?—An academic perspective

Both the no-observed-effect concentration and its null hypoth-
esis significance testing foundation have drawn steady criticism
since their inceptions [1–5]. Many in our field reasonably
advocate regression to avoid conventional null hypothesis
significance testing shortcomings; however, regression is
compromised under commonly encountered conditions (Green,
present Perspective’s Challenge). As the debate to favor null
hypothesis significance testing or regression methods continues
into the 21st century, a sensible strategy might be to take a
moment to ask, Are there now other choices? Our goal is to
sketch out 1 such choice.

So many misconceptions have amassed around null hypothe-
sis significance testing–based methods that minor refinements to
current practices seem unlikely to resolve serious errors in their
application. Five of the worst issues with null hypothesis
significance testing practices are detailed in Newman [3] and
references therein. First, null hypothesis significance testing
without a priori definition of type II error rate (b) and effect size
cannot be used to infer that a significant difference exists. Only
falsification of the null hypothesis (H0) is possible because no
“significant difference” alternative hypothesis exists without b.
Second, although seldomdone,a andb should be set based on the
seriousness of making each type of error. Third, a meaningful
effect size should be applied instead of the usual no effect. Given
enough observations, there will always be a difference between
treatments, so the no-effect size lacks meaning. Fourth, the
tendency to publish significant outcomes more readily than
nonsignificant ones creates a literature bias that befuddles meta-
analyses. Fifth, crucially, a pervasive misconception exists that
null hypothesis significance testing p values estimate the
probability of the H0 being true and that 1 minus the p value
approximates the probability of the alternative hypothesis being
true. Actually, the p value is the probability of getting the data, or
more extreme data, if H0 is true. A p value alone is a misleading
measure of H0 or alternative hypothesis plausibility [3]. More is
needed to estimate p(H0|x) from p(x|H0) becausep(H0|x)¼ [p(H0)
p(x|H0)]/p(x). To document this confusion about p values, thefirst
author surveyed environmental professionals and students during
6presentations in4 countries.The correct definitionof thep value
was chosen fromamong7options byonly10%of responders (n¼
374, 95% confidence interval 7–13%). Random picking of an
answer would have produced 14% correct answers. The
inescapable conclusion is that a deep-rooted misunderstanding
exists among environmental professionalswho likely usepvalues
routinely.

Regression and conventional null hypothesis significance
testing might have been the sole practical alternatives when
environmental regulations were formulated, but several readily
implemented methods are now available, such as hypothesis
testing after a priori power analysis with meaningful error rates

and effect size [1–3], inference with confidence or credible
intervals [6], Bayes factors [7–9], and information theory
methods [10]. The Bayes factor will be discussed in the present
Perspective as 1 possible alternative to consider when null
hypothesis significance testing application fails.

Bayes factors aid decisions to favor 1 hypothesis over
another, such as HA:uA ¼ 0 or HB:uB ¼ 0.35, given a data set (x).
The Bayes factor, or p(HA|x)/p(HB|x), can be estimated from
p(x|HA)/p(x|HB) if no information is available prior to testing,
that is, p(HA)/p(HB) ¼ 1. It is the data-based probability of 1
hypothesis divided by that of the other. In the simplest case of
2 explicit probability density functions (Figure 2), the Bayes
factor might be estimated as the likelihood ratio for the
hypotheses given the data, L(HA)/L(HB) [7].

Such simple situations are common only in textbooks. The
Bayes factor approach was unfeasible when the null hypothesis
significance testing versus regression debate began because its
estimation often required difficult integrations:

BF ¼ p xjHAð Þ
p xjHBð Þ ¼

R
p uAjHAð Þp xjuA;HAð ÞduAR
p uBjHBð Þp xjuB;HBð ÞduB

Now computer-intensiveMarkov chainMonte Carlo algorithms
are widely available for this purpose, making the Bayes factor
an attractive substitute for conventional null hypothesis
significance testing methods.

If the estimate from the best-supported hypothesis is made
the denominator, a minimum Bayes factor is produced that
quantifies the degree of data-based support for that hypothesis
relative to the alternative hypothesis [7,8]. Jeffreys [8] used
minimum Bayes factors to categorize the amount of support
for the best hypothesis: unhelpful (0.31 < minimum Bayes
factor< 1), substantial (0.10<minimum Bayes factor< 0.31),
strong (0.031 < minimum Bayes factor < 0.10), very strong
(0.01<minimumBayes factor< 0.031), or decisive (minimum
Bayes factor �0.01) evidence. If the hypothesis in the
numerator was H0, a minimum Bayes factor �0.01 would
result in its rejection. Such unencumbered interpretations of the
minimum Bayes factor seem preferable to working around the
pervasive misinterpretations of p values that consistently
overestimate the evidence against the null hypothesis.

An unpublished study of activated carbon addition to
sediments illustrates this point (M.C. Newman, unpublished
data). Sediment had sorbent added or not added to create

Figure 2. Bayes factor estimation with products of probability densities (fxi)
for 5 observations (•) using hypothetical distribution A or B: HA and HB

have hypothesized means (uA and uB), with perhaps uA being a mean
difference of 0.
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2 treatments. A leaf disk and amphipod (Hyalella azteca) were
added to 30 wells per sediment treatment, and the leaf disk
weight loss was quantified after 10 d. Trials were run using
sediment 5 d, 45 d, 90 d, and 180 d postamendment. The
percentage of difference in detrital processing (disk wt
change, L) in the amended sediments relative to those of the
unamended sediment treatment were all negative and are shown
in Table 1.

All H0 of no difference in detrital processing were rejected
based onWelch t test p values (a¼b¼ 0.05; effect size¼ 35%).
Applying the minimum Bayes factor, the evidence against the
H0 relative to the HA was judged to be substantial for the first
duration and strong to decisive for later durations. Each p value
was lower than its corresponding minimum Bayes factor and, if
the conventional null hypothesis significance testing misinter-
pretation was applied, would have substantially overestimated
support for HA relative to that for H0.

To answer the question posed in The Challenge for this
Perspectives article, Bayes factors are now 1 alternative to
conventional null hypothesis significance tests when regression
fails. The common objections about Bayes subjectivity are
irrelevant to Bayes factors because they are calculated only from
the evidence [7]. Although the Bayes factor is not without its
flaws, its wider use would foster movement away from the
currently muddled application of null hypothesis significance
testing.

Michael C. Newman
Marcos Krull

Virginia Institute of Marine Science
College of William & Mary
Gloucester Point, VA, USA
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In Response: Biological arguments for selecting effect
sizes in ecotoxicological testing—A governmental
perspective

Criticisms of the uses of the no-observed-effect concentration
(NOEC) and the lowest-observed-effect concentration (LOEC)
and more generally the entire null hypothesis statistical
testing scheme are hardly new or unique to the field of
ecotoxicology [1–4]. Among the criticisms of NOECs and
LOECs is that statistically similar LOECs (in terms of p value)
can represent drastically different levels of effect. For instance,
my colleagues and I found that a battery of chronic toxicity
tests with different species and endpoints yielded LOECs
with minimum detectable differences ranging from 3% to 48%
reductions from controls [5].

For interpretations of field studies, recommendations for
improved practices include using confidence intervals rather
than hypothesis testing for group comparisons and evaluating
whether apparent effects exceed predetermined “critical” effect
sizes [2,6]. For interpretations of toxicity tests, recommenda-
tions for improved practices emphasize replacing NOEC and
LOEC comparisons with either model-based true no-effect
concentration estimates or curve fitting and from the fitted curve
functions, reporting concentrations that produced x% of effects
(ECx) [7–9]. These developments beg the question: What levels
of toxic effect are of concern or can be considered negligible?
Biologically based arguments for selecting x are scarce, and
instead discussions for selecting x from curve-fitting approaches
have emphasized statistical or test performance considerations
for selecting x rather than biological implications. Confidence
limits, variability of point estimates, model dependence, and
comparisons of NOECs to ECx percentages have been
evaluated [10,11]. These statistical considerations are of value
but are not sufficient by themselves and may be circular. If a
major shortcoming of NOECs is that they may actually
correspond with fairly high adverse effects [9,12], why should
it make sense to then turn about and askwhat levels of effects are
typically associated with NOECs to define the x in ECx values?

In contrast, the reasons for the existence of toxicity testing
practices relate to making some estimate of safe or unsafe
concentrations for aquatic populations or communities. Thus,
judgments of what constitutes a negligible level of effect in
toxicity tests should consider the consequences of similar effect
levels in the wild. For example, the primary adverse effects
studied in an early–life stage toxicity test with fish are
reduced growth and survival. From a population biology
perspective, survival and reproduction are the only endpoints
that directly matter for viability. Reduced growthmay indirectly
influence reproduction by slowing the time to reproduction or
because smaller females may produce fewer offspring.
However, in the wild, subtle differences in size could have
disproportionately large effects on survival. For fish, growth is
closely linked to survival, in part because of the importance of
size in competitive interactions and predator–prey relations. For

Table 1. Comparison of null hypothesis significance testing and minimum
Bayes factor assessments of activated carbon sorbents in sediment

Duration L P value Minimum Bayes factor

5 –39 0.0061 0.1536
45 –53 <0.0001 0.0015
90 –47 0.0021 0.0367
180 –41 0.0003 0.0097

L ¼ disk weight changes as a percentage.
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example, adult sculpin (Cottidae) may prey on juvenile
salmonids in streams and vice versa, depending on relative
sizes. Torrent sculpin,Cottus rhotheus (Figure 3), that only had a
15% length advantage could readily ambush, subdue, and eat
coho salmon, Oncorhynchus kisutch, yet when the sculpin and
salmon were similar in length, the sculpin posed no threat [13].
With fish in temperate streams, contests for territory may
determine profitable feeding locations, shelter from predation,
andwinter resting shelters. These in turnmay determinewhether
fish have sufficient energy reserves for overwinter survival and
eventual reproduction [14]. A size disparity of as little as 5% in
body weight may tip the outcome of such contests [15]. Riverine
survival of juvenile Chinook salmon (Oncorhynchus tshawyt-
scha) in Idaho, USA, was disproportionately size-dependent,
with a 10% difference in length associated with 33% to 70%
reductions in migratory survival [16].

Similarly, with aquatic invertebrates, the same ECx values
for different effect endpoints cannot be assumed to have the
same level of effect. For instance, a 10% reduction in length of
mussels would predict approximately a 19% to 44% reduction in
fecundity, based on length–fecundity regressions from field
studies with different freshwater mussel species [17]. In 28-d
exposures with freshwater mussels and Cu, the maximum
reductions in length in treatments in which at least somemussels
survived to the end of the tests were only 13% to 29% [17].
Uncritical reliance on a single, fixed ECx value such as the EC20
for a growth endpoint for which themaximum range of response
may not even reach 20% would lead to reporting test results as
“greater than” values, which would incorrectly discount
biologically important effects as being insensitive.

Relating mortality rates of aquatic organisms in toxicity tests
to corresponding effects in real populations from contaminant-
inducedmortality is difficult. Early–life stagemortality does not
directly translate to proportional reductions in recruitment,
largely because the survival of juvenile cohorts in nature is often
density-dependent. That is, when densities are high, food and
space become limiting, growth is stunted, and survival is low.
When densities are low, food and space are abundant, growth is
higher, and survival is higher [18]. In natural populations,
different life stages have very different contributions to the
population dynamics and, for example, the same percentage of

mortality to young-of-year fish or sexually mature fish will
have very different population implications. For instance, a bull
trout, Salvelinus confluentus, population could withstand up to a
60% annual decrease in juvenile survival yet went into decline
following a 5% increase in annual adult mortalities [19].

A closely related problem is what level x effect is most
appropriate for use with the ECxwhen the policy goal is to allow
no adverse effects. An oxymoronic response has often been to
equate some low level of adverse effect to no effect. The EC10
has been used in this manner [7,9,10], although in a more
extreme interpretation, a 25% toxic response from controls was
considered to represent nontoxicity [20]. Although this may be
logical if the policy goals are intended to allow some toxicity, it
seems to me that if the goal is no toxicity, the only value for x in
ECx that represents no toxicity is 0 (i.e., EC0).

Although calculating an EC0 estimate from distribution- or
regression-based curve-fitting models is an impossibility when
using a distribution with infinite tails such as the normal
(gaussian) distribution, an EC0 can easily be estimated from
curve-fitting routines that use finite distributions [21]. The
triangular distribution can produce a threshold sigmoidal
toxicity curve fit similar in shape to that from nonlinear logistic
regression, and the rectangular distribution can produce a
“broken stick” piecewise-linear fit. Whereas the logistic
equation curve subtly angles downward from its start,
illustrating the impossibility of an EC0, the threshold sigmoidal
and piecewise-linear curves are flat until the no-effect thresh-
olds (EC0) are reached (Figure 4). The piecewise-linear fit has
the advantage ofmaking visual explanation of the no-effect EC0
to laypeople or policy people because the break in the regression
is the no-effect threshold, and its reasonableness can be
interpreted relative to the underlying data points. These visual
explanations may be easier than trying to explain that something
(e.g., 10% effect) equates to nothing. If an objective of
ecotoxicological testing and modeling is to estimate thresholds
for the absence of effects, ecotoxicologists should not discount
the EC0.

Growth data that have shallow slopes and limited ranges of
response are less than ideal for nonlinear regression models, and
I tend to place little confidence in confidence limits. For
instance, in the piecewise-linear EC0 for mussel growth in
Figure 4, the EC0 estimate appears eminently reasonable to me,
breaking at a treatment with nearly identical responses as the
controls, yet the calculated confidence limits encompass both
the next lower (control) and higher treatments. Rather, my
confidence in the ECx estimates is based on howwell themodels
fit the underlying data. Model selection can matter, especially
when interpolation is needed because effects occurred at the
lowest concentration tested. In the mussel shell length example
(Figure 4A), the EC10 estimate from logistic regression was
lower than the EC0 estimate from piecewise-linear regression.

Finally, replicated exposure test designs such as those in
Figure 4B are a legacy of null hypothesis significance testing
and are inefficient for curve fitting and ECx point estimates.
A gradient of 24 unreplicated exposures would be more capable
of defining the thresholds and distributions of concentration
responses than could 6 exposures replicated 4 times each.
Acknowledging that proportional diluters or numbers of pump
channels place practical limits on numbers of exposures, the
point is that moving from null hypothesis significance testing to
an ECx interpretation approach involves more of a mind-set
change than simply also running the results of a null hypothesis
significance testing–based test design through regression-fitting
software.

Figure 3. Subtle differences in size can lead to life or death outcomes.
Predatory sculpin posed no risk to same-length juvenile salmon, but those
with a 15% disadvantage in length were readily ambushed and eaten by the
sculpin [13]. Photo by Jo Opdyke Wilhelm, King County Department of
Natural Resources (Washington, USA). Used with permission.
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The main point of this Response is that a given ECx effect size
percentage might have very different biological implications
depending on the endpoint and ecological context. For instance, a
5% reduction in an endpoint with low inherent variability such as
length-at-age could have comparable population-level implica-
tions to a 20% reduction in more variable and ecologically
compensable endpoints such as early–life stage survival or
fecundity. An underlying theme is that we should not just reduce
species and biology to numbers and models and disconnect the
“eco” from “toxicology.” Considering the biological implications
of toxicity testing in the context of species life histories and their
ecological context is important, even though such considerations
may be qualitative, uncertain, or even speculative.

Christopher A. Mebane
US Geological Survey,

Boise, ID
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In Response: Some species sensitivity distribution
statistics revisited—A governmental perspective

Estimating toxicity thresholds for aquatic, sedimentary, and
terrestrial environments present insurmountable challenges,

Figure 4. Two examples of estimating no-effect threshold values (EC0) from
chronic tests with nonlinear regression using finite uniform and triangular
distributions (“piecewise-linear” and “threshold sigmoidal”fits, respectively).
Fits with the logistic equation using the normal distribution with its infinite
tails are also shown. Although the EC0 estimates may appear reasonable
relative to the underlying values, the examples illustrate the inefficiency of
common replicatedexperimental designs for regression-basedpoint estimates.
Data from Mebane et al. [5] and Wang et al. [17], using models from
Erickson [21]. NOEC ¼ no-observed-effect concentration.
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given the complexity of the systems involved. Since Kooijman
[1] and Van Straalen and Denneman [2], the statistical species
sensitivity distribution (SSD) method has provided a major
shortcut in deriving hazardous concentrations (HCx, e.g., HC5)
from a set of comparable laboratory toxicity endpoints. A 2002
volume on SSDs [3] documents overviews, applications, and
extensions.

More recently, an European Centre for Ecotoxicology and
Toxicology of Chemicals workshop on estimating toxicity
thresholds for SSDs was held in Amsterdam [4], where current
SSD–related issues were discussed and summarized. Identi-
fied research areas include ecological validation, species
selection, statistical problems, and mode of action of the
chemicals. Among these, statistical challenges are manifold
as well.

In the present Response, it is shown that some statistical
issues can be definitely addressed with present-day statistical
methods. Three statistical topics are selected. The problem of
data error is discussed firstly. Secondly, I will revisit predictive
SSD fitting and extrapolation constants. Thirdly, the problem of
censored data will be touched on.

Data error

My coworkers and I have been concerned with the problem
of how to account for data points within a SSD, some of which
may derive from quantitative structure–activity relationship
(QSAR) estimates [5]. But as QSAR-based estimates bring in
additional uncertainty, we investigated the effect of data error.
But data error is not typical for model-injected data points: it is
characteristic for experimental species data as well. The
European Chemicals Agency’s technical guidance says that
SSD data points may be best conceived as speciesmeans, so it is
advisable to averagemultiple sensitivity data points for the same
species.

This carries over to QSAR-based points as expected model
predictions. We briefly explored a Bayesian hierarchical model
with 2 variance components: within-species error and between-
species error [5]. Classical analysis of variance teaches us that
high within-species error may mask the assessment of the SSD
error of species means. If the SSD is mere species noise, the
purported distribution of species means vanishes and becomes
undetectable.

In a numerical experiment for n ¼ 5, we found that the
within-species noise—up to one-half of the SSD between-
species mean variation—did not have much effect on the
estimate of the SSD standard deviation (SD). Neglecting data
error in fact leads to a conservative estimate because the SSD
SD decreases slightly for increasing data noise. So, we
tentatively concluded that neglecting moderate data noise
may often be acceptable.

Predictive extrapolation constants

In the nonhierarchical Bayesian treatment [6], we have used
the so-called noninformative prior, assuming the logarithm of
the SSD sigma to be uniform. This is standard Bayesian
practice. However, over the years, we have found this prior on
sigma to be too optimistic (small). Why would the prior express
that bigger SSD SDs are to be discounted?

There is another argument: for the hierarchical model, the
noninformative prior for the SSD SD does not work, however
small the data noise [5]. Hence, it seems unreasonable for an
assumed value to be exactly 0.

Consequently, we decided to calculate revised extrapolation
constants for a uniform prior. We call this “cautionary
extrapolation,” which we think amounts to more realistic
extrapolation, especially for small sample sizes.

In the Bayesian hierarchical model, we also looked at the
so-called predictive distribution of the SSD. This can be
understood as the vertical average of SSD spaghetti plot threads.
This holds for both the SSD density curves as well as the
cumulative distribution plots.

The predictive distribution is single-threaded (1 curve) and,
hence, a nice summary of the spaghetti plot and associated
percentile curves. In our 2013 study [5], we compared lower
quantiles (HCx) of the predictive distribution to former
extrapolation values found in our 2000 study [6].

Statistical theory reveals that the predictive distribution of a
normal SSD is a Student t distribution with n – 1 degree of
freedom. Cautionary extrapolation makes this n – 2, so the more
realistic prior on the SSD SD causes the loss of 1 more degree of
freedom.

It turned out that predictive HCx values are more sensitive to
low sample size than the former median estimates, doing more
justice to small sample sizes.

In Table 2, the classical HC5 estimates [6] are comparedwith
the predictive HC5 (all based on the noninformative prior for the
SSD SD) and the cautionary predictive estimate for the uniform
prior SSD SD [5].

Note that at the European Chemicals Agency–recommended
sample sizes (Table 2, rows 10 and 15, printed in bold), the
extrapolation constants for both priors converge to roughly –2.
For sample size over 30, differences between median and both
predictive estimates gradually disappear.

Censored SSD data

The statistics of censored data modeling are well developed,
see Helsel [7]. We have applied this to SSD fitting of 14 acute
antimony freshwater data [8]. Note that 4 species data “points”
have a right-censored value (Figure 5). The same analysis
applies to left-censored values (e.g., detection limits), mixtures
of both, as well as interval data.

Table 2. Classical lower, median, and upper 5% hazardous concentration extrapolation constants (after Aldenberg and Jaworska [6]) compared with predictive
and cautionary predictive 5% hazardous concentration extrapolation constants (from Aldenberg and Rorije [5])a

n Lower Median Upper Noninformative predictive Cautionary predictive

6 �3.71 �1.75 �0.87 �2.18 �2.57
8 �3.19 �1.72 �0.96 �2.01 �2.23
10 �2.91 �1.70 �1.02 �1.92 �2.07
15 �2.57 �1.68 �1.11 �1.82 �1.90
30 �2.22 �1.66 �1.25 �1.73 �1.76
100 �1.93 �1.65 �1.41 �1.67 �1.68

aAt the European Chemicals Agency–recommended sample sizes (bold), the extrapolation constants for both priors converge to roughly –2.
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When the 4 “greater thans” are removed, the median HC5
equals 1.7 mg Sb/L. When included, the median HC5 is equal
to 2.0 mg Sb/L. Note the asymmetry of the normal SSD
percentile curves.

A similar approach to censored values using Bayesian
concepts is followed by Kon Kam King et al. [9] with the
R-based web-tool MOSAIC_SSD. Figure 5 shows the lower
bound of the censored values. It does not convey how themethod
of maximum likelihood takes censoring into account. For that,
Kon Kam King et al. [9] and Helsel [7] supply the details.

We hope to have shown that the SSD method, although
incapable of modeling the full complexity of environmental
systems, is by no means “done” yet and is amenable to
extensions addressing a range of statistical challenges.

Tom Aldenberg
National Institute for Public Health and the Environment

Bilthoven, The Netherlands
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In Response: Challenges when weighing evidence about
environmental risks—An industry perspective

Asking the right scientific questions, designing appropriate
tests of hypotheses based on these questions, and applying the
correct quantitative techniques to the resulting data are, of course,
important goals in environmental toxicology and chemistry [1].
However, 1 overarching challenge that has been largelyneglected
to date is how to use all available information both efficiently and
fairly to come to decisions about the environmental risks and
benefits of chemical substances.

Reduction of uncertainty through the use of multiple lines of
evidence within an overall weight-of-evidence approach is
encouraged by regulatory organizations such as the European
Chemicals Agency [2]. Unfortunately, practical guidance on
how to perform such an analysis is currently rather thin,
probably because some definitions of “weight of evidence” are
vague and ambiguous [3]. Recently, Suter and Cormier [4]
proposed a useful distinction between “genuine weighing of
commensurable pieces of evidence” and “interrelating hetero-
geneous evidence,” which they call “building a case.”
Distinguishing between these 2 activities may help to remove
ambiguity and vagueness from the process.

Environmental risk assessment of a chemical usually
involves genuine weighing of commensurable pieces of
evidence. This evidence may comprise information on the
concentration of the substance in different environmental
compartments or its toxicity to different biological taxa.
Evidence is presented as statistical summaries such as time-
weighted average concentrations, 90th percentile environmental
concentrations, no-observed-effect concentrations, 5% hazard-
ous concentrations, or 50% lethal concentrations. However, it
remains a challenge to use these summaries in a way that does
not exclude large amounts of useful data by only comparing
(reasonable) worst-case exposure concentrations with a single
“most sensitive” or “representative” toxicity value. It is also rare
to find full use of information on both the disadvantages and
the benefits of a substance in an assessment of risk in a way that
really does weigh up all of the available evidence, both “for” and
“against” the substance.

Some may argue that “expert judgment” is sufficient and that
all substances should be addressed on a case-by-case basis.
Unfortunately, case-by-case assessment is a recipe for inconsis-
tency and inefficiency. Inconsistency arises because different
individuals bring their own views on how to weight the value of
different pieces of data. Thus, they are likely to come to different
conclusions on the basis of the same data. Inefficiency arises
because substance registrants and evaluators need to develop or
understand a new weighting system for each substance, even
when many similar substances have been assessed previously.
The reality is that most so-called weighting systems are likely to
be implicit and value-laden if developed case by case. In other
words, the way in which data have been weighted is often
informal and not described clearly, and the faith that is placed in
each data value is associated with one’s role in the process (i.e.,
industry, governmental, academic, nongovernmental organiza-
tions, and consultancy representatives will bring different value
judgments and personal biases to bear on their interpretation of
the same data). This then becomes a foundation for lengthy and
intractable arguments between vested interests.

It would be helpful to develop a more explicit and formal
approach to weight-of-evidence assessment, which goes beyond

Figure 5. Species sensitivity distribution fit for antimony (acute, freshwa-
ter), including 4 right-censored values.
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most currently available regulatory guidance. This can draw on
useful work by several authors [4–8]. Multicriteria decision
analysis modeling seems currently to be the most promising
approach when performing the type of weight-of-evidence
assessment of all available data required in environmental
risk assessment. Multicriteria decision analysis has the following
features: 1) it allows comparisons of dissimilar favorable and
unfavorable effects to be compared, with eachmeasured quantity
converted to a preference value on a 0 to 100 scale; 2) conversion
for each effect can be accomplished by a linear or nonlinear
translation, called a “value function,” which is an assessment of
the relevance of various levels of the measured quantity; 3) the
units for the preference value scales are equated through a process
known as “swing weighting,” which requires judgments of the
relevance of scale differences, enabling weighted effects to be
summed to give an overall risk–benefit balance.

Figure 6 shows a simple multicriteria decision analysis output
from HiView 3 software [9] in which 4 hypothetical chemical
substances are compared across both “favorable” and “unfavor-
able” criteria to determine which of them scores highest. This
type of multicriteria decision analysis can incorporate both
quantitative statistical data and semiquantitative or qualitative
information, and it makes explicit the value judgments (i.e., the
swing weights) that are used to weight the different types of
information. The graphical outputs from an analysis like this are
easy to understand, and sensitivity analyses are included in the
assessment software so that the effect of subjective differences
between data evaluators can be fully explored.

As stated by the European Medicines Agency, the European
regulatory agency responsible for the authorization of human
and veterinary medicines [10],

A key feature of decision modelling is its ability to distinguish
facts from value judgements, and to combine both features into
an overall assessment. Because value judgements are
necessarily subjective, it is important to make them explicit
and subject to discussion, debate and peer review. Even if
agreement cannot be reached, a quantitative model can be used
to explore whether or not disagreements matter to the final
result. If they do, then further information or data might be
required, or [there may need to be] further exploration of the
reasons for the disagreement [that has] surfaced.

The challenge for chemical risk assessors is to develop
decision-modeling approaches such as multicriteria decision
analysis, which are simple enough for wide use yet sufficiently
sophisticated to capture the most important criteria when
assessing environmental risks. Rising to this challenge would
lead to more holistic and consistent decision making and
substantial savings in time, money, and other scarce resources.

Mark Crane
AG-HERA

Faringdon, Oxfordshire, United Kingdom
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In Response: Benefits of the ARRIVE guidelines for
improving scientific reporting in ecotoxicology—An
academic perspective

The challenge of adequate reporting in journal articles

As the number of life science journals grows year by year,
there are concerns that in some areas of biomedicine and
toxicology the reporting of research is often inadequate and is
therefore of limited value for reliably informing scientific
practice, regulatory decision making, or policy needs. As
observed by Kilkenny and colleagues [1], this has important
implications for animal research, one of the most controversial

aspects of the life sciences. For example, a review conducted
by the United Kingdom’s National Centre for the Replace-
ment, Refinement and Reduction of Animals in Research (an
independent scientific organization) concluded that only 59%
of the 271 randomly chosen published articles assessed stated
the study objectives and the number and characteristics of the
animals used (i.e., species, strain, sex, and age or weight).
Most of the papers surveyed also did not report using
randomization (87%) or blinding (86%) to reduce bias in
animal selection and outcome assessment [2]. Kilkenny
et al. [2] also reported that only 70% of the publications
that used statistical methods fully described them and
presented the results with a measure of precision or
variability. As noted by Kilkenny et al. [1], these findings

Figure 7. The Animals in Research: Reporting In Vivo Experiments (ARRIVE) guidelines reporting checklist for in vivo studies in ecotoxicology [1].
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are a cause for scientific concern and are consistent with
observations for several research areas published in recent
years. The same challenge faces ecotoxicology, especially
with respect to experimental studies using a range of aquatic
and terrestrial species. For example, it is known that different
strains (clones) of the model test organism Daphnia magna
may show variation in response to toxicants [3]. Other areas of
relevance to ecotoxicology also relate to the use of fish and
other nonmammalian species in comparative pharmacology
and physiology. For instance, the zebrafish Danio rerio shows
evidence of interstrain differences in responses to ethanol (a
still widely used solvent in Organisation for Economic
Co-Operation and Development test guidelines for

ecotoxicology) [4,5]. These examples of interspecies variabil-
ity emphasize the importance of reporting such information,
considering it can have a significant bearing on experimental
outcomes. It is for this reason that in Europe it is now a legal
requirement that laboratories seeking to work with zebrafish
must use defined, purpose-bred strains from established
cultures [6,7].

Improving the reporting of animal
experiments—The ARRIVE guidelines

No ecotoxicology journals currently provide specific guid-
ance on the reporting of research involving the use of animals.
Kilkenny et al. [2] reported back in 2009 that 4% of the 271

Figure 7. Continued.
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articles evaluated did not report the numbers of animals used
anywhere in the methods or results sections. Clearly, such a
serious omission has negative implications for other researchers
and potentially for decision makers where the conclusions
may have had toxicological or biomedical implications. The
importance of adequate reporting in toxicology and ecotoxicol-
ogy has also been emphasized by Klimisch et al. [8] and K€uster
et al. [9]. Against this background, Kilkenny et al. [1] have
proposed a set of highly valuable guidelines termed Animals
in Research: Reporting In Vivo Experiments (ARRIVE). The
ARRIVE guidelines focus on a helpful checklist of 20 items that
describe the minimum information for all scientific publications
involving the use of animals (Figure 7). These guidelines
have been endorsed by 449 journals across various scientific
disciplines. Although the ARRIVE guidelines have been
described with applications to mammalian species closely in
mind, in our view the same scientific principles apply equally to
laboratory studies using birds, fish, and other nonmammalian
species.

To enable uptake across the ecotoxicology community, the
nuances particular to this area of research and testing will need to
be encompassed within any guidelines that are ultimately
developed and applied to such studies. For example, relevant to
items 3 and 19, researchers would report on the study’s relevance
to wildlife populations, rather than to humans; relevant to item 7,
the reporting of where studies are carried out will include detail
on whether they are conducted within a laboratory or outdoor
mesocosm; and regarding baseline data, there would be benefits
of reporting characteristics such as fecundity and hatching
success, as well as historical control and solvent data where
relevant (see Hutchinson et al. [10], relevant to item 14).

The adoption of guidelines such as these could have far-
reaching implications; for example, there are increasing
requirements for open literature ecotoxicological data to be
included in submission dossiers for regulatory chemical safety
assessment purposes—in this context, better-quality published
studies could contribute to a waiving of additional in vivo
studies. In conclusion, it is hoped that the 20 items
recommended in the ARRIVE guidelines will serve to improve
the reporting of all types of ecotoxicological study and that they
will be considered by the community when establishing the
most appropriate standards applicable to this type of research.

Thomas H. Hutchinson
School of Biological Sciences, University of Plymouth

Plymouth, United Kingdom

Natalie Burden
National Centre for the Replacement, Refinement and

Reduction of Animals in Research
London, United Kingdom
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