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ABSTRACT

Distributed computing has never stopped its advancement since the early years
of computer systems. In recent years, edge computing has emerged as an
extension of cloud computing. The main idea of edge computing is to provide
hardware resources in proximity to the end devices, thereby offering low network
latency and high network bandwidth. However, as an emerging distributed
computing paradigm, edge computing currently lacks effective system support.
To this end, this dissertation studies the ways of building system support for
edge computing.

We first study how to support the existing, non-edge-computing applications in
edge computing environments. This research leads to the design of a platform
called SMOC that supports executing mobile applications on edge servers. We
consider mobile applications in this project because there are a great number of
mobile applications in the market and we believe that mobile-edge computing will
become an important edge computing paradigm in the future. SMOC supports
executing ARM-based mobile applications on x86 edge servers by establishing a
running environment identical to that of the mobile device at the edge. It also
exploits hardware virtualization on the mobile device to protect user input.

Next, we investigate how to facilitate the development of edge applications with
system support. This study leads to the design of an edge computing framework
called EdgeEngine, which consists of a middleware running on top of the edge
computing infrastructure and a powerful, concise programming interface.
Developers can implement edge applications with minimal programming effort
through the programming interface, and the middleware automatically fulfills the
routine tasks, such as data dispatching, task scheduling, lock management, etc.,
in a highly efficient way.

Finally, we envision that consensus will be an important building block for many
edge applications, because we consider the consensus problem to be the most
important fundamental problem in distributed computing while edge computing is
an emerging distributed computing paradigm. Therefore, we investigate how to
support the edge applications that rely on consensus, helping them achieve
good performance. This study leads to the design of a novel, Paxos-based
consensus protocol called Nomad, which rapidly orders the messages received
by the edge. Nomad can quickly adapt to the workload changes across the edge
computing system, and it incorporates a backend cloud to resolve the conflicts in
a timely manner. By doing so, Nomad reduces the user-perceived latency as
much as possible, outperforming the existing consensus protocols.
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Chapter 1

Introduction

Since Amazon released its EC2 (Elastic Compute Cloud) [5] product in 2006, cloud com-

puting has become increasingly important in people’s daily life. By providing elastic hard-

ware resources, including processing resources and storage resources, at the data cen-

ters residing at the core of the Internet, cloud computing enables a spectrum of appli-

cations that have profoundly impacted the contemporary computational patterns for both

industrial and individual uses. Companies can benefit from cloud computing by execut-

ing large batch-oriented tasks on cloud servers, and individual users can rely on remote

clouds to perform resource-intensive computations for their client devices. Because cloud

computing has brought so many applications into reality, commercial cloud platforms,

such as Amazon AWS [4], Microsoft Azure [65], and Google Cloud [38], have been suc-

cessively put into operation in recent years.

Nevertheless, cloud computing suffers from a severe problem when serving end de-

vices at the edge of the Internet. Since cloud data centers usually reside at the core of

the Internet, it is always the case that end devices have a long network distance to the re-

mote clouds, which leads to significant network delay perceived by the end users. This is

unacceptable for many application scenarios, such as latency-sensitive mobile-cloud and

IoT-cloud applications, where the end devices are mobile devices such as smartphones

and IoT (Internet of Things) devices, respectively.
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In light of this situation, edge computing [84] (also known as fog computing [102, 94]

and cloudlets [85]) has been proposed as an extension of cloud computing. By providing

hardware sources at the edge of the Internet, end devices can be served with much lower

network latency, thereby greatly improving the user experience for latency-sensitive end-

remote applications.

End

Devices

Level 1

Edge Nodes

Level 2

Edge Nodes

Cloud

Figure 1.1: A typical edge computing architecture.

Figure 1.1 illustrates a typical architecture of edge computing. End devices are wire-

lessly connected to the Level 1 edge nodes, which are usually Wi-Fi access points and

cellular towers. Behind the Level 1 edge nodes are the Level 2 edge nodes, which have a

farther network distance to the end devices than the Level 1 edge nodes. There is also a

backend cloud behind the Level 2 edge nodes that resides at the core of the Internet. The

end devices will perceive lower latency when computations are performed at the Level 1

edge than at the Level 2 edge and the cloud. On the other hand, the Level 2 edge nodes

usually possess more powerful hardware resources than the Level 1 edge nodes and can

thus perform more computations simultaneously than the Level 1 edge nodes. Note that

Figure 1.1 merely illustrates a possible architecture of edge computing. In other edge

computing architectures, it is possible that there is no backend cloud, and/or there are
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only one level of edge nodes or more than two levels of edge nodes.

Despite its advantages, edge computing currently lacks system support that makes

efficient use of the underlying hardware resources and provides powerful, fundamental

services for edge applications. For this reason, this dissertation investigates how to build

effective system support for edge computing in various application scenarios. We summa-

rize as below three ways of building such system support that can benefit a vast majority

of application scenarios in edge computing from our point of view.

• There are many applications utilized by a great number of users nowadays. These

applications usually have evolved for many versions and are mature in their design

and implementation. Nevertheless, edge computing is a new distributed comput-

ing concept, so these applications are not designed for edge computing and cannot

be directly executed in edge computing environments. It is thus attractive to build

system support for these existing applications, making them executable in edge

computing environments without modification, so that the application users can con-

veniently enjoy the benefits brought by edge computing.

• Edge computing is a new concept and has many distinguishing characteristics, so

developers need an efficient programming model of edge computing to reduce the

programming effort they must put into implementing new edge applications. There-

fore, designing an efficient programming model of edge computing and providing

system support for it, thereby allowing developers to implement their edge applica-

tions with as little programming effort as possible while guaranteeing the efficiency

and robustness of the applications, is also an important way to build system support

for edge computing.

• Edge computing falls into the category of distributed computing, while the most im-

portant fundamental problem in distributed computing, from our understanding, is

the consensus problem. Existing consensus solutions are not tailored for edge com-

puting, so they cannot fully explore the potential of edge computing in achieving fast
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consensus. Therefore, building system support for achieving fast consensus in edge

computing environments, making the entire system agree on the same decision as

quickly as possible, can benefit a large number of edge applications.

We believe that building system support for edge computing in the aforementioned

three ways will benefit a vast majority of, if not all, application scenarios in edge computing.

To this end, we have conducted three research projects to investigate how to build system

support for edge computing in these three ways. Figure 1.2 demonstrates these research

projects and their goals.

SMOC
Mobile Applications

EdgeEngine

Programming Model

Execute Non-Edge Applications 

in Edge Computing

Facilitate the Development of 

Edge Applications

Achieve Fast Consensus in 

Edge Computing

Nomad
Consensus Protocol

System Support for Edge Computing

Figure 1.2: The research projects discussed in the dissertation and their goals.

In the first project, we try to build a platform called SMOC to support executing off-

the-shelf mobile applications in an edge computing environment. We focus on mobile

applications in this project because doing so can benefit a great number of users, given

that there are hundreds of billions of mobile applications in the market nowadays. In

the second project, we try to design an edge computing framework called EdgeEngine

that consists of a programming interface and a middleware running on top of the edge

computing infrastructure. Developers can build their edge applications through the pro-

gramming interface with minimal programming effort, while the middleware guarantees

good efficiency and robustness of the applications. In the third project, we try to design
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a consensus protocol called Nomad that is tailored for edge computing. It achieves low

user-perceived latency by quickly adapting to the workload changes across the system

and utilizing a backend cloud to resolve the conflicts at the edge in a timely manner. In

what follows, we will introduce these research projects with more details.

1.0.1 SMOC: Supporting Mobile Applications in Edge Environments

In this project, we aim to support the existing mobile applications in edge environments

without any modification. It is known that most mobile applications are ARM-based [112],

while edge servers are always x86 [113] or x64 [114] PC servers. Consequently, without

proper system support, mobile applications cannot be executed on edge servers unless

being ported to the x86 or x64 architecture. However, porting source code is a tedious,

time-consuming, and error-prone activity [19, 80], and sometimes the source code is even

unavailable. As such, we build a mobile-edge platform called SMOC to solve this problem.

SMOC provides a running environment identical to that of the mobile device on the edge,

so that mobile applications can be directly executed on the edge servers. Moreover,

SMOC ensures secure computation for mobile applications by taking advantage of edge

computing. The operating systems on mobile devices are complex, potentially containing

a good number of flaws [20]. Therefore, if a mobile user wants to run some confidential

applications on the mobile devices, such as an online-banking application, she must face

the risk that the mobile device may leak her confidential information (e.g., her password

input) to the attackers. SMOC protects the user input by utilizing the mobile device as an

input/output terminal and exploiting hardware virtualization on the mobile device.

SMOC works in two modes, a normal mode and a secure mode. In the normal mode,

the mobile user can run the applications on the mobile device as usual. In the secure

mode, SMOC exploits the hardware virtualization feature on the mobile device. It runs a

thin hypervisor layer on the mobile device, which resides between the hardware and the

mobile operating system. The hypervisor is considered safe because it is so small that
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every line of its source code can be manually inspected. The hypervisor intercepts the

user input from the hardware, bypassing the potentially compromised operating system,

and sends the input to a remote virtual machine (VM) on the edge. The edge VM emulates

the same executing environment as the mobile device. Any computation that requires a

high secure level can be run in the VM. As user input is fed into the computation by

the VM, it can be executed normally on the edge. The VM also forwards the output of

the computation, including screen frames and sound, to the hypervisor, which will render

the output on the local hardware. By this means, the user can run risky applications

remotely, without the concern that the potentially compromised operating systemwill learn

any confidential information from her input.

SMOC allows mobile users to switch the execution of applications between the se-

cure mode and the normal mode. It does so by building a distributed file system spanning

across the mobile device and the edge VM. Users can freely change the running location

of their applications. When they prefer a higher security level, they may run their appli-

cations in the secure mode, and when they prefer lower latency, they may switch their

applications to the normal mode. Our evaluation shows that SMOC is quite convenient to

mobile users. Furthermore, SMOC introduces reasonable overhead when running in the

secure mode, and negligible overhead when running in the normal mode.

1.0.2 EdgeEngine: Facilitating the Development of Edge Applications

In this project, we aim to build system support to facilitate the development of edge ap-

plications. We envision that building edge applications can be very complicated. On one

hand, an edge application may involve many hardware entities, including one or more end

devices, one or more edge servers, and zero or one remote cloud server. Coordinating all

these hardware entities and making them function correctly in all cases, including poten-

tially many corner cases, is not an easy job. Consequently, the implementation may be

inefficient or even full of defects. On the other hand, developers must strive for not only
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the business logic of their applications, but also many fundamental services, such as data

dispatching, data synchronization, task scheduling, lock management, etc. Implementing

and debugging these fundamental services may consume a lot of time and effort. All of

these will become an obstacle to the adoption of edge computing.

To help developers implement efficient edge applications with reasonable program-

ming effort, we propose an edge framework called EdgeEngine. EdgeEngine contains

two parts, a middleware and a programming interface. The middleware runs on top of the

underlying edge infrastructure, including the end devices, the edge servers and the back-

end cloud server. The programming interface is Java-based, through which developers

build their edge applications. The design philosophy of EdgeEngine is that developers

only focus on the business logic of their applications, while the fundamental services, in-

cluding those mentioned above, are provided by the system-wide libraries and can be

directly utilized without any programming effort. Meanwhile, developers can also cus-

tomize the fundamental services through the programming interface in case they want to

implement different policies, usually with only several lines of code.

Developers implement edge applications inworkflows, which can be viewed as a com-

bination of data and the computations on the data. Workflows are hosted in Docker con-

tainers during execution, and EdgeEngine supports live migration of the workflow tasks

by adopting a simple yet effective method of refining the programming practice of the

developers via the programming interface. Five distributed system components are exe-

cuted beneath the workflow tasks, which fulfill the fundamental services and interact with

the workflow tasks to apply the developer-customized policies. The five system compo-

nents are System Monitor, Data Dispatcher, Sync Manager, Transition Scheduler and

Lock Manager. They are responsible for hardware tracking, data dispatching, data syn-

chronization, task scheduling, and lock management, respectively.

We implemented a prototype of EdgeEngine and deployed it on the testbed contain-

ing five PC servers. The prototype was implemented partially based on the OpenStack

project [75], for Docker management, and partially using Python and Java. A series of
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experiments on the prototype reveals that EdgeEngine indeed allows developers to im-

plement edge applications with minimal programming effort and works quite efficiently

under various conditions.

1.0.3 Nomad: Achieving Fast Consensus in Edge Computing

In this project, we aim to build system support to help edge applications achieve better

performance. In particular, we design an efficient consensus protocol for edge computing

environments, because we consider that consensus is the most fundamental problem in

distributed computing while edge computing falls into the category of distributed comput-

ing. We further envision that the most common use of a consensus protocol in an edge

environment is to order all the messages received across the entire system. Consider the

following example: in an IoT payment system, customers make digital payments through

their mobile devices which wirelessly connect to the nearest IoT devices. The payment

messages need to be sequenced in a global order to guarantee the correctness of the

financial operations. Suppose Alice has one dollar in her account. At location A, she

spends the one dollar for some goods. Meanwhile, at location B, her helper spends the

same dollar for some other goods. If the payment messages are not globally ordered,

the IoT devices at both location A and location B may accept the payment, leading to

the situation that Alice spends the one dollar twice. Therefore, the IoT payment system

needs to order the payment messages so that it can accept only the first payment, while

rejecting the second payment.

Being hardware-constrained, end devices typically have a limited wireless connec-

tion range, and the performance of their wireless network is relatively poor [26, 21]. In

contrast, an edge computing network usually possesses very efficient interconnections,

which can be utilized by the end devices for quickly ordering the messages. More specifi-

cally, the edge servers are deployed covering all the end devices and are inter-connected

through highly efficient wired or wireless network links. Each end device is connected
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to the nearest edge server and keeps forwarding the messages it has received from the

users. The edge servers communicate with each other upon receiving these messages

and determine the global order upon them. This ordering process should be done as

quickly as possible because all the application scenarios that we can imagine, like the IoT

payment system, require minimal user-perceived latency to guarantee satisfactory user

experience. This is also the reason why edge computing is a necessity here. If the user-

perceived latency is not an issue, a remote cloud server would be sufficient enough for

ordering all the messages.

To this end, we devise a consensus protocol on the edge computing network, called

Nomad, to order the messages received across the system in a timely manner. Nomad is

based on the Paxos algorithm [53], which guarantees low latency and strong consistency

during the ordering process. We also introduce a series of improvements into Nomad

to speed up the ordering process as much as possible. Our evaluation of a prototype

reveals that Nomad works as effectively and efficiently as expected.

1.0.4 Overview

The remainder of this dissertation is structured as follows: Chapter 2 presents SMOC,

a mobile-cloud/edge computing platform that performs secure computations for mobile

users and allows the users to freely change the running location of the computations when

necessary; Chapter 3 presents EdgeEngine, a customizable edge computing framework

that allows developers to build efficient edge applications with minimal programming ef-

fort; Chapter 4 presents the design of Nomad, a consensus protocol for edge computing

networks, which determines the order of themessages received across the systemwith as

low user-perceived latency as possible; and finally, Chapter 5 concludes this dissertation

and identifies several possible directions for future work.
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Chapter 2

SMOC: A Secure

Mobile-Cloud/Edge Computing

Platform

2.1 Introduction

Smart mobile devices are gradually becoming the dominant daily computing platform for

many people [70, 96]. While many applications today run directly on individual mobile

devices, we envision a mobile-cloud/edge computing model emerging whereby individual

devices run user interface software with the bulk of computation performed by a virtual

machine (VM) running on a commodity cloud or a self-maintained edge environment [29,

120]. In this work, we aim to build a platform supporting free migration of apps between

smart mobile devices and cloud-/edge-based hardware.

In the mobile-cloud/edge model, user input on the mobile device is transmitted to

cloud/edge processes running on the VM. Results from cloud/edge processing are trans-

formed into display content and then transmitted back to the mobile device. The mobile

device and the remote VM share functionality to meet user needs. By moving heavy com-

putational processes from the mobile device to the remote VM, the mobile-cloud/edge
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model improves user response time and reduces device energy consumption. It also has

security advantages, e.g., sensitive data can be stored on the cloud/edge, safeguarded

from a compromised mobile device OS or app, and also protected from exposure to a

thief. A user could acquire a new smart mobile device, download the interface software,

and resume arbitrary tasks from before the compromise or theft occurred.

There are already solutions for the mobile-cloud/edge model in recent literature. We

believe, however, that our platform has greater potential than what is immediately obvi-

ous and can achieve more than what existing solutions can do. There are two concepts

underlying our platform that differentiate it. First, we are proposing a resource-sharing

platform in the sense that an app can freely change its executing location between the

mobile device and the cloud/edge. In contrast, existing solutions only allow apps to run

on the cloud/edge. Second, our platform provides security guarantees even when the

mobile device operating system has been compromised, which is a feature that existing

solutions cannot offer.

We achieve the first concept by running a VM on the cloud/edge which has an execu-

tion environment compatible with that on the smart mobile device. Our platform shares

resources between the VM and themobile device in both directions, i.e., the mobile device

shares its files and I/O devices with the VM when the app is running remotely, and the VM

shares its files with the mobile device when the app is running on the mobile device. The

remote VM does not need to share its (virtual) I/O devices with the mobile device in the

latter case, because they are not involved in the app’s execution. Our system currently

only supports offline migration, i.e., when an app wants to change its executing location,

our platform will cease its execution if it is running, transfer all the related data to the target

location, and re-launch the app if necessary. We leave online migration to future work.

Considering the first concept, our platform is clearly different from most existing so-

lutions, such as Chrome OS [111]. Like many others, Chrome OS follows a client-server

computing model in which the cloud behaves as a server that hosts apps, while the smart

mobile device behaves as a client that communicates with the cloud. This model fails to
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meet a wide range of user needs, because it only allows apps to run on the cloud. Our

platform, on the other hand, is a resource-sharing platform, in which apps can run on both

locations and can freely change their executing location.

The second concept is achieved by leveraging the hardware virtualization functionality

on the smart mobile device. To bemore specific, we suppose that a hypervisor runs on the

smart mobile device, which hosts a guest OS. The guest OS could be malicious, and may

launch attacks on the apps that it hosts. The apps may also be malicious, compromised,

or attacked by the guest OS. In any case, they may leak sensitive information stored on

the smart mobile device or input by the user. However, we trust the hypervisor, because

the hypervisor is always much smaller than the guest OS, and can be fully verified through

formal verification or manual audit. Moreover, the hypervisor is unlikely to install any third-

party applications or libraries, and thus gets rid of many potential risks. We also trust the

remote side, which is either a commodity cloud or a self-maintained edge. In the former

case, we assume that the cloud is established by a famous company with high concern

for their reputation, such as Amazon, Google, Apple and Microsoft. These companies

usually have the technical strength to protect their clouds, and are unlikely to intentionally

compromise user privacy. In the latter case, we assume that the edge is maintained by the

user herself, who cares about security and runs anti-virus software on the edge server(s),

or even cuts down the edge’s network connection to the outside and dedicates the edge

server(s) to the mobile-edge platform.

Under these assumptions, our platform offers security guarantees concerning an un-

trusted guest OS running untrusted apps. Our novel approach is to make the hypervisor

responsible for sharing the smart mobile device’s input interfaces with the cloud/edge,

and for blocking hardware input events from traveling to the guest OS. By doing this,

we can guarantee that the guest OS can learn nothing about the user’s input, while at

the same time remain responsible for sharing the smart mobile device’s output interfaces

with the cloud/edge. To the best of our knowledge, we are the first to leverage hardware

virtualization to support security reinforcement for smart mobile devices.
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The following example sheds light on this idea. Consider a smart mobile device,

running a compromised guest OS, which executes a malicious background service that

stealthily records the user’s input through a software keyboard on the screen and sends

it to a remote, malicious user. In this case, if the user runs a banking app directly on the

smart mobile device, or through any existing mobile-cloud/edge solution, her account and

password are likely to be leaked to the malicious user. If the user runs the banking app

on our platform, however, there is no such security concern. The hypervisor will capture

the touch events from the software keyboard and forward them directly to the remote VM,

bypassing the guest OS entirely. Meanwhile, the banking app functions properly on the

remote VM, because it receives the user’s input from the hypervisor.

To summarize, our contributions in this work are three-fold.

• We propose a secure mobile-cloud/edge computing platform which is designed as a

resource-sharing platform in the sense that apps running on it can freely change their

executing location. This is a more flexible design than those of existing solutions,

and it meets a wider range of user needs.

• We are the first to leverage hardware virtualization on the smart mobile device to

provide security guarantees in the case that the smart mobile device’s operating

system is untrusted.

• We implement a prototype system following our platform design, and conduct sev-

eral experiments on this system. The results demonstrate that our platform is effi-

cient and practical.

2.2 Related Work

Mobile offloading. An increasing amount of attention has been invested in mobile of-

floading recently. CloneCloud [24, 23] partitions a mobile application automatically by
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using static analysis and dynamic profiling, such that part of the application can be of-

floaded to the cloud to achieve performance and an energy efficiency improvement. It

also provides a runtime system to facilitate the offloading. MAUI [27] also approaches the

topic of mobile offloading from the perspective of automatic mobile program partition. The

main objective of the partition is to dynamically decide which part of the program should

be offloaded to achieve maximum energy savings. COMET [39] implements a runtime

system on top of the Dalvik Virtual Machine, the virtual machine used by Android, to allow

for simultaneous executions of the same multi-threaded application in several machines.

The enabling foundation is a distributed shared memory model. In contrast with these

existing works, our platform is a resource sharing platform through which the user can

run an app on either the cloud or the smart mobile device.

Thin client architecture in mobile computing. When a user decides to run a mobile

application in the cloud with our system, we essentially turn the local mobile device into a

thin client. MobiDesk [10] introduces a mobile virtual desktop hosting infrastructure which

transparently decouples the display, the operating system and the network of a user’s

computing session from end-user mobile devices, and moves them to hosting providers.

SmartVNC [99] is a system to port VNC, which is a remote computing solution, to smart-

phones while achieving the same level of user experience as on PCs. While work like

MobiDesk and SmartVNC try to reduce workloads in mobile devices by turning the de-

vices into thin clients, other works have also studied the energy consumption implication

of applying the thin client architecture in mobile computing [67, 58]. Distinct from these

works, our platform adopts a spilt client design, combined with hardware virtualization on

the smart mobile device, to provide security guarantees even if the smart mobile device’s

guest OS is untrusted.

Exploiting hardware virtualization technology. Hardware virtualization technologies

on the x86 architecture [100, 3] have long been used to develop solutions to protect sys-

tem security. For example, SecVisor [90] utilizes AMD-V [3] (formally known as AMD

Secure Virtual Machine (SVM)) to build a hypervisor with a small code base to ensure
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the code integrity of guest OS kernels. Specifically, the hypervisor by SecVisor is able to

prevent code injection attacks by allowing only user-approved code to run in kernel mode.

TrustVisor [64] also uses AMD-V to build a small hypervisor to ensure the guest OS’s data

integrity and secrecy, in addition to code integrity. Lares [79] exploits Intel VT-x [100] to

achieve active security monitoring inside a virtual machine environment. In our platform,

we choose to allow the mobile device OS and apps to run on VMs in the cloud. Part of

the reason for this choice is to utilize these existing solutions to ensure we have a secure

execution environment in the cloud. On the local device side, we exploit the newly de-

veloped ARM hardware virtualization technology [68] to protect the user’s input and data

collected by various on-board sensors, which can reveal sensitive information about the

user. Although there are some efforts to use this technology to build general purpose

hypervisors [30, 103], to the best of our knowledge, we are the first to utilize it to build a

system specifically for security/privacy.

2.3 Platform Design

Our platform spans across the user’s local mobile device and a remote cloud server. We

believe that such a mobile-cloud computing platform is more capable than what people

usually think and can achieve more than what existing solutions can do. In this section,

we describe our platform design in detail.

2.3.1 Design Goals

The main design goal of our platform is to share the necessary resources between the

smart mobile device and the cloud, such that an app can run either on the smart mobile

device or in the cloud, arbitrarily. This design goal contains two aspects. First, the platform

must be capable of executing an app in the cloud without any modifications to the app

itself. This is possible only if the platform shares the smart mobile device’s I/O interfaces

with the cloud, such that an app running in the cloud can receive the user’s input (e.g.,
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from touch screen, sensors, keyboard, etc.) and render the output (e.g., display, sound,

etc.) on the mobile device. Second, an app installed in the cloud should be able to be

downloaded to the smart mobile device and work properly, as it does in the cloud. This

can be achieved if the app can access the same resources regardless of its location. For

example, files accessed by the app should be synchronized across both locations.

Running apps in the cloud is necessary for several reasons. First, the user may not

trust the app (e.g., because the app has access to sensitive data) but may still want to

run it. In this case, she may utilize our platform and run the app on a VM in the cloud.

Even if the app compromises this VM, it cannot affect other apps and data on the user’s

local mobile device, and the user may simply delete the VM afterwards. In this way, even

a malicious app is completely quarantined. Moreover, commercial clouds often provide

powerful anti-virus services, and a malicious app is more likely to be caught if these ser-

vices are implemented in the cloud used in our platform. Second, smart mobile devices

are always resource constrained [41, 117, 116]. To solve this problem, our platform al-

lows the user to offload apps from the smart mobile device to the cloud, which typically

has abundant resources. Third, some organization or developer may want to publish an

app without disclosing any proprietary secrets about it (e.g., the binary of the app might

be reverse engineered to compromise some critical algorithms). In this case, the orga-

nization/developer may publish the app using our platform and only allow the app to run

in the cloud. In this way, no malicious user can recover a complete binary file for further

analysis.

After being deployed, our platformwill have some apps installed in the cloud by default.

However, the user may want to download an app from the cloud to the smart mobile device

for some reason, for example, the latency between the smart mobile device and the cloud

becomes unacceptable. This can be achieved transparently in our platform, because all

resources, including files, are shared between the smart mobile device and the cloud.

The cloud exploited in our platform is considered a commercial cloud. However, it

could also be a private cloud established by, and serving, only a single user. Consider
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the scenario where a user does not trust an app, but still wants to run it. She may build

a private cloud which does not connect to the Internet, and deploy our platform on this

cloud in conjunction with her smart mobile device through a local area network. She can

then run the app in the private cloud to prevent her mobile device from being attacked by

the app.

Another design goal of our platform is to provide a secure environment for the user

to run apps. As we mentioned previously, the VM in the cloud is isolated from the smart

mobile device, and thus a malicious app running on the VM cannot affect any other apps

running on the smart mobile device. Moreover, commercial clouds often provide powerful

anti-virus services, which can be utilized on our platform to defend against malicious apps.

These are two cases in which our platform can provide strong security guarantees. We

have yet to consider another important scenario; suppose a user wants to run a banking

app on the smart mobile device, but the smart mobile device’s operating system has been

compromised and a malicious background service stealthily records the user’s input and

sends it to a malicious user. In this scenario, running the banking app on the smart mobile

device is dangerous because the malicious user may learn the user’s banking account

and password via her input. Our platform provides a secure environment that defends

against this attack by leveraging hardware virtualization on the smart mobile device.

2.3.2 Design Details

Figure 2.1 demonstrates our design when an app is running in the cloud on our platform.

The app is running in the cloud, hosted by a VM which has an execution environment

compatible with that of the smart mobile device. This allows the app to run without re-

quiring any changes. Hardware virtualization is enabled on the smart mobile device. A

hypervisor running on the smart mobile device hosts one or more guest OSes in which

the app can be executed.

As described in our main design goal, the smart mobile device needs to share I/O
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Figure 2.1: An app is running in the cloud in our platform.

interfaces with the VM such that the app can work properly in the cloud. To achieve this,

two client programs are provided on the smart mobile device. One of them, depicted as

“Input Proxy” in Figure 2.1, is responsible for capturing the user’s input through the smart

mobile device’s input interfaces (e.g., touch screen, sensors, keyboard, etc.) and sending

it to the VM. The VM will then emulate the user’s input such that the app can receive it

and work properly. On the other hand, the app generates output (e.g., display, sound,

etc.) when it is running in the cloud and sends the output to the VM’s output interfaces.

The VM will then transfer the app’s output to the smart mobile device. The other program,

depicted as “Output Renderer” in Figure 2.1, is responsible for receiving this output and

rendering it on the smart mobile device so the user can perceive it. By communicating

in this way, the smart mobile device shares its I/O interfaces with the cloud VM such that

the app can be executed in the cloud instead of on the smart mobile device.

Figure 2.2 demonstrates our design in the case that an app installed in the cloud is

downloaded to, and executed on, the smart mobile device. Our platform allows the user

to either launch the app in the cloud or download it to the smart mobile device and execute

it. When the user downloads the app to the smart mobile device, a distributed file system

across the VM that hosts the app in the cloud and the guest OS on the smart mobile device

will be automatically enabled. This distributed file system is needed in order for the VM to
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Figure 2.2: An app installed in the cloud is downloaded to, and executed on, the smart mobile
device in our platform.

share resources with the smart mobile device, allowing the app to work properly without

any modifications. Recall that the smart mobile device needs to share its I/O interfaces

with the VM when the app is running in the cloud. As the app is now running on the smart

mobile device, it can directly access the smart mobile device’s I/O interfaces, so no I/O

interface sharing is needed. However, the app, previously installed in the cloud, may need

to access some resources (such as files) on the VM to work properly. For this reason, we

design the distributed file system in our platform.

There are two ways to download an app from the cloud to the smart mobile device.

The first way is offline downloading, in which the user downloads the app’s binary file

when the app is not running, and executes it on the smart mobile device thereafter. The

second way is online downloading, in which the user migrates the app’s process while

the app is running, and continues its execution on the smart mobile device. For sim-

plicity, our platform currently only supports offline downloading. However, conceptually,

online downloading could also be achieved. We leave this to future work. After being

downloaded to the smart mobile device, the app may need to access files on the VM that

previously hosted it. Our distributed file system, spanning across the smart mobile device

and the VM, allows the app to access such files after it has been downloaded. Therefore,

the app can work properly on the smart mobile device without any modifications.
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Combining these two design elements, illustrated by Figure 2.1 and Figure 2.2, our

platform achieves its main goal. The second design goal can also be achieved if the

hypervisor in Figure 2.1 is trusted. This is a reasonable assumption, because the hyper-

visor is always much smaller than the guest OS, and can be fully verified through formal

verification or manual audit. Moreover, the hypervisor is unlikely to install any third-party

applications or libraries, and thus gets rid of many potential risks.

As we mentioned previously, the guest OS running on the smart mobile device is

untrusted in our platform. It might be malicious and runs a stealthy key logger in the

background. In this case, the user’s private information, such as the banking account

and password, could be compromised. To solve this problem, our platform leverages

hardware virtualization on the smart mobile device and adopts a split design for the client

program to share the smart mobile device’s I/O interfaces. Figure 2.1 demonstrates how

our platform provides strong security guarantees in the case that the guest OS is un-

trusted. The guest OS runs on the trusted hypervisor, rather than directly on the smart

mobile device’s hardware. The app runs on a VM in the trusted cloud. The input proxy,

residing in the hypervisor, traps the user’s input such that it cannot be received by the

guest OS, and transfers it to the VM. This is feasible because the hypervisior is the first

layer on the smart mobile device at which hardware events (such as touch points) arrive,

so the input proxy can process these events before passing them to the guest OS, or

hiding them from the guest OS. Therefore, the app can work properly in the cloud, but

the guest OS cannot learn anything about the user’s input. On the other hand, the guest

OS is the location where the user “logically” launches the app, so it should also be the

location where the app’s output should be rendered. For this reason, the output renderer

is placed in the guest OS, responsible for rendering the app’s output.

Our platform provides security guarantees even if the guest OS is untrusted, because

the VM in the cloud takes the place of the untrusted guest OS. The app runs on the VM

instead of the guest OS, and the user’s input is sent to the VM but hidden from the guest

OS. However, this implies that our platform only works if the cloud is trusted. We do
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trust the cloud in our platform, as we mentioned previously, by assuming that the cloud is

provided by a famous company with high concern for their reputation, such as Amazon,

Google, Apple and Microsoft. These companies are unlikely to intentionally compromise

their users’ privacy. Moreover, their clouds often provide powerful anti-virus services, and

thus a compromised VM or app running in the cloud will likely be caught by these anti-virus

services.

It is also arguable that the user may delete the guest OS if she suspects the guest OS

has been compromised, and install a new one that is safe to execute apps. This solution

may also solve the problem, but has some drawbacks. The main drawback results from

the fact that a smart mobile device is usually resource constrained and thus can support

only a limited number of guest OSes. In this case, a guest OS on the smart mobile device

may have many apps installed and most of themmay have no security issues, even if they

are executed in a compromised guest OS. Therefore, the user may be unwilling to delete

this guest OS. Meanwhile, the limited resources on the smart mobile device prohibit the

user from installing a new guest OS.

The second design goal can only be archived by the design illustrated in Figure 2.1,

which implies that the user needs to execute the app in the cloud to enjoy strong security

guarantees. When the user downloads the app to the smart mobile device for some rea-

son, e.g., the latency between the smart mobile device and the cloud becomes unaccept-

able, she implies that she wants to trade strong security guarantees for higher usability.

Therefore, it is natural that our platform does not make the same security guarantees in

this case.

2.4 System Implementation

To prove that our platform is practical and can work well, we implement a prototype sys-

tem, following the design outlined in the previous section. In this section, we elaborate

on the implementation details of this prototype system.
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2.4.1 Setup

The smart mobile device used in the prototype is a Samsung Chromebook. We choose

this mobile device because it is one of a few that support hardware virtualization, which is

required by our platform. The host OS installed on this Chromebook is Ubuntu Linux and

the hypervisor running on this host OS is KVM plus QEMU. Both KVM and QEMU are

customized for the Chromebook, as provided by [104], the authors of which also provide

a bootloader to enable the hardware virtualization features of the Chromebook. QEMU

emulates a Cortex-A15 VExpress hardware abstraction, and Android is installed on this

hardware abstraction as the guest OS.

The cloud in the prototype system is established on a Lenovo laptop. The host OS

on the cloud is Windows, and VMware Workstation is installed on the host OS as the

hypervisor. A VM is created on the VMware Workstation with Android-x86 [6] installed as

the guest OS.

2.4.2 Sharing I/O Interfaces
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Figure 2.3: An app is executed in the cloud in the prototype system. Darker blocks indicate the
components where our implementation has been involved.

Figure 2.3 demonstrates how the components cooperate in the prototype systemwhen
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an app is executed in the cloud. Darker blocks indicate the components where our im-

plementation has been involved. As depicted in Figure 2.3, four components are imple-

mented to share the I/O interfaces across the smart mobile device and the cloud. They

are input proxy, input injector, output proxy and output renderer.

The input proxy works with the input injector to share the input interfaces across the

smart mobile device and the cloud. As described in Section 2.3.2, the input proxy resides

in the hypervisor on the smart mobile device. We integrate the input proxy into QEMU in

our implementation, because QEMU is part of the hypervisor. More specifically, we im-

plement the input proxy’s functionality in QEMU, such that QEMU can capture the user’s

input from the keyboard (i.e., the hardware keyboard) as well as an attached accelerom-

eter (SEN-10537 Serial Accelerometer Dongle), and transfer it to the cloud. There is not

much difference between the keyboard and the accelerometer fromQEMU’s point of view.

Therefore, we only focus on the keyboard part in the following discussion.

As the input proxy is integrated in QEMU, we need to define a way by which QEMU can

enter and exit the input proxy mode to emulate the input proxy’s launch and termination.

In our implementation, QEMU will enter the input proxy mode when it detects that the

user has repeatedly pressed the “Caps Lock” key six times. After entering the input proxy

mode, QEMU will continue monitoring the keyboard and exit this mode if it receives an

ESC keystroke. When it is in the input proxy mode, QEMU maintains a connection to the

cloud. Upon receiving a key event from the host OS, QEMU will encrypt the key code

and send it to the cloud. It will not generate the virtual keyboard interrupt for the guest

OS. Therefore, the guest OS will not know this key event and thus cannot learn the user’s

keyboard input, as described in Section 2.3.

We have considered several places to implement the input proxy functionality. The first

place we have considered is the host OS’s keyboard driver. However, we have quickly

found that this is not a good choice, because it affects all the programs residing in the host

OS alongside the hypervisor (i.e., any program running on the host OS will not receive

any input events from the keyboard). The second place is the guest OS’s keyboard driver.

23



We have also decided against this choice, because it violates our platform design by

making the guest OS capable of learning the user’s input when the app is running in the

cloud. According to our design in Section 2.3, the most natural place to implement this

functionality is in the hypervisor. As QEMU is responsible for providing the hardware

abstraction to the guest OS, we have decided to implement this functionality in QEMU.

The input injector in the cloud, implemented as an Android app on the Android-x86

VM, is responsible for maintaining the connection to QEMU. It also listens on this connec-

tion for encrypted key codes sent by QEMU. When an encrypted key code is received,

the input injector will decrypt it, and inject the key code into the VM through the Linux

sendevent utility. Then the app running on the VM will be notified of the key event and

receive the key code.

The output proxy works with the output renderer to share the output interfaces across

the smart mobile device and the cloud. We only consider sharing the screen frames in our

prototype system, as this is enough for the user to track the app’s output on the mobile

device in most cases. Therefore, the output proxy needs to take a screenshot of the

Android-x86 VM periodically and transfer it to the output renderer, which will then render

it on the smart mobile device’s screen.

The output proxy is implemented as another Android app alongside the input injector

on the Android-x86 VM. It is responsible for maintaining a connection to the output render,

and for sending the VM’s screenshots periodically, as fast as possible, through this con-

nection. It captures the VM’s screenshot by invoking the screencap program provided

by Android-x86. A captured screenshot is then stored as a png image file on the local

disk. Finally, the output proxy sends the file data to the output renderer, which will further

display the screenshot on the smart mobile device’s screen.

The output renderer is implemented as an Android app running in the Android guest

OS on the smart mobile device. It connects to the output proxy when the app is launched

in the cloud. After the connection has been established, the output renderer listens to

this connection for the VM’s screenshots sent by the output proxy. When a screenshot is
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received, the output renderer stores it as a local png image file and sets this file as the

source of its SurfaceView component. The SurfaceView component then displays the

image file on the screen. This process is done periodically, as fast as possible, such that

the user will perceive the stream of the app’s screen output as if the app were running

locally.

2.4.3 Distributed File System
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Figure 2.4: An app, installed in the cloud, is downloaded and executed on the smart mobile device
in the prototype system. Darker blocks indicate the components where our implementation has
been involved.

Figure 2.4 demonstrates how the components cooperate in the prototype systemwhen

an app, installed in the cloud, is downloaded and executed on the smart mobile device.

As discussed in Section 2.3.2, we need to share files between the cloud VM and the smart

mobile device to allow the app to work properly on the smart mobile device. To achieve

this, we implement a distributed file system across the smart mobile device and the cloud

in our prototype system.

The implementation of the distributed file system contains three parts, as illustrated in

25



Figure 2.4. First, the VFS in the Android guest OS is modified such that it communicates

with a user-level program depicted as “file system client” in Figure 2.4. This is achieved

by leveraging the netlink socket mechanism provided by Linux, as Linux is the underlying

kernel of Android. Through a netlink socket, a user-level program and the Linux kernel

can communicate with each other in a straightforward manner. Second, the file system

client is a user-level program running in the Android guest OS on the smart mobile device.

This program is implemented as a Linux binary responsible for communicating with both

the local Linux kernel and the cloud. Third, the “file system server” in Figure 2.4 is a

user-level program running on the Android-x86 VM in the cloud. This program is also

implemented as a Linux binary, responsible for communicating with the file system client

on the smart mobile device and executing file operations on the local file system.

As illustrated in Figure 2.4, the smart mobile device and the cloud communicate with

each other through a connection between the file system client and the file system server

in the distributed file system. This can also be implemented in several ways, e.g., the

VFS on the smart mobile device may directly communicate with the file system server,

or even with the VFS on the VM, to avoid switching between the kernel and the user

space. We choose to use user-level programs to manage this connection, because they

aremore robust and easier to configure, even though they introduce some overhead when

interacting with the local VFS in the kernel.

When an app is executed in the cloud, it may only access local files. To access a local

file, it will first invoke the system call sys_open() to communicate with the VFS, which will

open the file and return the file descriptor to the app. Through this file descriptor, the app

can read data from the file, write data to the file, or close the file by invoking the sys_read(),

sys_write() and sys_close() system calls, respectively. When the app is downloaded from

the cloud and executed on the smart mobile device, however, it may access remote files

in the cloud. The distributed file system is implemented to support this kind of remote file

access in the prototype system.

To implement this distributed file system, we begin with a simple solution. We redirect
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every sys_open(), sys_read(), sys_write() and sys_close() system call that is invoked on

the smart mobile device’s VFS to the VM’s VFS running in the cloud. To be more specific,

when an app running on the smart mobile device tries to open a file that is considered in

the cloud (e.g., in a directory under /sdcard), the smart mobile device’s VFS will switch

to user space by notifying the file system client of this event. Then the file system client

will redirect the sys_open() system call to the file system server in the cloud with exactly

the same parameters. After receiving this redirected system call, the file system server

invokes it on the VM’s VFS and gets the corresponding file descriptor. It then returns this

file descriptor to the file system client, which will switch back to the local VFS with the file

descriptor it has received. The VFS logs this file descriptor as a remote one and returns

it to the app. Then the app can use this file descriptor to read, write and close the remote

file. When the app reads the file through this file descriptor, the VFS will notice that this

file descriptor actually refers to a remote file. It will then redirect the sys_read() system

call to the VM’s VFS similarly to when it redirects the sys_open() system call.

The solution described above is straightforward. However, it involves too many net-

work communications between the smart mobile device and the cloud, and too frequent

switching between the user space and the kernel on the smart mobile device. As a result, it

has prohibitively low performance. To solve this problem, we implemented the distributed

file system differently. Figure 2.4 illustrates part of this new solution, i.e., how it works

when the app tries to open a remote file in the cloud. When receiving a sys_open() sys-

tem call from the app and finding that it wants to open a file in the cloud, the smart mobile

device’s VFS will switch to user space by notifying the file system client of this event. The

file system client then communicates with the file system server, which will send back the

data of the corresponding file. The file system client then stores the file on the local disk

as a cached file, with a temporary file path that is not likely to conflict with that of any

other file. Then the smart mobile device’s VFS opens this file instead of the remote file

and returns its file descriptor to the app. The file descriptor is marked as “remote” and the

remote file path is recorded in the file descriptor by using two fields that we have added
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in the file descriptor data structure. Then the app can use this file descriptor to read and

write the cached file. When closing the file, the VFS will notice that it is a cached file. It

will switch to user space by notifying the file system client of this event. The file system

client then sends the cached file back to the file system server, which will overwrite its

local file with the cached file in the cloud.

It is arguable that this solution may cause inconsistency when an app on the smart

mobile device and an app in the cloud access the same file simultaneously. Nevertheless,

it is rare that two apps access the same file simultaneously. Most mobile OSes, such as

Android, forbid or at least recommend against an app accessing files belonging to another

app, for security purposes. Furthermore, although it is not mandatory, a prudent way to

use our platform is to create a separate VM in the cloud for every app. Two apps will

never access the same file simultaneously in this case.

2.5 Discussion

Hypervisor in local mobile device. To allow for consistency with our system implemen-

tation, we present our system design in a way that used a “Type 2” hypervisor (i.e., a

hosted hypervisor that runs in a host OS) in the local mobile device to achieve high se-

curity and privacy guarantees. It is worth noting that it is not necessary to use Type 2

hypervisor in our design. Actually, a Type 1 hypervisor (i.e., bare-metal hypervisor that

runs directly on top of the hardware) fits better into our goal of providing high security

guarantees. This is because the main reason we use a hypervisor in local mobile device

is to isolate the sensitive inputs (i.e., user taps on the touch screen, data collected by

various on-board sensors) from local mobile device OS and apps. These components

are greater risks if they are compromised. A Type 1 hypervisor, with a small trusted com-

puting base (TCB), can also fulfill our needs, but developing a new hypervisor from the

ground up, based on the newly introduced ARM hardware virtualization, would require

a lot of effort in engineering optimal parameter settings. Therefore, we opt to use KVM,
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which is a full-fledge hypervisor that has been recently ported to the ARM architecture,

for a fast proof of concept demonstration of our system design. For future work, we plan

to develop our own bare-metal hypervisor to further improve our system.

The use of Chromebook in the prototype system. We use a Samsung Chromebook

as the mobile device in our prototype system implementation. The main reason for this

choice is that it has a hardware configuration that supports ARM hardware virtualiza-

tion, and it requires relatively less effort to enable and run the ARM based KVM, which

is the base hypervisor for our prototype system. Although the Samsung Chromebook

looks more like a regular laptop, it actually shares the hardware similar to most recent

smartphones and tablets. For example, the Chromebook used in our system has a Sam-

sung Exynos 5 Dual SoC, which is the same SoC found in the Google Nexus 10 tablet.

The ARM Cortex-A15 MPcore processor contained in the Exynos 5 Dual SoC is also

used in many other smartphones, such as the Samsung Galaxy S4/S5 smartphones, the

Galaxy Note 3 smartphone and the Galaxy Tab Pro tablets. The 2 GB RAM capacity in

our Chromebook is also the standard configuration commonly found in the latest smart-

phones. Therefore, our choice of using Chromebook as the mobile device can fit well into

the smart mobile device world in terms of computational capability.

2.6 Evaluation

In this section, we describe the real-world experiments we have conducted to evaluate

the performance of our prototype system.

2.6.1 Experiment Setup

Our prototype system consists of two parts, the smart mobile device and the cloud VM.

The smart mobile device is a Samsung Chromebook featuring the Exynos 5 Dual SoC,

2 GB RAM and 16 GB SSD hard drive. The Exynos 5 Dual SoC is equipped with a

1.7 GHz dual-core ARM Cortex-A15 processor. The ARM Cortex-A15 processor has
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hardware virtualization support, which allows us to implement the proposed hypervisor in

our prototype system. The Chromebook runs Linux (kernel version 3.13.0) as the host

OS. On top of the hypervisor, we run Android Jelly Bean (Android version 4.1.1, Linux

kernel version 3.9.0) as the guest OS. The cloud VM runs Android-x86 [6] as the guest OS

(Android version 4.3, Linux kernel version 3.10.2). It is hosted by the VMware workstation

10.0.1 virtual machine monitor (VMM) running on a host PC with an Intel Core i7 CPU (2.3

GHz) and 8 GB RAM. The smart mobile device and the cloud VM are connected through

an 802.11n wireless router.

2.6.2 Running Apps in the Cloud: The Response Time

Themost significant feature of our system is that we allow the entire mobile device OS and

the apps to run in the cloud. Therefore, we first evaluate the app response time when the

apps are running in the cloud. In our system, we send the output of an app running in the

cloud back to the device by first taking screenshots of the app, and then transmitting them

back to the device. Therefore, there are two major factors that can affect app response

time, network bandwidth and the size of each screenshot. We design an experiment to

evaluate the impacts of these two factors. In our experiment, we use an image viewer

app to open different pictures. Remember that with our system, the app launch and the

picture opening operations are triggered by the user on the mobile device side, and the

actual operations are conducted on the cloud side. Once a picture is opened, our system

takes a screenshot of it, and sends the screenshot back to the mobile device to display to

the user. We measure the response time as the time difference between the point when

the user triggers the picture opening action on the mobile device, and the point when the

screenshot is sent back from the cloud and displayed. We choose different pictures, such

that we have screenshots with different sizes (14 KB, 82 KB, 178 KB, 236 KB, 392 KB

and 512 KB are used in our experiment). We also configure the wireless router to achieve

different network bandwidth rates (0.25 Mb/s, 0.5 Mb/s, 1 Mb/s, 2 Mb/s, 10 Mb/s and 100
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Mb/s are used in our experiment).
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Figure 2.5: App response time if running in the cloud: UI response time (Y-axis) of screenshots
with different size under different network conditions (X-axis).

Figure 2.5 depicts the experiment results. We can see that network bandwidth has

a significant impact on app response time when the bandwidth is small. But this impact

gradually diminishes as the available bandwidth increases. For example, when the net-

work bandwidth is fixed at 0.25 Mb/s, it takes only 0.5 second to open a picture 14 KB in

size. But it needs almost 24 seconds to get back a 512 KB screenshot. The response time

ratio for these two screenshot sizes (i.e., 512KB
14KB ) is

24second
0.5second = 48. But when the network

bandwidth is set at 100 Mb/s, the response time ratio for the same screenshot sizes (i.e.,
512KB
14KB ) is only

0.4second
0.07second = 5.7. Fortunately, modern mobile data networks can support a

very high transmission rate. The 4G LTE network has a peak download speed approach-

ing 100 Mb/s [110], and on a typical day 4G download speeds can range from 2.8 Mb/s to

9.1 Mb/s, with an average value of 6.2 Mb/s [126]. With the average 4G download speed

(6.2 Mb/s), the app response time of our prototype system for a screenshot of 512 KB is

only about one second.
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Table 2.1: Hypervisor overhead.

Native OS With unmodified hypervisor With our hypervisor

Delay 4 ms 63 ms 65 ms

2.6.3 Performance of the Hypervisor on the Local Device

Our system exploits the ARM hardware virtualization technology to achieve user/sensor

input isolation from themobile device OS. Specifically, when an app is running in the cloud,

our hypervisor intercepts all the inputs from the user (e.g., touch screen, keyboard, etc.)

and sensors, performs an encryption on them, and sends them to the cloud. We design

an experiment to evaluate the overhead introduced by our hypervisor. In this experiment,

we use keyboard input to evaluate the hypervisor overhead. We test three cases. In the

first case, we use the keyboard to provide inputs for a user program running on the native

OS of the mobile device. In the second case, we test the same scenario, except that the

user program is running in the guest OS of the mobile device. In this case, the unmodified

hypervisor will introduce some overhead to the keyboard input operation. The third test

case shares the same setup as the second one, except that the hypervisor is the one used

in our prototype system, which performs encryption on the intercepted keyboard inputs.

Because we want to test the overhead caused by our hypervisor, we direct the encrypted

input up to the user program in the guest OS, instead of redirecting it to the cloud. In all

the three cases, we measure the time delay between the keyboard input interrupt and

the time when the user program receives the input. We perform each test ten times, and

report the average value here. Table 2.1 shows the results of the experiment. The results

suggest that by running the user program in the guest OS, the time delay increases by

one order of magnitude, compared to that when the user program is running in the guest

OS. This is normal because the guest OS involves many switches between many entities

including the guest OS, the hypervisor, the host OS and the QEMU hardware emulator

(required by KVM). It is worth noting that when comparing to the case with the unmodified

hypervisor, our hypervisor only incurs a very small amount of additional delay (about 3%).
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Table 2.2: Performance of the distributed file system.

64 KB 256 KB 512 KB 1 MB 5 MB 10 MB

Open 36 ms 85 ms 115 ms 225 ms 827 ms 1324 ms

Read 1 ms 1 ms 5 ms 11 ms 20 ms 38 ms

Write 1 ms 3 ms 6 ms 13 ms 68 ms 128 ms

Close 39 ms 68 ms 116 ms 219 ms 680 ms 1337 ms

Table 2.3: Performance of the native file system.

64 KB 256 KB 512 KB 1 MB 5 MB 10 MB

Open 1 ms 1 ms 2 ms 5 ms 14 ms 24 ms

Read 1 ms 1 ms 6 ms 11 ms 21 ms 40 ms

Write 1 ms 3 ms 6 ms 13 ms 67 ms 126 ms

Close 1 ms 1 ms 2 ms 3 ms 14 ms 27 ms

2.6.4 Performance of the Distributed File System

The purpose of our distributed file system is to allow users to run apps locally on their

mobile device. In this experiment, we evaluate the performance of file open, read, write

and close operations of our distributed file system. Each test is performed ten times.

Table 2.2 shows the performance results of our distributed file system. As a comparison,

Table 2.3 shows the results of the native file system. From these results we can see that

our file system incurs a time overhead for the open and close operations. This is because

when an app running in the mobile device tries to open a certain file that is not available

in the local device, our file system transparently caches the file of interest from the cloud

to the mobile device to allow the app to proceed. When the app finishes accessing and

closes the file, our file system automatically writes the file back to the cloud. Therefore

opening files is costly. But writing and reading them is much less so. Since we are using

whole file caching in our current implementation, file size and network bandwidth have

major impacts on the open/close delay. For file read/write, since our file system allows

local access to the cached copy, it has the same performance as the read/write operations

in a native file system.
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2.7 Conclusions

The mobile-cloud/edge computing model will be the dominating trend in the future. How-

ever, existing solutions do not fully exploit the potential of this model. To this end, we aim

at designing a solution that goes beyond the current state of the art. In this chapter, we

propose a novel mobile-cloud/edge platformwith two fundamental contributions. First, our

platform allows users to freely choose to run their applications either on the cloud/edge

or on their local devices. We feel that this is a very useful and practical feature for users,

and believe that we are the first to consider this situation in a mobile-cloud/edge plat-

form of this kind. Second, our platform provides security guarantees against untrusted

applications and an untrusted local device’s operating system, by leveraging hardware

virtualization technology. To the best of our knowledge, we are the first to utilize hard-

ware virtualization to strengthen the security on mobile devices. Based on these design

concepts, we build a prototype system on a Chromebook acting as the user’s local mobile

device, and a commodity x86 laptop PC acting as a cloud/edge server. Our evaluation

on the prototype system proves that our platform is useful and pragmatic.
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Chapter 3

EdgeEngine: An Efficient and

Customizable Framework for Edge

Computing

3.1 Introduction

Edge computing has emerged over the last several years as a new computing paradigm

that extends cloud computing [87, 125, 42]. By executing tasks at the edge of network,

edge computing establishes an environment that enjoys better network conditions, in-

cluding shorter network latency, higher network bandwidth and more stable network con-

nections. All of these are critical for QoS-sensitive applications, such as mobile-cloud

applications, IoT applications, big data applications with real-time constraints, and so on.

Despite the benefits mentioned above, it is still quite challenging to efficiently employ

edge computing in the real world. The main difficulty is that developers have to put a

lot of effort into implementing applications for edge environments. They need to carefully

coordinate client devices, edge nodes and the cloud in their implementation, guaranteeing

that their applications could enjoy the benefits provided by edge computing. This is usually

a hard work and requires that the developers have enough experience to make their
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implementation work efficiently on the edge infrastructure. Building a platform on the

edge infrastructure to simplify the implementation of applications is feasible, but imposes

another challenge. It is hard to build a platform for edge computing that works efficiently

for all application scenarios. Every application scenario has its own characteristics and

requirements. If an edge computing platform treats all user applications equally, some

applications may not be executed efficiently. For example, suppose a developer has

created a user application that writes a data object on the platform. In addition, suppose

multiple instances of the user application can be executed simultaneously across the

system, while the data object can only be written by one application instance at any time.

As a general solution, the platform attaches a write lock to the data object, such that

any application intending to write the data object has to acquire its write lock from the

cloud before executing the write operation, and release the write lock to the cloud after

executing the write operation. Using the cloud as the centralized lock server is necessary

because multiple application instances may require the write lock simultaneously from

different edge nodes. This solution is effective for all applications, and is even efficient for

many of them, but is not efficient for all of them. For example, multiple instances of the

user application may be executed simultaneously, but in most of time, they are executed

on the same edge node. In such a case, the write lock should be managed on the edge

node, rather than in the cloud, which can significantly improve the write performance of

the application instances.

In light of this, we propose EdgeEngine, an efficient and customizable framework for

edge computing. The main design goal of EdgeEngine is to provide satisfactory perfor-

mance for user applications with minimum developer effort. To achieve this, we design

EdgeEngine as follows. First, in most application scenarios, developers do not need to

care about how their applications are executed on the underlying edge infrastructure, e.g.,

whether their applications are executed on the edge nodes or in the cloud. EdgeEngine

automatically manages their applications on the edge infrastructure and achieves satis-

factory performance, by applying a set of default policies to the applications. Relying on

36



the default policies, developers could get rid of the details of the underlying edge infras-

tructure and focus on the implementation of the applications’ main logic, which greatly re-

duces their development workload. Second, in the application scenarios where the default

policies cannot guarantee satisfactory performance, as the one described in the previous

paragraph, EdgeEngine depends on the developers’ knowledge to efficiently manage the

applications on the edge infrastructure. More specifically, EdgeEngine provides a flexible

programming interface, throughwhich developers could implement user-specified policies

on their applications. The user-specified policies are essentially developers’ suggestions,

which could help EdgeEngine make a better fit to the edge infrastructure in these appli-

cation scenarios. We carefully design the programming interface, such that developers

could implement user-specified policies usually with only several lines of code.

Based on EdgeEngine’s design, we implement a prototype system. We further deploy

this prototype system on a testbed and evaluate its performance, proving that EdgeEngine

could work efficiently in the real world.

3.2 Related Work

In this section, we first give a brief overview on edge computing, and then introduce

several widely-adopted distributed computing frameworks from the industry, with which

EdgeEngine shares some of the ideas in the design philosophy.

3.2.1 Research on Edge Computing

Edge computing is also termed “fog computing” [14, 122, 120, 121], “mobile-edge com-

puting” [119] and “cloudlets” [86, 85]. These terms contain some subtle differences, but

their essential ideas are the same, i.e., providing hardware resources at the edge of net-

work in an IoT or IoT-like environment. Therefore, we will not strictly distinguish these

terms in this work.
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The idea of cloudlets has been proposed by the academia in the year of 2009 [85].

Later, in 2012, fog computing has been proposed by the industry [14]. After that, a boom

of surveys, discussions and pioneer systems on edge computing has emerged in both

the academia and the industry [102, 94, 43, 32, 36, 25, 13, 127, 2, 1, 83, 22, 48, 50, 118,

93, 59, 62, 95, 51, 34, 82, 49, 77, 33, 71, 44, 11, 78, 108, 57, 87, 122, 120, 121, 92, 91,

123, 81, 61, 97, 107, 115, 40, 16, 88, 76, 101, 109].

An assistive system based on Google Glass devices and cloudlets is proposed in [40],

which is designed for users in cognitive decline. By processing sensed data captured by

Google Glass devices on cloudlets, the assistive system performs real-time scene inter-

pretation. A real-time fall detection system based on fog computing is proposed in [16].

The authors investigate a series of new fall detection algorithms and integrate them into

the fog computing infrastructure. Experiments with real-word data demonstrate the effi-

ciency of the system.

Foglets is presented in [88], which is a programming infrastructure for fog computing

applications. It provides APIs for storing and retrieving application-generated data on the

fog nodes, and primitives for communication among application components. By doing

this, Foglets enables the placement of application components, data movement among

the components, and migration of computation and state according to the mobility pattern

of the sensors. MigCEP is presented in [76], which is a placement and migration method

for fog infrastructures. This method can ensure application-defined end-to-end latency

restrictions, reduce network utilization and improve live migration performance in a fog

computing environment. Urgaonkar et al. study the problem of where and when services

should be migrated in an edge computing environment [101]. The authors first model

the problem as a sequential decision making Markov Decision Problem (MDP), and then

solve it in a novel way, i.e., they reduce the MDP to two independent MDPs on disjoint

state spaces, and leverage the technique of Lyapunov optimization over renewals to solve

the decoupled problems. Wang et al. propose a brand-new fog computing structure,

which ensures reliable 3G services for fast-moving users, such as the passengers on a
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train [109]. They perform a series of theoretical and empirical analyses, demonstrating

that their approach could improve the reliability of 3G connections on fast-moving trains.

Our work distinguishes itself from all the previous work, as we try to build a framework

for edge computing, which could help developers implement efficient edge computing

applications, while requires no or little effort from developers into dealing with the details

of the underlying edge infrastructure.

3.2.2 Distributed Computing Frameworks

There are many open-source distributed computing frameworks that share part of the

design philosophy with Edge-Engine, such as Apache Hadoop [9], Apache Storm [8] and

Apache Spark [7].

Apache Hadoop is a distributed computing framework for big data storage and pro-

cessing. The core of Apache Hadoop contains two parts: a storage part called HDFS (i.e.,

Hadoop Distributed File System) and a processing part that implements the MapReduce

programming model [31]. Apache Hadoop can achieve good processing performance by

batching the requests at the MapReduce part. Nevertheless, the storage part may intro-

duce much overhead to the framework, since HDFS uses secondary storage devices for

data storage and may need to apply complicate data manipulation to the dataset before

dispatching it to the worker nodes. As a result, Apache Hadoop cannot provide satisfac-

tory performance in real-time big data processing scenarios. In contrast, Apache Storm

and Apache Spark are good candidates for such scenarios. Both of them maintain data in

main memory and thus eliminate the overhead introduced by disk I/O. Apache Storm im-

plements the stream processing model and dispatches data to the worker nodes for data

processing, while Apache Spark batches computational requests and dispatches them to

the location where the input datasets reside. Note that Apache Spark can also work in

the streaming mode just as Apache Storm.

EdgeEngine shares some of the design philosophy with these distributed computing
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frameworks. For example, EdgeEngine also implements the stream processing model,

i.e., computation is triggered by data input. Furthermore, both EdgeEngine and the three

distributed computing frameworks describe their tasks as directed acyclic graphs (e.g.,

EdgeEngine workflows, Apache Storm topologies, etc.). Nevertheless, different from the

three distributed computing frameworks that are designed for big data processing in gen-

eral, EdgeEngine is particularly designed for data processing in the context of edge com-

puting. In other words, EdgeEngine provides many features that are beneficial for edge

applications, and to the best of our knowledge, none of the features are provided by ex-

isting distributed computing frameworks.

3.3 EdgeEngine Overview

In this section, we elaborate on the design of EdgeEngine. We first introduce the edge

computing infrastructure upon which EdgeEngine is built, and then go deep into the design

details of EdgeEngine, elaborating its concepts and discussing how the platform and the

programming interface work as a whole, with several concrete examples.

3.3.1 Hardware Infrastructure

Figure 3.1 illustrates the edge computing infrastructure upon which EdgeEngine is de-

ployed. There is a cloud residing at the core of network, while edge nodes distribute at

the edge of network. Client devices connect to edge nodes through wireless links. We

call the client devices, the edge nodes and the cloud entities in EdgeEngine.

3.3.2 Workflow Examples

In EdgeEngine, users first define workflows and register them to the system. Afterwards,

they could initiate tasks which are essentially workflow instances. Each workflow contains
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Figure 3.1: EdgeEngine hardware infrastructure.

one or more data items and zero or more transitions. Transitions consume input data

items and produce output data items.

A data item is either initial or derived. If a data item is generated by a transition, it is

derived. Otherwise it is initial, meaning that users directly send data to this data item in

order to initiate tasks. Moreover, a data item is either durable or temporary. A durable

data item is part of the final result of the task. In contrast, a temporary data item is an

intermediate result of the task. Therefore, after a task has been finished, its durable data

items should be permanently saved and eventually synchronized to the cloud, while its

temporary data items could be eliminated at a suitable time.

Figure 3.2(a) illustrates a simple workflow, which is called RawVideo. This workflow

has only one data item, depicted “rawData” in the figure, and no transition. Clearly, the

only data item rawData represents the raw video data that the EdgeEngine system has

received from the client device. This data item is both initial and durable.

Figure 3.2(b) illustrates a slightly complicated workflow, which is called EncodedVideo.

This workflow contains two data items, rawData and encodedData, and one transition,
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Figure 3.2: Workflow examples.

encode. The encode transition takes rawData as input and generates encodedData as

output. Clearly, in this workflow, the EdgeEngine system receives raw video data from

the client device, encodes it, and saves the encoded data for future use. The rawData

data item is initial, and could be either durable or temporary, depending on the application

scenarios in which it is involved. The encodedData data item is derived and durable.

Figure 3.2(c) illustrates an EdgeEngine workflow, which is called TemperatureDistri-

bution, that involves multiple writers. Suppose there are N edge nodes covering different

regions and connecting to the cloud. Each edge node has a group of temperature sen-

sors distributed around, which continuously send temperature data to it. The edge node

in turn forwards the data to the cloud. The cloud receives temperature data from the N

edge nodes, merges them, and saves the merged data for future use. The rawData data

items are initial, and could be either durable or temporary. The mergedData data item is

derived and durable.

3.3.3 System Architecture

Figure 3.3 depicts the architecture of EdgeEngine. There are five layers in the figure.

The top layer is called Application Layer, where the user applications reside. The user

applications initiate workflow instances by writing input data to them, and receive the
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Figure 3.3: EdgeEngine software stack.

results by reading the output data from them. The next layer is called Workflow Layer,

where the workflow instances reside.

Each workflow instance exposes a Data Access Interface to the user applications,

through which the user applications read/write its data items. Moreover, each workflow

instance has four proxies, i.e., the Entity Proxy, the Locking Proxy, the Syncing Proxy and

the Scheduling Proxy. These proxies are used to implement user-specified policies on

the workflows. Under the Workflow Layer is the Scheduling Layer, where three system

components, the Lock Manager, the Sync Manager and the Transition Scheduler, reside.

These components implement some of the fundamental system mechanisms, i.e., the

locking mechanism, the syncing mechanism and the scheduling mechanism. A workflow

instance could communicate with these components through its Locking Proxy, Syncing

Proxy and Scheduling Proxy, respectively. These components enforce the system de-

fault policies as well as user-specified policies on the workflow instances, and therefore

are essential in achieving the main design goal of EdgeEngine. Developers could rely on

the system default policies enforced by these components in most cases, getting rid of

the details of the underlying edge infrastructure, such as whether the workflow instances

should be executed on the edge node or in the cloud. They could also provide user-

specified policies in the cases where their knowledge of the workflows could help. These
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        SemaphoreSettings settings): void
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SyncingProxy

# getSyncSettings(DurableDataItem dataItem):

        SyncSettings
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        SyncSettings settings): void
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        SchedSettings
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        SchedSettings settings): void

1..*

1

0..*

1

1

1

- dataToMigrateMap:

        Map<String, Serializable>

- fileToMigrateMap:

        Map<String, File>

- dataToMigrateMap:

        Map<String, Serializable>

- fileToMigrateMap:

        Map<String, File>

- dataToMigrateMap: Map<String, Serializable>

- fileToMigrateMap: Map<String, File>

Figure 3.4: EdgeEngine programming interface.

user-specified policies, however, should be implemented with little effort. Therefore, the

system components still save the developers from the details of the underlying edge in-

frastructure in such cases. Below the Scheduling Layer is the Routing Layer, where two

system components, the System Monitor and the Data Dispatcher, reside. This layer

integrates the entities across the system and provides even more fundamental system

mechanisms, e.g., tracking the changes of the entities, monitoring their resource usages

and dispatching data among them, etc. A workflow instance could communicate with the

System Monitor through its Entity Proxy. The bottom layer is called Entity Layer, as the

system entities (client devices, edge nodes and the cloud) reside in this layer.

3.3.4 Programming Interface

As mentioned previously, developers could guide EdgeEngine in efficiently utilizing edge

nodes through the programming interface. In this section, we describe the design of this

programming interface with several examples.

The programming interface is embedded into the Java programming language. Fig-

ure 3.4 depicts the interface classes and helper classes provided by this programming
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interface. There are six interface classes for defining workflows, i.e., Workflow, DataItem,

InitialDataItem, DurableDataItem, InitialDurableDataItem and Transition. As illustrated

in the figure, a Workflow contains one or more DataItems and zero or more Transitions.

Note that InitialDataItem and DurableDataItem inherit from DataItem, while InitialDurable-

DataItem inherits from both InitialDataItem and DurableDataItem. This inheritance hier-

archy is necessary for defining the Data Access Interfaces and the policies for different

types of data items.

Every member variable/function shown in Figure 3.4 starts with either a “+” bullet, a

“#” bullet, or a “-” bullet. A “+” bullet indicates a public member, a “#” bullet indicates

a protected member, while a “-” bullet indicates a private member. Clearly, the public

member functions of the interface classes compose the Data Access Interface of the

workflow. User applications could access the data items of the workflow by invoking these

member functions.

The protectedmember functions of the interface classes enclosed in the bottom blocks

are callback functions. These callback functions are the places where policies on the

workflow are defined. As a goal of EdgeEngine is to involve user guidance only when

necessary, EdgeEngine implements the default policies in these callback functions for all

workflows. Developers could override these callback functions to implement their own

policies, guiding the system in making a better fit to the underlying edge environment,

based on their knowledge on the workflows’ application scenarios. To achieve better

readability, Figure 3.4 does not show all the callback functions of the interface classes.

For example, InitialDataItem has six callback functions beside the two shown in the fig-

ure, i.e., beforeOpen(), afterOpen(), beforeEnqueue(), afterEnqueue(), beforeClose() and

afterClose(). We use “... ...” to indicate the omission of such callback functions.

When programming these callback functions to implement user-specified policies, de-

velopers are supposed to invoke the protected member functions of the helper classes

to communicate with the underlying system components. As mentioned, each workflow

contains four proxies, which are provided as helper classes in the programming inter-
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face, i.e., EntityProxy, LockingProxy, SyncingProxy and SchedulingProxy, as depicted in

Figure 3.4.

There are three types of policies defined on each workflow, i.e., locking policies, sync-

ing policies and scheduling policies. Locking policies are defined on both initial and

durable data items, as initial data items may involve write locks while durable data items

may involve read locks. Syncing policies are defined on durable data items, as they

are eventually synchronized to the cloud. Scheduling policies are defined on transitions,

as they are the computational tasks that need to be scheduled in the system. Gener-

ally speaking, developers could override the callback functions of initial and durable data

items, invoking the locking proxy to implement user-specified locking policies. Likewise,

they could override the callback functions of durable data items, invoking the syncing

proxy to implement user-specified syncing policies, as well as override the callback func-

tions of transitions, invoking the scheduling proxy to implement user-specified scheduling

policies. The entity proxy could be used as an auxiliary for implementing all the three

types of policies, but it is usually invoked in conjunction with the scheduling proxy for im-

plementing scheduling policies on transitions. It is worth mentioning that the two protected

member functions of Transition, getTriggerThreshold() and setTriggerThreshold(), could

also be used for implementing scheduling policies on transitions.

Transition also has a special callback function, onTrigger(), as depicted in Figure 3.4.

This callback function is not used for implementing policies; it is the place where the tran-

sition’s data processing logic is implemented. Therefore, EdgeEngine does not provide

the default implementation of this callback function. Developers have to implement this

function for the transitions they define. Beside implementing onTrigger(), a developer is

also supposed to specify the input data items as well as their trigger thresholds when

defining a transition. The trigger thresholds indicate the enqueued data size of the input

data items for triggering onTrigger() of the transition. More specifically, when each of

the input data items has enqueued data with a data size no less than its trigger thresh-

old, the Transition Scheduler will automatically invoke the transition’s onTrigger() callback
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function.

An important design choice of EdgeEngine is how to migrate transitions in an efficient

way. Indeed, full VM or container migration always imposes high overhead upon the sys-

tem [106]. Process migration could be better, but still far from being satisfactory. Many

previous studies [85, 23, 27, 39] aim at reducing the migration overhead by minimizing

the size of data that needs to be transmitted during a migration, without user intervention.

We believe, however, that low migration overhead is of great importance in edge environ-

ments, and EdgeEngine could significantly reduce the migration overhead with very little

user effort. Our solution is the design of the Transition interface class. The philosophy of

this design is similar to that of the user-specified policies: it is the developer who defines

the transition has the knowledge of how to efficiently migrate the transition. According

to this philosophy, we design Transition in the aforementioned way, i.e., a transaction is

triggered by its input data items. Moreover, EdgeEngine guarantees that a transition can

only be migrated between two consecutive executions of its onTrigger() callback function;

it will never be migrated during the execution of onTrigger(). The developer is also sup-

posed to explicitly specify the data in a transition that needs to be transmitted during a

migration. Transition provides two member variables, dataToMigrateMap and fileToMi-

grateMap, for this purpose. The developer should put the intermediate results, including

both volatile data and files, into these Map objects by the end of onTrigger()’s execution,

guiding the system in transmitting only the necessary data for the transition’s migration.

By designing Transition in this way, EdgeEngine could reduce the migration overhead to

the minimum, while requires very little user effort, as transitions have to be implemented

by some means anyway.

Note that even though the transition migration works in the offline mode (i.e., transi-

tions are terminated before migration) in EdgeEngine, the performance can be as good as

or even better than that of the online mode (i.e., transitions are paused, migrated and re-

sumed). The reason lies in the fact that the transition migration works under the guidance

of the developer in EdgeEngine. To bemore specific, the developer is supposed to specify
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the data that needs to be migrated, which reduces the data transmission overhead of the

migration to the minimum. Moreover, the developer controls the computation granularity

of the onTrigger() function, so the transition can be migrated in a suitable time, which is

similar to the working strategy of the online mode. It is also worth noting that data items

also have computation attached, i.e., their callback functions, and they are migrated with

the transitions generating them. Therefore, they also have the dataToMigrateMap and

fileToMigrateMap member variables, through which a developer could specify the data

that needs to be transmitted during the data item’s migration.

3.3.5 Examples of Implementing Workflows

01: public class RawVideo extends Workflow {
02: protected DataItem rawData;
03: public RawVideo() {
04: rawData = new RawData(this);
05: dataItemMap.put(“rawData”, rawData);
06: }
07: }
08: public class RawData extends InitialDurableDataItem {
09: protected int totalSize;
10: public RawData(Workflow workflow) {
11: super(workflow);
12: syncingPolicy = new DummySyncingPolicy();
13: totalSize = 0;
14: dataToMigrateMap.put(“totalSize”, totalSize);
15: }
16: protected void afterEnqueue(Data data) throws Exception {
17: super.afterEnqueue(data);
18: SyncSettings settings = workflow.syncingProxy.getSyncSettings(this);
19: settings.setRegion(totalSize, totalSize + Data.size, Entity.Level.CLOUD,

SyncSettings.Priority.HIGH);
20: totalSize += Data.size;
21: dataToMigrateMap.put(“totalSize”, totalSize);
22: }
23: }

Figure 3.5: An example of the RawVideo workflow.
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Figure 3.5 demonstrates an implementation example of the RawVideoworkflow shown

in Figure 3.2(a). Clearly, the developer specifies that the rawData data item inherits the

default locking policy from its super class, InitialDurableDataItem, while overrides the af-

terEnqueue() callback function to implement a user-specified syncing policy. Through the

syncing proxy of the workflow, the developer suggests the system to eagerly synchronize

the first one tenth data of the rawData data item to the cloud. The ratio of one tenth is

an empirical value that the developer considers appropriate for the workflow’s application

scenarios. Note that the developer can only suggest but not force the system to apply the

user-specified policy. If the system considers that it is inappropriate to apply this policy,

it will simply reject the developer’s suggestion.
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01: public class EncodedVideo extends Workflow {
02: protected DataItem rawData;
03: protected DataItem encodedData;
04: protected Transition encode;
05: public EncodedVideo() {

... ...
06: inputDataItemMap.put(“rawData”, rawData);
07: triggerThresholdMap.put(“rawData”, 4096);
08: encode = new Encode(this, inputDataItemMap, triggerThresholdMap);
09: transitionSet.add(encode);
10: }
11: }

... ...
12: public class Encode extends Transition {
13: protected MotionVectorBitmap mvBitmap;

... ...
14: public Encode(Workflow workflow, Map<String, DataItem> inputDataItemMap,

Map<String, Integer> triggerThresholdMap) {
15: super(workflow, inputDataItemMap, triggerThresholdMap);
16: schedulingPolicy = new DummySchedulingPolicy();
17: mvBitmap = /* empty motion vector bitmap */;
18: dataToMigrateMap.put(“mvBitmap”, mvBitmap);

... ...
19: }
20: protected void afterCreate() throws Exception {
21: super.afterCreate();
22: SchedSettings settings = workflow.schedulingProxy.getSchedSettings(this);
23: settings.setTimeout(5, TimeUnit.SECONDS, SchedSettings.Priority.LOWEST);
24: }
25: protected void onTrigger() throws Exception {

... ...
26: Data input = workflow.rawData.read(options);

/* Generate output by encoding input and update mvBitmap. */
... ...

27: workflow.encodedData.enqueue(output);
28: }
29: }

Figure 3.6: An example of the EncodedVideo workflow.

Figure 3.6 demonstrates an implementation example of the EncodedVideo workflow

shown in Figure 3.2(b). The developer implements the encode transition, specifying that
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whenever rawData has enqueued 4 KB data, the transition be triggered. The developer

also implements a user-specified scheduling policy on the encode transition, suggesting

the system to eagerly migrate it to the cloud if the transition has not been scheduled on

the edge node for more than 5 seconds. The 5 second timeout is an empirical value

that the developer considers appropriate for the workflow’s application scenarios. The

member variablemvBitmap is used across the executions of onTrigger(), so the developer

specifies that its data should be transmitted during the transition’s migration, by putting it

into the dataToMigrateMap object.
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01: public class TemperatureDistribution extends Workflow {
02: protected DataItem rawData1;

... ...
03: public TemperatureDistribution() {

/* m: number of sensors belonging to the edge node. */
04: rawData1 = new RawData(this, m);
05: dataItemMap.put(“rawData1”, rawData1);

... ...
06: }
07: }
08: public class RawData extends InitialDataItem {
09: protected String semName;
10: public RawData(Workflow workflow, int semSize) {
11: super(workflow);
12: lockingPolicy = new DummyLockingPolicy();
13: semName = /* a random UUID string */;
14: dataToMigrateMap.put(“semName”, semName);
15: SemaphoreSettings settings = new SemaphoreSettings();
16: settings.setSize(semSize);
17: settings.setAffinity(Entity.Level.EDGE, SemaphoreSettings.Affinity.HIGHEST);
18: workflow.lockingProxy.createSemaphore(semName, settings);
19: }
20: protected void beforeOpen(OpenOptions options) throws Exception {
21: super.beforeOpen(options);
22: workflow.lockingProxy.acquireSemaphore(semName, 1);
23: }
24: protected void afterClose() throws Exception {
25: super.afterClose();
26: workflow.lockingProxy.releaseSemaphore(semName, 1);
27: }
28: }

... ...

Figure 3.7: An example of the TemperatureDistribution workflow.

Figure 3.7 demonstrates an implementation example of the TemperatureDistribution

workflow shown in Figure 3.2(c). The developer implements a user-specified locking pol-

icy on the rawData1 data item, suggesting the system to keep its semaphore on the

edge node when the semaphore is being released. EdgeEngine normally releases a

semaphore to the cloud for achieving global fairness on locking behaviors, unless it finds
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that the semaphore is always required by a particular set of entities. To let the system

discover that the semaphore on rawData1 is always required by only one edge node may

take some time, making the system performance unsatisfactory. As the developer has

this knowledge a priori, she could suggest the system to keep the semaphore on the edge

node from the very beginning, by using the implementation shown in Figure 3.7. This

could help the system avoid the potential performance loss on handling the semaphore.

3.4 Implementation
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Figure 3.8: EdgeEngine prototype architecture.

To demonstrate EdgeEngine is an efficient framework for edge computing environ-

ments, we implement a prototype of it, using Java and Python. Figure 3.8 depicts the

architecture of this prototype system.

There are three kinds of entities shown in Figure 3.8: the client device, the edge node

and the cloud. We restrict that user applications can only run on client devices while

workflow instances can only run on edge nodes and the cloud in our current implemen-

tation. Nevertheless, it is also feasible to implement EdgeEngine in the way that both

user applications and workflow instances can run on any entity across the system. We

can observe from Figure 3.8 that transitions are hosted by Docker containers which are

managed by the OpenStack framework. Docker containers provide similar isolated en-

vironments as those provided by virtual machines, but are more lightweight and hence
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suitable for our implementation. OpenStack provides fundamental services for manag-

ing the Docker containers, which is essential in providing high performance, so we also

employ OpenStack as the underlying platform.

It is worth noting that we install a full OpenStack system on each of the edge nodes

and the cloud, rather than install only one OpenStack system to integrate all of them. To

integrate these system entities, we implement the agent applications. As shown in Fig-

ure 3.8, the client device has a Client Agent, the edge node has an Edge Agent, and the

cloud has a Cloud Agent. These agents communicate with each other via TCP sockets

to enforce system behaviors. As the Docker containers provide isolated environments,

we also deploy a Docker Agent in each Docker container, which communicates with the

Edge Agent for managing the hosted sub-workflow. As mentioned, data items also have

computation attached and are migrated with the transitions generating them. In our im-

plementation, a data item is hosted by the same Docker container that hosts the producer

transition. (Initial data items are exclusively hosted by Docker containers.) Therefore,

we use “sub-workflow” in Figure 3.8 to indicate both the transition and the data items it

generates, rather than simply use “transition”.

Data Dispatcher, Lock Manager and Sync Manager shown in Figure 3.3 are imple-

mented as distributed applications which communicate with each other through the agent

applications for managing the data items. System Monitor and Transition Scheduler, on

the other hand, are integrated into the OpenStack Nova module, as OpenStack is the

underlying platform that manages Docker containers and tracks the resource usages.

3.4.1 System Monitor

SystemMonitor manages the local connectivity information, i.e., the view of all the entities

connecting to the local entity. This information is needed by other system components.

For example, when a client device switches from one edge node to another, the System

Monitors on these two edge nodes will exchange information, guaranteeing that their Data
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Dispatchers can work correctly after the edge node switch. Moreover, System Monitor

tracks the resource usages if the local entity is an edge node. It relies on the OpenStack

Nova module to collect the CPU and memory usages, while independently collects the

network usage. The resource usage information is also needed by other system compo-

nents, such as the Transition Scheduler and the Sync Manager.

3.4.2 Data Dispatcher

Data Dispatcher is responsible for reliably dispatching data between the system entities.

It retrieves the local connectivity information from System Monitor, and establishes data

channels with all connected entities. It also records the UUIDs of the managed workflow

instances, so that it could dispatch data for any workflow instance the local entity manages

through the correct data channel. When a data channel is temporarily unavailable, Data

Dispatcher will cache the data that should be transmitted through the data channel on the

local storage, and transmit the cached data immediately after the data channel has been

re-established. During an edge node switch, the Data Dispatchers on the two edge nodes

will also communicate with each other to transfer the ownership of the workflow instances

that are initiated by the client device.

3.4.3 Lock Manager

Lock Manager implements the fundamental locking mechanism in the prototype system,

by managing the semaphores created by both the system default and user-specified lock-

ing policies. It uses the cloud as the centralized server to manage the semaphores. As

the main goal of EdgeEngine is to guarantee high performance in most cases without user

intervention, while adjust its behaviors according to user guidance in the other cases, we

implement Lock Manager as follows.

After a semaphore has been created, the Lock Manager on the cloud builds an affinity

mapping for this semaphore. By default, the cloud’s Lock Manager specifies that every
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edge nodes has the affinity MEDIUM on the semaphore. After that, the cloud’s Lock

Manager tracks the usage of the semaphore. If the semaphore is continuously required

by only one edge node, the cloud’s Lock Manager will gradually increase the edge node’s

affinity on this semaphore. The edge node could then hold the semaphore after it has been

released for some time, the length of which depends on the edge node’s affinity value. If

the semaphore is suddenly required by another edge node, the affinity mapping on the

semaphore will be reset. A user-specified locking policy could directly modify the affinity

mapping of the semaphore through the workflow instance’s Locking Proxy, as shown in

Figure 3.7.

3.4.4 Sync Manager

Sync Manager implements the fundamental syncing mechanism for durable data items.

A well-designed syncing mechanism is essential in guaranteeing both good system per-

formance and both good user experience. In light of this, we implement Sync Manager

as follows.

The Sync Manager on each edge node continuously retrieves the network usage from

System Monitor on the same edge node. According to the currently available network

bandwidth from the edge node to the cloud, the Sync Manager knows how much data

could be immediately synchronized. By default, the Sync Manager fairly synchronizes the

durable data items based on this knowledge. A user-specified syncing policy, however,

could modify the priority of a durable data item through the workflow instance’s Syncing

Proxy, as shown in Figure 3.5.

3.4.5 Transition Scheduler

Transition Scheduler schedules the transitions for workflow instances on both the edge

nodes and the cloud, and migrates them when necessary. Clearly, an efficient imple-

mentation of Transition Scheduler is essential in guaranteeing good system performance.
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Figure 3.9: Transition scheduling in EdgeEngine.

Figure 3.9 demonstrates how Transition Scheduler works in EdgeEngine. Note that the

transitions shown in the figure are actually sub-workflows described earlier, because the

output data items are migrated with the transitions that generate them. Nevertheless, we

still use “transition” in the figure to simplify our explanation.

From Figure 3.9, we can observe that each edge node as well as the cloud maintains

a worker pool. The number of Docker containers in each worker pool is fixed. In other

words, the Transition Scheduler on each edge node as well as that in the cloud only allows

a fixed number of Docker containers to execute simultaneously. Meanwhile, the Transition

Scheduler on each edge node maintains a priority queue for all the local transitions, and

it sorts the transitions in this queue as follows. It records the time length that a transition

has been scheduled, as well as the size of the input data the transition has processed. If

a transition has processed a lot of input data in a short time, it is assigned a high priority.

In contrast, if a transition has processed only a small amount of data in quite a long time,

it is assigned a low priority. The queue is then sorted by the priorities of the transitions,

from the highest to the lowest. When the Transition Scheduler decides to schedule a

suspended transition, it picks up the first transition from the head of the priority queue

and sends it to an available Docker container. A new transition is assigned a high priority
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for more chance to be scheduled. If a transition has not been scheduled for some time,

the Transition Scheduler will also decrease its priority.

The Transition Scheduler on each edge node also imposes a restriction on the priority

queue’s length. If the priority queue is longer than two times of the maximum number

of Docker containers, the Transition Scheduler will pick up transitions from the tail of the

priority queue and migrate them to the cloud. On the other hand, if the priority queue

is shorter than the maximum number of Docker containers, the Transition Scheduler will

try to migrate transitions from the cloud. The factor values of two and one are empirical.

In contrast, the Transition Scheduler in the cloud maintains a FIFO queue rather than a

priority queue, and it imposes no restriction on the FIFO queue’s length. Nevertheless, it

also calculates the priority of each transition in the background, and will migrate transitions

of high priority to the edge nodes when possible.

By implementing Transition Scheduler in the way described above, EdgeEngine could

efficiently utilize the resources on the edge nodes. This is because a transition of a high

priority implies that it will probably not consume much computational resource on the

edge node, but will consume a lot of network resource when being migrated to the cloud.

Therefore, it will be beneficial to execute the transition on the edge node rather than in

the cloud.

Another design choice that must bemadewhen implementing such a Transition Sched-

uler is that every client device is mobile and may switch the the edge node it connects to

during the execution of a transition, or may be temporarily disconnected from any edge

node (but connect to the cloud), and EdgeEngine should be able to provide seamless

service in such a scenario. We make this design choice in a simple way in our implemen-

tation. When the client device is disconnected from the current edge node, EdgeEngine

will unconditionally migrate the transition to the cloud. When the client device connects to

a new edge node, EdgeEngine will migrate the transition from the cloud to the new edge

node if the priority queue on the new edge node is shorter than two times of the maximum

number of Docker containers. More complicated scheduling algorithms and programming
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interface support for this design choice are left as our future work.

3.5 Evaluation

We deploy our prototype system on a testbed and conduct experiments on it. The testbed

consists of five servers, one of which is more powerful than the others. The more pow-

erful server is used as the cloud server, while the others are used as edge nodes. The

cloud server has an 8-core Intel i7 CPU with a clock speed of 4.00 GHz and 16 GB main

memory. Each edge node has a 4-core CPU with a clock speed of 2.83 GHz and 4 GB

main memory. The edge nodes are directly connected to the cloud server through a 1000

Mbps network link. To simulate a real-world edge computing environment, we set the up-

per bound of the network bandwidth between the edge nodes and the cloud server to 40

Mbps, and the latency to 10 ms (i.e., the round trip time is 20 ms). For simplicity of sys-

tem deployment, we do not employ real client devices for the experiments, but deploy an

application on each edge node to simulate the behaviors of the connected client devices.

The simulated wireless network between a client device and the edge node it connects

to has a maximum bandwidth of 8 Mbps, and the latency is negligible.

3.5.1 Evaluation on the Programming Interface

Table 3.1: Efficiency of the programming interface.

LoC on EdgeEngine LoC from Scratch

Syncing Policy 9 > 400

Scheduling Policy 5 > 600

Locking Policy 14 ≈ 100

As mentioned, a design goal of the EdgeEngine programming interface is to minimize

the effort a developer must put into implementing her own policies when necessary. In

light of this, we evaluate the efficiency of this programming interface. More specifically,
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we compare the lines of code (LoC) that are required to implement the user-specified

policies shown in Figure 3.5, 3.6 and 3.7, through the EdgeEngine programming inter-

face and from scratch, respectively. Table 3.1 shows the results. Note that implementing

a user-specified policy from scratch is not equivalent to only implementing the developer’s

guidance. For example, to migrate the encode transition shown in Figure 3.6 according to

the developer’s guidance is simple, but the user-specified scheduling policy is more than

that. It is a combination of the system’s default scheduling policy and the developer’s

guidance. Consider that the transition may also be migrated back to the edge node when

possible, as described in Section 3.4.5. Therefore, we estimate that the user-specified

scheduling policy requires more than 600 LoC from scratch, by checking our implemen-

tation of the Transition Scheduler component. Clearly, the EdgeEngine programming

interface could greatly reduce the workload of implementing the user-specified policies,

as it usaually requires only several LoC.

3.5.2 Evaluation on the System Components

Themain design goal of EdgeEngine is to guarantee high performance both with and with-

out user guidance. The system components shown in Figure 3.3 are critical in achieving

this goal, as they are responsible for enforcing the system default as well as user-specified

policies. We evaluate their performance in this section. Figure 3.10 illustrates the results.

Figure 3.10(a) shows the performance of the Sync Manager component when enforc-

ing the default syncing policy as well as the user-specified syncing policy shown in Fig-

ure 3.5. In this experiment, we simulate the scenario in which 200 MB RawVideo workflow

instances arrive at our prototype system. More specifically, they arrive at each edge node

independently, with the arrival intervals following an N (10 sec, 4 sec2) distribution in the

first 6 minutes, then following an N (1 sec, 0.25 sec2) distribution in the next 4 minutes,

and finally following an N (10 sec, 4 sec2) distribution in the last 4 minutes. Figure 3.5

shows the average size of data that has been synchronized for each workflow instance.
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(a) Performance on the syncing policies.
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(b) Performance on the scheduling policies.
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(c) Performance on the locking policies.

Figure 3.10: Performance of the system components.

Clearly, Sync Manager synchronizes less data under the default syncing policy than un-

der the user-specified policy when the system is overloaded, because the default policy

only guarantees that the first one tenth of data is eagerly synchronized for each workflow

instance, while the user-specified policy suggests Sync Manager to eagerly synchronize

all data for the workflow instances. However, the default policy also performs as good as

the user-specified policy when the system is not overloaded. When the system is over-

loaded, the default policy tries to synchronize as much data as possible, without causing

any potential side effect, such as increasing the user-perceived response time. (Note that

if Sync Manager considers that the user-specified policy may cause a serious side effect,

it will reject the user-specified policy.) Moreover, the default policy does not require any

effort from developers, in contrast to the user-specified policy, which still requires several

LoC. We therefore expect that developers only implement user-specified syncing policies

when necessary, while directly employ the default syncing policy in most cases.
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Figure 3.10(b) shows the performance of Transition Scheduler when enforcing the de-

fault scheduling policy as well as the user-specified scheduling policy shown in Figure 3.6.

We also simulate a changing workload in this experiment. Figure 3.10(b) shows the av-

erage latency before the encode transitions get scheduled. Clearly, when the system

is overloaded, the transitions have a shorter latency before being scheduled under the

user-specified policy. Nevertheless, as shown in the figure, the default policy can quickly

adjust the scheduling of transitions according to the system’s workload. By doing this,

it could also achieve satisfactory performance under high workload, without causing any

potential side effect.

Figure 3.10(c) shows the performance of Lock Manager when enforcing the default

locking policy and the user-specified locking policy shown in Figure 3.7. We simulate

a stable workload on only one edge node in this experiment. Figure 3.10(c) shows the

average latency perceived by user applications when requiring the semaphore through

the edge node. Clearly, with the developer’s knowledge, the user-specified policy could

achieve low locking latency from the very beginning. However, as shown in the figure, the

default policy can quickly adjust the affinity mapping of the semaphore according to the

distribution of user requests. By doing this, it achieves as low locking latency as the user-

specified policy achieves (less than 0.5 seconds), exhibiting satisfactory performance.

3.6 Conclusions

In this work, we present EdgeEngine, an efficient and customizable framework for edge

computing. EdgeEngine achieves good performance for most application scenarios, re-

quiring no user effort. For the application scenarios where user guidance is necessary

for achieving good performance, EdgeEngine provides a programming interface through

which users could implement user-specified policies with very little effort, guiding the sys-

tem in acting efficiently. Evaluation on our prototype system proves that EdgeEngine is

practical in the real world.
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Chapter 4

Nomad: An Efficient Consensus

Approach for Latency-Sensitive

Edge-Cloud Applications

4.1 Introduction

Edge computing, also known as cloudlets [85], fog computing [14] and mobile-edge com-

puting [46], is a new paradigm of distributed computing. The basic idea of edge computing

is to provide elastic resources at the edge of network, serving the end devices with lower

network latency than cloud computing. Since its birth, edge computing has drawn plenty

of attention from the industry, because it is able to fulfill the requirements on network la-

tency imposed by many distributed applications. More notably, edge computing is viewed

as the enabler of a spectrum of emerging applications, such as IoT applications, big data

analytics, and real-time mobile-edge applications.

Many of such applications are large-scale, geo-distributed ones. There could be

dozens of separate edge networks in the system, backed by several interconnected cloud

data centers. Massive end devices may simultaneously connect to the system via edge

servers located at different places. Information is rapidly exchanged between the end
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devices and the edge servers, and some of the messages sent to the edge need to be

spread across the entire system. In fact, many large-scale edge applications build their

services atop the functionality that the system orders the messages received by the edge

in a timely manner. However, implementing such a functionality is challenging. This is

not only because the system may receive messages at a prohibitively high rate, but there

may also be a good number of parties involved in, including both the cloud data centers

and the edge servers in the edge networks. How to make a consistent decision in a dis-

tributed system is a classic problem in the distributed computing area, which is known

as the consensus problem. This problem has been studied for decades and is still an

attractive topic in the academia.

Among the existing consensus approaches in the literature, the Paxos-based ones

ensure strong consistency, i.e., conflicting states will never occur in the system, and they

complete the decision-making process as soon as all the conditions have been met, effec-

tively reducing the user-perceived latency. Because we aim at achieving fast ordering on

the messages for geo-distributed edge-cloud applications, and many of such applications

cannot tolerate inconsistency on the message order, choosing a proper Paxos-based

approach seems to be a plausible solution. However, existing Paxos-based approaches

have a severe drawback that they fail to support large-scale distributed systems, because

the message complexity grows dramatically with the increase of the number of system

nodes. As mentioned previously, the applications we study may run on a great number

of distributed parties, so the Paxos-based approaches cannot be directly utilized to solve

this problem.

To this end, we propose Nomad, a consensus approach that achieves fast message

ordering for geo-distributed edge-cloud applications. The main idea of Nomad is to divide

the system into two levels, the cloud level and the edge level, and at each level, Nomad

runs a consensus protocol that fits the network traits of that level. The two protocols

also cooperate to adapt to and take advantage of the workload change in the system. To

summarize, the contributions of this work are fourfold.
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• We formulate a problem of achieving fast message ordering for geo-distributed

delay-sensitive edge-cloud applications, and propose two realistic application sce-

narios to show the significance of studying this problem.

• We design a novel Paxos-based consensus protocol for the edge level, which rapidly

orders the messages in individual edge networks. It dynamically distributes the

leadership of a sequence of Paxos instances among the edge servers, based on

the recent running history, and introduces a cloud-based arbitrator to quickly resolve

the contentions on the edge.

• We design a consensus protocol for the cloud level, which works with the edge-level

protocol as a whole. It adopts a lease-based method to opportunistically transfer the

control from the cloud data centers to the most heavily-loaded edge network, based

on the recent running history.

• We implement a prototype of Nomad, and evaluate it on a testbed. The results

show the high efficiency of Nomad. In particular, the edge-level protocol outperforms

the existing Paxos-based solutions, such as Multi-Paxos [54], Mencius [63] and E-

Paxos [69], under different experimental settings.

4.2 Background

Before elaborating the design of Nomad, we first introduce some preliminaries about edge

computing and consensus.

4.2.1 Edge Computing

Edge computing has been proposed as an extension of cloud computing [84]. Its goal is

to serve end users at the edge of network, providing better network conditions such as

low network latency and high network bandwidth. It has attracted a lot of research effort

in recent years [85, 14, 13, 46, 92, 91, 122, 120, 121].
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Figure 4.1: A hierarchical edge computing architecture.

Figure 4.1 shows a hierarchical edge computing architecture. Client devices, includ-

ing wearables, smartphones, tablets and laptops, are wirelessly connected to the level 1

edge nodes. Level 1 edge nodes are usually wireless access points and cellular base sta-

tions, which are further connected to the level 2 edge nodes via wired links. There could

also be a backend cloud at the core of network. Note that there may be more than two

levels of edge nodes in some architectures. Furthermore, some edge computing archi-

tectures may only have client devices and edge nodes without having a backend cloud.

An edge computing system that possesses one or more backend clouds can also be

called an edge-cloud system, and the applications running on it can be called edge-cloud

applications.

4.2.2 Consensus

Consensus studies the problem of how to achieve overall system reliability in the presence

of a number of faulty nodes in a distributed system. It has been studied for decades but

remains a hot research topic in the academia [35, 73, 37, 53, 54, 56, 55, 12, 63, 69, 60,

47, 74, 28, 124, 17]. Among the existing consensus solutions in the literature, the Paxos-
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Figure 4.2: The main process of the Paxos algorithm.

based ones are widely adopted by the industry [15, 18], because they guarantee strong

consistency during execution, and can work efficiently in many settings.

Figure 4.2 depicts the main process of the Paxos algorithm. There are essentially two

phases in Paxos, i.e., Phase 1 and Phase 2. In Phase 1, the replica that has received a

value from the client sends Prepare messages to the other replicas, and the other replicas

will send back a Promise message if they have not accepted any value. After the initial

replica has received the Promise messages from a quorum, i.e., a majority of the replicas,

Phase 1 succeeds, and the replica will start Phase 2 by sending Accept messages to the

others. Similarly, the other replicas will send back a Accepted message if they haven not

accepted any value. After the initial replica has received the Accepted messages from a

quorum, the value is acknowledged by the system, and the replica will commit it locally as

well as informing the others to commit it. In essence, Phase 1 is for electing the leader,

while Phase 2 is for making the system accept a value.

Some Paxos-based solutions in the literature, such as Multi-Paxos [54], Mencius [63]

and E-Paxos [69], work in the way that they run a sequence of Paxos instances, and

therefore they can be used to determine a unique order on the values received across

the system. Multi-Paxos runs the sequence of Paxos instances with a fixed leader, skip-

ping Phase 1 for all Paxos instances, which greatly reduces the communication costs for
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achieving consensus. However, the fixed leader will become the bottleneck of the sys-

tem. Mencius eliminates this bottleneck by distributing the leadership evenly among the

replicas in a round-robin way. Nevertheless, a slow replica in the system may greatly

affect the performance of Mencius. E-Paxos determines the dependencies on the Paxos

instances, working around this slow-replica problem. It also improves the system perfor-

mance by delaying the resolution of conflicts. However, it imposes more communication

costs, which may lead to worse performance than Mencius in many cases.

4.3 Motivational Scenarios

To better explain the design of Nomad, we first describe the following two application

scenarios as examples.

4.3.1 Internet of Things (IoT) Payments

The Internet of Things (IoT) has grown rapidly in recent years [45]. The concept of IoT is

to manage a massive number of smart devices, including RFID tags, sensors, actuators,

mobile devices and wearables, with a global network infrastructure. Edge computing is

usually considered as the best enabler of IoT systems, because IoT devices possesses

limited hardware resources, and edge computing can serve them with low network la-

tency [14, 13, 91]. As IoT devices become more and more ubiquitous in our daily life,

making digital payments through IoT devices is being considered as an appealing appli-

cation [89, 105]. With IoT payments, customers can make purchases anywhere at any

time, as long as their client devices, such as smartphones and wearables, are wirelessly

connected to a nearby IoT device. This greatly facilitates the purchase process on goods

and services and is possible to substantially increase the income of the merchants.

Figure 4.3 illustrates the edge computing infrastructure of the IoT payment application

in a global range. Big black circles in the figure are cloud data centers, while small yellow

circles are edge nodes. Ellipses illustrate the “backing” range of the clouds; edge nodes
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Figure 4.3: The edge computing infrastructure of the IoT payment application.

falling into an ellipse are backed by the cloud at the center. IoT devices receive payment

requests from customers, and forward them to the nearest edge node. By this means,

payment requests are received by the edge computing infrastructure, and a transaction is

triggered by each payment request. All payment transactions need to be globally ordered,

in order to guarantee the validity of those transactions.

Notably, the payment workload can be quite unbalanced in such a scenario. The

reason is that the payments are usually, if not always, made during daytime, or even only

during several time periods, such as noon (lunch break) and evening (off work). Therefore,

it is likely that in most of the time, only one cloud region receives very heavy workload,

while the others receive very light or even no workload.

4.3.2 Location-based Massively Multiplayer Online Games

Cloud-based online games haven been developed for years, and are still a hot topic in the

gaming industry [66, 72]. Edge computing can undoubtedly help improve the user experi-

ence of cloud gaming, as it provides lower network delay and higher network bandwidth.
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Consider the scenario of a location-based massively multiplayer online game. A game

company is planning to launch an online augmented reality (AR) game in the US. Players

connect their AR devices, such as smartphones and AR glasses, to the gaming service.

The game is location-based, meaning that the map in the game is generated from the real

world, and any player’s character is at the corresponding location of the player’s real world

location. When the player is moving, her character is also moving in the game. When

multiple players meet each other, their characters in the game also meet each other. An

player can fight with other players, cooperate with others to hunt virtual monsters, pick up

virtual items on the road, and so on. The game is separated by cities, and most operations

of the players are done inside cities they are residing in. Inter-city communications do

exist, but are rare. For example, a player in one city may interact with another city only

when she has mastered and is casting some special skill such as “teleport”.

The game is designed to be capable of supporting a massive number of simultane-

ously online players in each city. The game is designed to support a massive number

of simultaneously online players in each city. As the number of such players can be so

huge, the game software is designed to run on the players’ client devices, which performs

the heavy computations such as video processing locally. As the number of such players

can be very large, the game software is designed to run on the players’ client devices,

performing heavy computations such as video processing. This is reasonable consid-

ering the development of the hardware on the client devices in recent years [98]. The

computations that the game software performs are deterministic, meaning that the game

software always yields the same output given that it starts from the same initial state and

is fed the same input. The computations are deterministic, i.e., the game software always

yields the same output given that it starts from the same initial state and is fed the same

input.

For each city, all the relevant operations from the players, regardless of inside the city

(e.g., hunting monsters) or outside the city (e.g., teleporting to the city), should be ordered

and fed into the relevant players’ client devices. Only in this way, can the consistency on
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Figure 4.4: The edge computing infrastructure for a location-based multiplayer online game in the
US. The New York City is shown at the top right part.

the game’s logic for all the players be guaranteed. For this reason, the game company

is supposed to build the gaming service for each city as an operation-ordering service.

The service can be built completely on a cloud basis, but in order to provide satisfactory

user experience under the potentially very high operation rate, relying on edge computing

could be a good choice.

Figure 4.4 depicts the edge computing infrastructure of such a location-based mul-

tiplayer online game in the US. Similarly, big black circles are cloud data centers, and

ellipses are the “backing” range of the clouds at the center. Suppose the three clouds

shown in the figure cover all the cities in which the operation-ordering service is provided.

As an example, one such city, namely the New York City, is enlarged and shown at the

top right part of Figure 4.4. Five edge nodes, represented by small yellow circles in the

figure, are deployed in the city. Clearly, the operation-ordering service for any city, such

as the New York City shown in Figure 4.4, always receives highly unbalanced workload,
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because intra-city operations are overwhelmingly more than inter-city operations.

4.4 The Design of Nomad

In this section, we first formulate the problem using the two application scenarios given

in Section 4.3, and summarize the assumptions made by our solution. After that, we

describe the design of Nomad in detail.

4.4.1 Problem Formulation

For both application scenarios described in Section 4.3, we observe that the edge com-

puting infrastructure, including both the cloud data centers and the edge nodes, is used

to order the data received across the system. More specifically, all the data is initially

received by the edge nodes, and then spread into the system for ordering. The workload

of the applications possesses the following features.

• Every piece of data being ordered is of a small data amount. It is reasonable to

consider that the payment transactions and the operations are always less than 1

KB, and in most cases, only tens of bytes.

• The workload can be very heavy. Take the IoT payment application for example.

It should be designed to support high transaction rates, as it aims to serve many

customers in the global range. Similarly, the location-based game should be able to

support a large number of simultaneously online players, who generate operations

frequently and rapidly.

• The workload can be highly unbalanced. For example, the IoT payment application

serves customers at different time zones, but it is likely that most payments are

made during several fixed time periods. In the location-based online game case,

intra-city operations are far more frequent than inter-city operations.

• The workload may change dramatically from time to time. Notably, the workload of

the IoT payment application may be sometimes concentrated in one region and later
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switches to another, leading to changing workload unevenness. On the other hand,

the workload of the location-based online game does not change so dramatically,

but the workload distribution on the edge nodes may still change from time to time,

e.g., during the daytime, many players appear in the office area, while after evening,

most of they appear in the residential area.

For both applications, it can also be observed that the user-perceived latency is the

most significant indicator of achieving satisfactory user experience. For the IoT payment

application, the customers usually make payments while they are walking or driving. If

the payments cannot be acknowledged in a short time, the benefits of using the applica-

tion will be undermined. Similarly, for the location-based game, if a player performs an

operation, such as attacking a monster, she would expect to see the outcome as quickly

as possible. If the outcome is generated after a long time, the gaming experience will

be greatly damaged. If this frequently happens, the game will be soon deserted by the

players. In fact, edge computing has been proposed as an extension of cloud computing

mainly because it provides lower latency. For this reason, the goal of employing edge

computing in most cases, from our understanding, is to achieve good user-perceived la-

tency for the application.

To summarize, the problem we study is how to achieve fast event ordering in an edge-

cloud computing environment, under the conditions that 1) the events being ordered are

all of small data amounts, and 2) the workload can be very heavy, highly unbalanced,

and ever-changing at both the cloud level and the edge level. Note that we employ the

term “events” to indicate the data being ordered, rather than using any other word such

as “transactions” or “operations”.

4.4.2 Assumptions

To design an effective solution to the problem, we make the following assumptions on the

edge-cloud computing system.
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• At any time, at most a minority of the cloud data centers may become unreachable, i.e.,

experiencing failures or network-partitions.

• A cloud data center may back many edge networks that are geographically separated.

• At any time, at most aminority of the edge nodes in the same edge networkmay become

unreachable, i.e., experiencing failures or network-partitions.

• At any time, for any edge network, at least one living cloud can access all the living

edge nodes in that edge network.

• The round-trip time (RTT) in an edge network may be uneven, i.e., some edge nodes

in the edge network may have a longer network delay when communicating with the

other.

These assumptions are reasonable from our point of view. The first and the third

assumption are similar to those made by other distributed computing solutions [53, 54,

63]. The second one is derived from the application scenarios described in Section 4.3.

The fifth one is derived from the fact that the edge nodes in an edge network may be

geographically scattered and have different network distances to the others. The forth

one, however, needsmore inspections. Wemake this assumption for the failover purpose.

It is possible in the real world that a network partition makes all the edge nodes in an edge

network unreachable to the outside. However, as failover is important in many cases,

service providers, such as those described in Section 4.3, have the motivation to fulfill

this assumption. They may employ some engineering methods, such as setting a backup

satellite network in the system, to work around the full network partitions of the edge

networks.

4.4.3 Consensus on the Edge

According to the discussion in Section 4.4.1, it is clear that the problem we try to solve

is non-trivial. First of all, if the events being ordered are of large data amounts, then

the data transfer time will dominate the user-perceived latency. In such a case, whether
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the ordering solution is a trivial one or a non-trivial one does not make much difference.

However, because the problem states that the events are all small data pieces, a well-

designed solution can significantly outperform the trivial solutions, such as making an

all-to-all communication between all the parties. Second, only using the clouds to order

the events is also a plausible solution, but doing so cannot take advantage of edge com-

puting. The high network latency between the end devices and the cloud will undoubtedly

deteriorate the performance of the event ordering. Last, using physical timestamps to

order the events does not work, because the events should be ordered by the logical

time [52] rather than the physical time to guarantee the correct order of the events.

Given that the workload across the system can be highly unbalanced and sometimes

concentrates at only one edge network, it could be beneficial to opportunistically order

the events at the highly-loaded edge networks, and only involve the remote clouds when

necessary. For this reason, we first suppose that the system only consists of one edge

network and one backend cloud, and discuss how to achieve fast event ordering in such

a situation. A general-case discussion will also be given in the following part of the thesis.

When the system contains only one edge network and one backend cloud, it falls back

to the typical form of distributed system. There are several Paxos-based consensus solu-

tions in the literature that can effectively order the data received by a distributed system,

such as Multi-Paxos, Mencius and E-Paxos. Their goals, however, are to achieve low

latency when the workload is light and high throughput when the workload is heavy. The

goal of our solution, in contrast, is achieve as low user-perceived latency as possible in

any cases, especially when the workload is heavy.

As such, we design a new Paxos-based consensus protocol for ordering the events

on the system containing only one edge network and one backend cloud. Similar to

the existing Paxos-based ordering protocols, our protocol also executes a sequence of

Paxos instances among the system nodes. More specifically, the Paxos instances are

pre-assigned to the edge nodes, i.e., when they are executed, they start from Phase 2

and Phase 1 is considered already finished. As mentioned in Section 4.2.2, Phase 1 is for
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electing the leader while Phase 2 is for proposing a value. Therefore, the leader nodes

of the Paxos instances are artificially determined in advance in our consensus protocol,

which reduces the communication cost and thus improves the ordering performance. This

does not violate the correctness of consensus, as proved by Mencius. Unlike Mencius,

which distributes the leadership of the Paxos instances among the system nodes in a fixed

round-robin way, however, our protocol distributes the leadership dynamically according

to its running history, for achieving as low ordering latency as possible. The design phi-

losophy of our consensus protocol is summarized as follows.

• To adapt to the workload change on the edge, our protocol dynamically distributes the

leadership of the Paxos instances on the edge nodes according to its running history,

assigning more leadership to more heavily-loaded edge nodes.

The intuition of doing so is that the workload has temporal and spatial locality when it is

changing, which can be used to predict the workload condition in the near future.

• Any edge node can proactively skip a Paxos instance that belongs to another if no event

has been committed in this Paxos instance.

The intuition of doing so is to guarantee low latency in the presence of differences be-

tween the predicted workload and the real workload.

• If an edge intends to commit an event but fails for many times because its Paxos in-

stance has been skipped by the others, it delegates the event to the backend cloud.

The intuition of doing so is to reduce the side effects caused by the skipping scheme.

We call this consensus protocol the “adaptive edge consensus protocol”, because it is

designed for the edge network and can adapt to the workload change on the edge. The

protocol divides the sequence of Paxos instances into epochs, i.e., sub-sequences of

Paxos instances with a fixed length Nepoch. At the beginning of each epoch, the protocol

examines the past running history and decides how to distribute the leadership among

the edge nodes for this epoch. When an edge node receives an event from the client,
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it tries to commit the event in its next Paxos instance in the sequence. If an edge node

has already committed an event e in its Paxos instance ins, but some Paxos instances

belonging to the others and ahead of ins in the sequence have no event committed yet,

the order of e is still undetermined, and ins is blocked by the Paxos instances. If ins has

been blocked by the Paxos instances for a long enough time Tskip, the edge node will try

to skip those Paxos instances. If an edge node intends to commit an event, but fails for

Nfail times because its Paxos instances have been skipped by the others, it sends the

event to the cloud. The cloud collects all such events and orders them by their arriving

time. By the end of each epoch, the cloud sends the sequence of all such events it has

collected in this epoch to the edge nodes. When receiving this event sequence, the edge

nodes append it to their local event sequence, and close the current epoch. This ending

interaction between the cloud and the edge nodes is similar but different to the other Paxos

instances in the sequence, and is hence called a “quasi-Paxos instance” in our protocol.

Several details of the protocol should be highlighted. First, the leadership distribution

scheme is deterministic, so at the beginning of each epoch, the edge nodes will generate

the same leadership distribution without communicating with each other. This reduces the

communication cost and improves the protocol performance. Second, unlike the Paxos

instances, the quasi-Paxos instances cannot be skipped. This essentially sets an upper

bound on the latency for the events under contentions, which is comparable to that of

directly using the cloud for event ordering. Third, the edge nodes cannot start the next

epoch until the quasi-Paxos instance of the current epoch is closed, meaning that all the

edge nodes have to wait for the cloud at the end of each epoch. This is for the failure

recovery purpose, which will be discussed later. By carefully choosing Nepoch, the quasi-

Paxos instances will not block the protocol at all, or at least will not block the protocol for

a significantly long time. Last, as the cloud is used to resolve the contentions among the

edge nodes, it is generally called the arbitrator of the protocol.
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Edge Node i, on receiving an event e
01: committed := False

02: cnt_failures := 0

03: while cnt_failures < Nfail do
04: insi := the sequence number of the next available Paxos instance assigned to i

05: send ACCEPT messages (insi, e) to the other edge nodes
06: if receive ACCEPTED messages (insi, e) from a majority of the edge nodes

(including itself) then
07: commit e to insi locally
08: send COMMIT messages (insi, e) to the other edge nodes
09: committed := True

10: break
11: else
12: skip insi (i.e., commit no_ev to insi) locally
13: cnt_failures := cnt_failures + 1

14: if committed = False then
15: send a DELEGATE message (e) to the cloud

Edge Node j, on receiving an ACCEPT message (insi, e)
16: if have never accepted a SKIP message (insi) then
17: send an ACCEPTED message (insi, e) to i

18: else
19: send a SKIPPED message (insi) to i

Edge Node j, on receiving a COMMIT message (insi, e)
20: commit e to insi locally

Figure 4.5: The algorithms involved in proposing and committing an event.
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Edge Node i, when considering that its own Paxos instance insi has blocked the
progress of consensus for a long enough time
01: skip insi (i.e., commit no_ev to insi) locally
02: send COMMIT messages (insi, no_ev) to the other edge nodes

Edge Node j, when believing that a Paxos instance insi belonging to Edge Node i

(i ̸= j) has blocked the progress of consensus for a long enough time
03: send SKIP messages (insi) to the other edge nodes
04: if receive SKIPPED messages (insi) from a majority of the edge nodes (including itself)

then
05: skip insi (i.e., commit no_ev to insi) locally
06: send COMMIT messages (insi, no_ev) to the other edge nodes
07: else if receive a COMMIT message (insi, e) then
08: commit e to insi locally
09: else if receive ACCEPTED messages (insi, e) from a majority of the edge nodes then
10: commit e to insi locally
11: send COMMIT messages (insi, e) to the other edge nodes
12: else if receive an ACCEPTED message (insi, e) then
13: send an ACCEPTED message (insi, e) to i

Edge Node k, on receiving a SKIP message (insi) from Edge Node j

14: if have received a COMMIT message (insi, e) then
15: send a COMMIT message (insi, e) to j

16: else if have accepted an ACCEPT message (insi, e) then
17: send an ACCEPTED message (insi, e) to j

18: else
19: send a SKIPPED message (insi) to j

Figure 4.6: The algorithms involved in skipping an event.
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Cloud, the main processing
01: epoch := 0
02: send CLOSE messages (epoch, {}) to the edge nodes
03: while True do
04: ev_list := {}
05: wait until having received CLOSED messages (epoch) from a majority of the edge

nodes
06: epoch := epoch + 1

07: send CLOSE messages (epoch, ev_list) to the edge nodes

Cloud, on receiving a DELEGATE message (e)
08: append e to ev_list

Edge Node i, on receiving a CLOSE message (epoch, ev_list)
09: send a CLOSED message (epoch) to Cloud
10: commit ev_list to the quasi-Paxos instance of epoch locally

Figure 4.7: The algorithms related to the arbitration by the cloud.

The algorithms shown in Figure 4.5, 4.6 and 4.7 elaborate on how the protocol works

when an event is proposed and committed, when an event is skipped and when the con-

tentions of events are arbitrated by the cloud, respectively. All the quorums involved in

these algorithms are a majority of the edge nodes, such that any two quorums intersect.

Moreover, because at any time, at most a minority of the edge nodes may fail, there will

always be some living edge nodes that can tell the outcomes of the actions that have

ended. Therefore, the correctness of the consensus protocol is guaranteed.

When the current epoch has been closed, there are several ways to determines the

leadership distribution for the upcoming epoch. Three schemes are designed for achiev-

ing this.

• Previous Epoch Only. When using this scheme, the protocol determines the leadership

distribution completely based on the running history of the previous epoch that has just

been closed. To be more specific, suppose there are Neff effective (i.e., non-skipped)

Paxos instances existing in the previous epoch, whileNe,i of them belong to Edge Node

i. Moreover, suppose the cloud commits Ndel events at the end of the epoch, and Nd,i
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of them are delegated by Edge Node i. In such a case, Edge Node i will be the leader

of (Ne,i +Nd,i) ∗Nepoch/(Neff +Ndel) Paxos instances. These Paxos instances will be

arranged from the beginning of the upcoming epoch, interleaving with those assigned

to the other edge nodes as much as possible.

• Previous N Epochs. This scheme determines the leadership distribution by looking

at the running history of the previous N epochs, denoted as Epoch N (the latest),

Epoch N − 1, ..., and Epoch 1 (the earliest), respectively, and each Epoch X (X =

1, ..., N ) is assigned a weight wX = X/
∑N

I=1
I. The protocol first calculates the com-

mitted event ratio for each Epoch X and each Edge Node i, i.e., ratioX,i = (Ne,i +

Nd,i)/(Neff + Ndel)|X . Then in the upcoming epoch, Edge Node i will be the leader

of (
∑N

I=1
wX ∗ ratioX,i) ∗ Nepoch Paxos instances. Clearly, the Previous Epoch Only

scheme is a special case of the Previous N Epoch scheme, i.e., N = 1.

• Previous N Epochs with Random Weights. This scheme is similar to the previous one,

expect that the weights assigned to the epochs are calculated in a (pseudo-)randomized

way. More specifically, for EpochX, the protocol picks a number rX from {1, 2, ..., f ∗N}

with the same probability, where f = 1000 is the broadening factor, and the weight as-

signed to Epoch X is wX = rX/
∑N

I=1
rI . Note that this calculation is actually pseudo-

randomized and hence deterministic, not violating the rules of distributing the leader-

ship.

The first scheme is the simplest one and can rapidly adapt to the change on the work-

load. The drawback of this scheme is that if an edge node has experienced some bad

conditions, such as network jitters, but later recovers, it may take a long time for the edge

node to regain its leadership share in the epochs. The second scheme involves more

previous epochs to deal with this situation, but it may suffer when the workload changes

rapidly. The third scheme adopts a randomized approach, and is thus more resilient to

the transient changes on the workload and on the network conditions than the second

one, but suffers from the same problem as the second scheme.
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Figure 4.8: The adaptive edge consensus protocol. The leadership distribution scheme shown in
the figure is the Previous Epoch Only scheme.

Figure 4.8 illustrates how the adaptive edge consensus protocol works. Three edge

nodes, i.e., EdgeNode A, B andC, compose the edge network, and a cloud at the backend

acts as the arbitrator. Two epochs, Epoch (N – 1) and Epoch N, are shown in the figure.

Suppose the cloud does not commit any event but merely closes Epoch (N – 1) at the

end of it. Because the protocol is using the Previous Epoch Only scheme to distribute

the leadership, in Epoch N, Edge Node A is assigned 6 ∗ 24/12 = 12 Paxos instances,

Edge Node B is assigned 2 ∗ 24/12 = 4 Paxos instances, and Edge Node C is assigned

4 ∗ 24/12 = 8 Paxos instances. Note that after this calculation, the Paxos instances are

scattered as evenly as possible throughout Epoch N.

4.4.4 Working with the Clouds

As mentioned in Section 4.4.3, the adaptive edge consensus protocol is designed for

systems with only one edge network and one backend cloud. When the system con-

tains multiple edge networks and multiple backend clouds, such as those described in

Section 4.3, the adaptive edge consensus protocol cannot work effectively without com-

bining with another cloud-level protocol. For this reason, we have designed a cloud-level

protocol to work around this problem.

We design the cloud-level protocol as follows. The system initially works in the equality
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mode, i.e., all the clouds work together using a Paxos-based consensus protocol, ordering

all the events across the system. Any Paxos-based consensus protocol can be used here,

but the leadership-sharing ones are preferable, such as Mencius. The edge nodes are

only used to forward the events they have received to their backend cloud. Because all

the cloud can see all the events that have been ordered, they can learn the workload

condition of the system. If a cloud notices that in the past Nob events that have been

ordered, more than ratiothresh∗Nob events come from the same edge network it backs, the

cloud will try to make the system work in the master-slave mode. It does so by asking for

a lease from the other clouds using the same consensus protocol for ordering the events.

After the cloud successfully receives the lease approvals from a quorum, it informs the

edge network, and the edge network will work with the cloud using the adaptive edge

consensus protocol. Now the edge network and the cloud become the master, and all the

other parties become the slaves, i.e., the system is working in the master-slave mode.

The protocol is thus called the lease-based master-slave protocol in our solution.

Notably, when the system is working in the master-slave mode, all slaves, including

both the other clouds and the other edge networks backed by the master cloud, will for-

ward the events they have received to the master cloud. The master cloud will order

all such events locally, together with those received from the master edge network for

contention resolving, based on the event arriving time. It will then commit all the locally-

ordered events in the upcoming quasi-Paxos instance, thus determining the global order

of them. After that, the order of all the events will be broadcast by the master cloud to the

slave clouds.

Figure 4.9 shows how the leased-based master-slave protocol works. It is worth men-

tioning that the lease can only be used by the master for Nlease epochs. After the Nlease

epochs, the other parities consider that the lease is expired, and the system will return

to the equality mode unless the master cloud has successfully received an extension for

the lease from the other clouds. The extension will be another Nlease epochs, and the

master can extend the lease for potentially many times. When receiving a lease request
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received by an edge network it backs. It then asks for a lease to
handle the workload at that edge network, through the Paxos-based
consensus protocol.

Forward
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Cloud #2 Cloud #3
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(b) The edge network receives the lease, and works with Cloud #1
using the adaptive edge consensus protocol. Cloud #2 and Cloud
#3 forward the events they have received to Cloud #1, which in turn
commits them into the quasi-Paxos instances.

Figure 4.9: The lease-based master-slave protocol.

or a lease-extension request, a cloud will check if it has more than Nout events that are

not ordered yet. If the answer is yes, it will reject the request. Otherwise, it will accept the

request. Clearly, the lease-based master-slave protocol can adapt to and take advantage

of the highly unbalanced workload in the system, achieving low user-perceived latency

in the scenarios similar to those introduced in Section 4.3. The solution proposed by this

work, i.e., Nomad, is essentially the combination of the adaptive edge consensus protocol

and the lease-based master-slave protocol.
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4.4.5 Dealing with the Failures

As summarized in Section 4.4.2, at any time, a minority of the clouds may fail or become

network-partitioned simultaneously. Similarly, at any time, a minority of the edge nodes in

an edge network may fail or become network-partitioned. It is essential to guarantee the

correctness of Nomad, i.e., when an event has been committed, any party in the system

will not observe a contradicting state of the event at any time in the future. Otherwise,

inconsistency occurs in the system, violating the design rules of Nomad.

When the system is working in the equality mode, all the clouds cooperate with each

other using an existing Paxos-based consensus protocol in the literature. In such a case,

the correctness of Nomad can be guaranteed by the Paxos-based consensus protocol.

When the system is working in the master-slave mode, however, two failure cases

need to be taken into consideration. First, when some master edge nodes fail or be-

come network-partitioned, the correctness of Nomad can be guaranteed. As mentioned

in Section 4.4.3, all actions, including proposing an event, skipping a Paxos instance and

closing an epoch, require the initial party to collect the acceptance from a majority of the

master edge nodes before succeeding. Therefore, at any time, at least one living master

edge node can tell the outcomes of the actions that have ended, so no contradicting state

will occur. Second, when the master cloud has failed, the correctness of Nomad is still

guaranteed, because the master cloud can only commit events with the acceptance of a

majority of the master edge nodes.

Notably, a severe consequence resulted from the failure of the master cloud is that

the process of the Nomad protocol will be completely blocked, because the master edge

nodes have to synchronize with the master cloud at the end of each epoch. In contrast,

other kinds of failures will not block the process of Nomad. To work around this problem,

Nomad treats the slave clouds as the backups of the master cloud. When a slave node

suspects that the master cloud has failed, it will directly contact the master edge nodes,

asking them to accept it as the new arbitrator. After the slave node has collected the
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acceptance from a majority of the master edge nodes, it becomes the new arbitrator, and

works with the master edge nodes until the lease expires. The correctness of this process

is guaranteed by requiring the acceptance from a majority of the master edge nodes.

It should be mentioned that the aforementioned method for arbitrator failover is pos-

sible because at least one living cloud can access all the living master edge nodes at

any time, as assumed in Section 4.4.2. However, a network partition in the real world

may make all the master edge nodes unreachable to the outside, and if no ad-hoc solu-

tion is employed for handling this problem, such as setting a satellite network for backup,

arbitrator failover cannot be accomplished. In such a case, the protocol cannot make

any progress until the arbitrator recovers. Nevertheless, the correctness of consensus

will not be violated, and the protocol will continue working as soon as the arbitrator has

recovered.

4.5 Evaluation

To evaluate Nomad, we have implemented a prototype, and deployed it on a testbed.

Experiments on the prototype shows the performance of Nomad under different situations.

4.5.1 Testbed Setup

We first build an edge-cloud testbed. Three PC servers are used as three clouds, and

several laptops are used as the edge nodes that form an edge network. The edge network

is backed by one of the clouds. The RTT between the edge nodes is set to 10 ms, expect

a slow one, which has a 40 ms RTT to the others. The RTT between the edge nodes and

their backend cloud is 60 ms. As the workload for testing is simulated, the RTT between

the client and the edge is assumed to be 10 ms. The RTT between the clouds is set to

100 ms. The bandwidth between any two parties is set to 100 Mbps, and the message

size is set to 1 KB across the system.
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4.5.2 Performance of the Adaptive Edge Consensus Protocol

After building the testbed, we implement a prototype of the adaptive edge consensus

protocol, with the three leadership distribution schemes described in Section 4.4.3, and

deploy it on the testbed. Nepoch is set to 100. Two types of workloads are simulated. The

first one is a stable one; every edge node stably receives 1,000 events per second. The

second one is a changing one. Every edge node stably receives 500 events per second,

and another workload, which is the sum of all these individual workloads, moves from

one edge node to another in a round robin manner, with a rate of 500 events per second.

For example, suppose there are five edge nodes in the system, denoted as Edge Node

1, 2, ..., 5. In the first second, Edge Node 1 receives 500 + 500 ∗ 5 = 3000 events, and

each of the other edge nodes receives 500 events. In the second second, Edge Node

1 receives 3000 − 500 = 2500 events, Edge Node 2 receives 500 + 500 = 1000 events,

and each of the other edge nodes receives 500 events. In the sixth second, Edge Node

1 receives 500 events, Edge Node 2 receives 3000 events, and each of the other edge

nodes receives 500 events. Then in the seventh second, the workload starts to move

from Edge Node 2 to Edge Node 3, and so on. Using this workload, we simulate the

typical situation of the IoT payment application.

We feed the two workload to our prototype. Five leadership distribution schemes are

tested, i.e., Previous Epoch Only, Previous 5 Epochs, Previous 10 Epochs, Previous 5

Epochs with Random Weights and Previous 10 Epoch with Random Weights. For com-

parison purposes, we also implement Multi-Paxos, Mencius and E-Paxos, and feed the

workloads to them. Note that we assume the edge network can utilize non-FIFO network

links, so for Mencius, piggybacking messages is not allowed. With these settings, two

groups of experiments are conducted. In the first group, the edge network contains 5

edge nodes. In the second group, it contains 7 edge nodes.

Figure 4.10 depicts the results of those experiments. Clearly, the Nomad protocol

outperforms the other three protocols in all settings, especially when using the Previous

87



0

80

160

240

320

A
vg

. L
at

en
cy

 (m
s)

(a) 5 edge nodes, under the stable workload
0

80

160

240

320

A
vg

. L
at

en
cy

 (m
s)

(b) 5 edge nodes, under the changing workload

0

80

160

240

320

A
vg

. L
at

en
cy

 (m
s)

(c) 7 edge nodes, under the stable workload
0

80

160

240

320

A
vg

. L
at

en
cy

 (m
s)

(d) 7 edge nodes, under the changing workload

Nomad: Prev. 1 Only
Nomad: Prev. 5
Nomad: Prev. 10
Nomad: Prev. 5 RW

Nomad: Prev. 10 RW
Mencius
E-Paxos
Multi-Paxos

Figure 4.10: The average user-perceived latency of different consensus protocols under different
settings.

EpochOnly scheme. When using other leadership distribution schemes, the average user

perceived-latency is slightly larger than that of using the Previous Epoch Only scheme.

As the Previous N Epoch and Previous N Epoch with RandomWeights schemes are de-

signed for fast leadership recovery, this means that they work with acceptable overhead.

4.5.3 Performance of the Leadership Distribution Schemes

To determine the effectiveness of the three leadership distribution schemes, i.e., the Pre-

vious Epoch Only scheme, the Previous N Epochs scheme and the Previous N Epochs

with Random Weights scheme, we conduct the following experiment on the prototype.

The edge network is configured to have five edge nodes. The workload is that in the first
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50 epochs, each edge node stably receives 1,000 events per second. Then in the fol-

lowing 10 epochs, one edge node other than the slow one receives no event at all, while

the workload on the others keeps unchanged. After that, the workload on the unloaded

edge node returns to 1,000 events per second. This simulates the situation that an edge

node experiences a transient problem but soon recovers. Figure 4.11 shows the changes

on the leadership share of the temporally unloaded edge node caused by the changing

workload.
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Figure 4.11: The leadership share of a temporarily unloaded edge node.

Clearly, when the Previous Epoch Only scheme is being utilized, the leadership share

changes sharply with the workload change. On the other hand, when utilizing the other

two schemes, the leadership share changes in a moderate manner. Moreover, the Pre-

vious 10 Epochs schemes produce the most stable outcomes, while the results of the

Previous 5 Epoch schemes are in-between those of the Previous Epoch Only scheme

and those of the Previous 10 Epoch schemes. This suggests that when the protocol

takes more previous epochs into consideration, it can resist the transient bad conditions

to a larger extent. On the other hand, this also suggests that the protocol will adapt to the

workload change more rapidly when considering only one previous epoch.
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4.5.4 Performance of the Leased-based Master-Slave Protocol

We also conduct an experiment to examine how the lease-based master-slave protocol

works. Three PC servers are used as three clouds, denoted as Cloud #1, #2 and #3.

Cloud #1 is set to be the backend cloud of the edge network. The edge network is config-

ured to have five edge nodes. The workload is that in the first 5 seconds, every cloud re-

ceives 500 events per second. For Cloud #1, the workload is completely from the backed

edge network, i.e., each edge node in the edge network receives 100 events per second.

For Cloud #2 and #3, we merely simulate the condition that the events are received by

a virtual edge network backed by the cloud. Then in the following 5 seconds, the five

edge nodes backed by Cloud #1 receives 1,000 events per second, so Cloud #1 receives

5,000 events per second, while the workload on the other two clouds keeps unchanged.

After that, the workload on Cloud #1 returns to 500 events per second. This simulates a

situation similar to that of the IoT payment application. Furthermore, ratiothresh is set to

0.5, Nob is set to 2,000, andNlease is set to 10. Mencius is implemented as the consensus

protocol that connects the three clouds. Figure 4.12 shows the changes on the average

user-perceived latency in this process.
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Figure 4.12: The average user-perceived latency of the three clouds.

From Figure 4.12, it can be figured out that the lease-based master-slave protocol
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can adapt to the change on the cloud-level workload very quickly, in about only one sec-

ond for both entering and exiting the high-load phase. This proves that the lease-based

master-slave protocol can work quite efficiently. Note that the lease granted to Cloud

#1 is extended for several times during the high-load phase before being revoked by the

system. Choosing a smaller ratiothresh and a smaller Nob can help the protocol adapt to

the workload change more quickly, but may introduce undesirable overhead if transient

changes on the cloud-level workload frequently occur in the system.

4.6 Conclusions

In this work, we present Nomad, a consensus protocol achieving fast event ordering for

large-scale edge-cloud applications. Nomad consists of an edge-level adaptive consen-

sus protocol and a cloud-level master-slave protocol, which can work together to efficiently

order the events received across the system. We have implemented a prototype of No-

mad and deployed it on a real-world testbed. Evaluation on the prototype reveals that

Nomad outperforms the existing consensus solutions in edge computing environments.
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Chapter 5

Conclusions and Future Work

This dissertation presents our study on edge computing. Specifically, we aim to provide

system support for end users, improving the efficiency and security of their applications.

We investigate three ways of building system support for the application scenarios

in edge computing. We study: 1) how to support the existing, non-edge applications in

edge computing environments without modification, 2) how to facilitate the development

of new edge applications with minimal programming effort while ensuring good efficiency

and robustness of the applications, and 3) how to build an efficient consensus protocol for

edge computing, as consensus is the most important fundamental problem in distributed

computing. We believe that building system support for edge computing in these three

ways will benefit a vast majority of, if not all, application scenarios in edge computing, and

the work proposed in this dissertation makes significant contributions to the state of the

art of edge computing research.

Nevertheless, although less significant in our opinion, there are still some other ways

of building system support for edge computing that are worth being explored. For exam-

ple, how to achieve fast distributed transactions is also an important fundamental problem

in distributed computing. Although it is to some degree related to the consensus problem,

building an efficient transnational system for edge computing is still a challenging and

interesting research mission. Additionally, although we have investigated the aforemen-
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tioned three ways of building system support for edge computing, there is still plenty of

work to do in fully exploring them. For example, in the first project, we only provide sys-

tem support for mobile applications, because we believe that doing so will benefit a great

number of users. However, other existing applications, such as those designed for cloud

computing, are also worth being supported in edge computing environments. Moreover,

in the second project, we have only considered several fundamental services, including

task scheduling and migration, data dispatching and synchronization, and lock manage-

ment. Other fundamental services, such as access control, privacy preserving, metadata

management, etc., are also important in supporting some kinds of edge applications and

worth being investigated.

We summarize as below the lessons we have learned from the three research pro-

jects proposed in this dissertation, which we believe will be helpful for other researchers

in investigating how to build system support for edge computing.

• Identifying the characteristics distinguishing edge computing from other distributed

computing paradigms is essential in designing efficient solutions for edge comput-

ing. As mentioned above, we aim to design an efficient consensus protocol for edge

computing in the third project. There are many existing consensus protocols in the

literature, some of which are well-designed and can achieve good performance for

distributed computing in general, including edge computing. However, we always

believe that an efficient, edge-computing-oriented consensus protocol will outper-

form the existing consensus protocols, because such a protocol can make a good

fit for the unique characteristics of edge computing while the existing ones cannot.

In the end, we have figured out that the network is heterogeneous in an edge-cloud

computing system, which is unique to the edge computing paradigm, and we have

designed a consensus protocol based on this insight. Evaluation on the consensus

protocol shows that it outperforms the existing consensus protocol in edge-cloud

computing environments, justifying our aforementioned statement.
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• There are many available resources that can be utilized to facilitate the research on

edge computing. As mentioned above, in the second project, we design a middle-

ware running atop the edge computing infrastructure. When we evaluate our design,

we need to implement a prototype of the middleware and conduct experiments on it.

If we had implemented the prototype from scratch, it would take a significant amount

of time and effort. Because what we really need is just to verify the effectiveness of

our design, so it is important to build such a prototype with as little time and effort

as possible. There are many available projects for distributed computing in general

and for specialized distributed computing paradigms other than edge computing,

so it is very likely that the researchers can find some candidate projects for their

research, and they can simply implement their prototype systems by making minor

modifications on those projects. In our case, we have implemented a prototype of

the middleware based on OpenStack [75], a well-known cloud computing platform,

with reasonable time and implementation effort.

To conclude this dissertation, we have made significant contributions in building sys-

tem support for the edge computing paradigm. We have identified and investigated three

important ways of building such system support, which will benefit a vast majority of, if

not all, application scenarios in edge computing. We have also figured out the possible

future work on this research topic and shared our experience on how to conduct research

along this line. We believe that edge computing will become increasingly important in the

future, and building system support for edge computing will bring convenience to many

people and benefit the whole society.
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