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ABSTRACT 24 

Echinoderms are favored study organisms not only in cell and developmental biology, but also 

physiology, larval biology, benthic ecology, population biology and paleontology, among other 26 

fields. However, many echinoderm embryology labs are not well-equipped to continue to rear the 

post embryonic stages that result. This is unfortunate, as such labs are thus unable to address many 28 

intriguing biological phenomena, related to their own cell and developmental biology studies, that 

emerge during larval and juvenile stages. To facilitate broader studies of post-embryonic 30 

echinoderms, we provide here our collective experience rearing these organisms, with suggestions 

to try and pitfalls to avoid. Furthermore, we present information on rearing larvae from small 32 

laboratory to large aquaculture scales. Finally, we review taxon-specific approaches to larval rearing 

through metamorphosis in each of the four most commonly-studied echinoderm classes –asteroids, 34 

echinoids, holothuroids and ophiuroids. 

 36 

 

KEYWORDS 38 

urchin, sea star, brittle star, sea cucumber, planktotrophy, lecithotrophy, feeding, non-feeding, 

husbandry, culture 40 
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WHY CULTURE ECHINODERM LARVAE? 46 

 

Most of the chapters in these volumes are focused on applying cell and molecular biology 48 

techniques to echinoderms. In the past, the vast majority of such studies have involved experiments 

with embryos, due to the ease of obtaining large quantities of synchronously developing, optically 50 

clear zygotes from a diversity of species. Nevertheless, when developmental studies of echinoderms 

cease during late embryonic development, they leave out an enormous amount of interesting 52 

biology: the development of diverse functioning organ systems (e.g., digestive, nervous, excretory); 

the emergence of larval swimming and feeding behaviors, phenotypic plasticity, cloning, and 54 

regeneration; extensive changes in development that accompany independent evolutionary losses 

of larval feeding in diverse lineages; a profound shift in symmetry from bilateral to pentameral; 56 

determination of the key life-history transition of where and when to settle at the end of larval 

development; and the dramatic habitat shift from planktonic life to the sea floor (Chia & Burke, 58 

1979; Elphick & Melarange, 2001; Hodin, 2006; Lawrence, 2013; Lyons et al., this volume;  

Strathmann, 1971, 1979; Su et al., this volume; Wray, 1996; Yaguchi et al., this volume). Indeed, early 60 

developmental processes are interesting in part because they affect the morphology of both larvae 

and adults; as such, studying post-embryonic stages is necessary for a full appreciation of the 62 

embryonic processes themselves. Furthermore, as other authors in these volumes have argued, 

rearing larvae and juveniles is critical to our ability to implement some modern methods in genetics, 64 

as well as aquaculture.  

 66 

Among the features that make echinoderms excellent study organisms are their remarkable 
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diversity in adult morphology and life history, in the context of well-resolved evolutionary 68 

relationships and a robust fossil record stretching back into the early Cambrian (Smith, 1997 for 

review). As we describe in the sections below, one can rear large numbers of larvae at low cost 70 

through metamorphosis, consistently and in many cases synchronously, by following a few basic 

procedures. We hope that this chapter will pull back the curtain on echinoderm larval rearing, 72 

revealing it as an undertaking that any motivated researcher can master. Our aim is to encourage 

laboratories to take full advantage of the complex life histories of the organisms that they study to 74 

address the widest array of questions relevant to their particular research interests. 

 76 

There are nearly as many techniques for successfully culturing larvae as there are biologists working 

with them, and protocols always need to be adapted to suit the available species, space and 78 

materials. Indeed we co-authors have gleaned many useful tips from one another while assembling 

this chapter. Therefore, we will not provide overly specific step-by-step instructions herein, but 80 

instead offer our collective experience with guidelines to follow and pitfalls to avoid in the hopes of 

promoting more widespread studies of the larvae and early juveniles that all too often end up down 82 

the embryologist's sink drain. 

 84 

GENERAL CULTURING METHODS 

 86 

We here outline methods that, in our experience, apply to echinoderm larvae in general.  We discuss 

taxon-specific methods in subsequent sections. 88 

 

Top Five Things to keep in mind for larval culturing (in order of ontogeny) 90 
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1) Use clean, 'embryo safe' containers and high-quality seawater 92 

 

Larvae need to be cultured in containers, which either:  94 

a) are new;  

b) have never been used with any detergent, toxic chemicals, heavy metals, etc.; or  96 

c) have been cleaned in such a way as to completely remove any such compounds (see below). 

 98 

We mark such containers clearly to indicate that they are safe for embryos or larvae, and are 

distinguished from other laboratory containers. Containers can be glass (preferred) or plastic. Note 100 

that plastic containers –particularly when new or after repeated use– could leach compounds into 

cultures that may impact larval development. 102 

 

To clean containers between uses, wash thoroughly with tap water and never use any detergents. A 104 

brush or scrubbing pad can be used to remove adherent materials or other debris. Then, rinse with 

distilled, deionized or reverse-osmosis filtered water (all henceforth referred to here as "dH2O”). 106 

 

Note that new glass or plastic containers should be washed in the manner described above before 108 

first use: the manufacturing process can leave a residue. We recommend smelling a new container 

before use; it should be free of any powerful odor. Likewise, some types of laboratory plasticware, 110 

when stored, will off-gas plastic compounds. We thus recommend storing containers without lids 

when possible, and rinsing thoroughly after extended storage. 112 
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Glassware that has either been used with potentially harmful compounds (see "b" above) or is of 114 

unknown origin can be made safe for use by acid washing with 1N HCl for 10 min, followed by 

thorough rinsing in tap water, then several rinses in dH2O. The acid can be saved and used 116 

numerous times before being disposed as hazardous waste. Plasticware should never be acid 

washed since that can compromise the surface of the plastic and thus lead to compounds being 118 

increasingly leached into subsequent embryonic and larval cultures. 

 120 

In wet lab settings with access to flowing seawater (SW), another method for cleaning new or mildly 

compromised glassware or plasticware is to soak the containers in running SW for 1-2 weeks; a 122 

brush may be necessary to remove the biofilm that grows on the inside of the containers. 

Containers exposed to toxic compounds should not be rinsed in this way to avoid discharging 124 

harmful substances into the ocean. If a laboratory plans to expose larval cultures on a regular basis 

to certain compounds that would otherwise make those containers unsuitable for standard 126 

cultures, they can be marked and maintained as such.  

 128 

We recommend culturing larvae in high-quality natural SW deriving from offshore to minimize 

effects of pollution and fluctuating salinity from terrestrial sources. Some degree of filtration is 130 

needed, in particular to remove potential predators. Minimally, this can involve the use of bag filters 

or unbleached coffee filters. Filtration through a 5-µm mesh will further remove most 132 

phytoplankton cells, which may be preferred for controlling food levels in a consistent manner, and 

any toxic algae (but not their dissolved products, which may affect embryos or larvae). If the 134 

researcher wishes to retain the natural bacterial biota, the 5-µm mesh is a good choice. However, 

many researchers may wish to remove bacteria to reduce the likelihood of bacterial overgrowth in 136 
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closed cultures, in which case we recommend filtration through a 0.45- or 0.2-µm mesh filter. See 

Strathmann (2014) for details. 138 

 

If natural SW is unavailable, commercially available artificial seawater (ASW) yields good results 140 

when dH2O is used to make up the ASW (see Strathmann, 2014 for protocols). We recommend ASW 

formulations that include a diversity of trace elements; we have observed that simple ASW recipes 142 

such as the Marine Biological Laboratory (MBL) standard ASW (Cavanaugh, 1975) do not support 

healthy long-term growth in echinoderms. Once the salts have gone into solution, we recommend a 144 

0.2 - 0.45 µm filtration step, followed by salinity adjustment using dH2O. It is also critical to allow 

freshly made ASW to off-gas CO2 (achieved by simply leaving it in open or loosely-capped 146 

containers) for at least 12 h before use in cultures.  

 148 

2) Rear larvae at low density 

 150 

Although it is tempting to culture larvae at high density (more potential study material in a smaller 

total volume) we strongly advise against succumbing to this temptation. Many studies have noted 152 

that larvae develop faster and more consistently when cultured at lower density (e.g., Suckling, 

Terry & Davies, 2018), particularly during late stages. Larvae in high-density, closed system cultures 154 

suffer from more rapid accumulation of waste products leading to poor water quality, frequent 

direct interactions with other larvae, and, for those larvae that require food to complete 156 

metamorphosis (i.e., planktotrophic development), less food per larva. Dying larvae in crowded 

conditions can create a positive feedback loop of larval death. High densities (sometimes extremely 158 

high, in excess of 10 larvae per ml) are of particular concern in studies where a stressor – such as 



 

8 

high temperature or low pH – is applied. In such cases, the effects of the stressor may not be 160 

distinguishable from possible interaction effects with crowding. Natural zooplankton densities in 

the sea range from ~1 individual per 10 L to ~1 individual per 5 mL (Kacenas & Podolsky, 2018; 162 

Roman, Holliday & Sanford, 2001). Although the lowest densities here are impractical for laboratory 

culture,  attempts to at least approach the natural range seem prudent. 164 

 

In species in which pre-hatching stages are negatively buoyant and sink to the bottom, initial 166 

culture density should be kept low enough that pre-hatching stages do not form a layer more than 

one embryo thick, to allow sufficient oxygen diffusion to all embryos and to promote synchronous 168 

development. Alternatively, cultures can be gently stirred to keep embryos suspended.  

 170 

Once embryos have hatched, decant embryos swimming near the surface into a clean container, 

then stir and collect a few replicated aliquots to estimate the number present. Transfer embryos 172 

into natural filtered seawater (FSW) or ASW, aiming for a density of ≤1 embryo per ml for early 

stages, once feeding has been initiated (for those larvae requiring food). Lower densities during 174 

early larval stages may lead to more rapid and synchronous growth and better survival as larvae 

feed and begin excreting waste products.  176 

 

At later stages, the density of larvae in culture is ideally 1 larva per 4 ml or lower. Unusually large 178 

larvae [e.g., those of diadematoid echinoids with extremely long larval arms (see Fig. 8G below), 

some ophiuroids, giant seastar larvae in the genus Luidia) should be cultured at lower density still: 180 

no more than 1 larva per 10 ml. Our anecdotal observations in a diversity of echinoids indicate that 

rapid reductions in density can induce larval cloning (c.f., McDonald and Vaughn, 2010), which 182 
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makes cultures less synchronous. To avoid this, we recommend gradually reducing culture density 

over the course of several days. It is difficult to propose a common benchmark for when, during 184 

larval development, to undertake this density reduction. As a rule of thumb, we have found that 

lowering the density about 1/3-1/2 of the way through larval development seems to yield good 186 

results. 

 188 

Embryos and larvae of species that do not require food to complete metamorphosis (i.e., 

lecithotrophic development) should be cultured at low density from the outset. Such embryos 190 

and larvae are often positively buoyant, accumulating at the water surface, and crowded cultures 

can lead to increased mortality, with subsequent release of yolk and rapid fouling. In open culturing 192 

systems, with constant flushing of waste products (see below), the need for low density culture of 

feeding and non-feeding larvae may not be as critical. 194 

 

3) Stir or mix cultures gently and constantly 196 

 

Mixing of cultures is necessary for optimal larval growth. Mixing oxygenates cultures, helps to 198 

maintain consistent temperatures within cultures, and keeps food and larvae evenly distributed in 

the containers. We present the specifics of mixing and stirring systems in the sections below 200 

regarding small, medium and large-scale culturing. 

 202 

If larvae are reared in replicate experimental vessels, after every water change the position of all 

vessels in the culture area should be rotated. This allows larvae in the various treatments to 204 

experience all possible conditions in the sea table or environmental chamber and helps reduce 
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among-container variation (i.e., "beaker effects") during development.  206 

 

4) High quality food in, high quality larvae out 208 

 

Food sources for cultures of planktotrophic larvae vary, but ideally a mixture of live algal species is 210 

provided (Castilla-Gavilan, Buzin, Cognie, Dumay, Turpin & Decottignies, 2018; Ren, Liu, Dong & 

Pearce, 2016; Scholtz, Bolton & Macey, 2013; M.F. Strathmann, 1987; Strathmann 2014). A commonly 212 

used mix for tropical and temperate echinoderm larvae includes all three or pairs of the following 

algae: Rhodomonas lens, Dunaliella tertiolecta and Isochrysis galbana. A blend of Chaetoceros, 214 

Chlorella, and Pyranimonas works well with temperate echinoderm larvae (Zhang, Song, Hamel & 

Mercier, 2015). Proteomonas sulcata has been used successfully with tropical echinoderm larvae 216 

(Wolfe, Graba-Landry, Dworjanyn & Byrne, 2017). Each algal species can also be used individually, 

but slower or less synchronous larval development may result.  218 

 

The appropriate concentration of food to add to cultures and the frequency of replenishing food 220 

depends on a variety of factors. The goal should be to prevent larvae from depleting their algal food 

supplies between water and food changes (usually every 1-2 d; see above); larvae should always 222 

have visible algal cells in their guts. Most echinoderm larvae cultured at low densities (≤1 per ml; see 

above) grow rapidly at concentrations of 5000-10000 algal cells per ml (with algal cells of ~10 µm in 224 

diameter), with food replenished every 2-3 d. However, if larval size or density in cultures is high, or 

food is changed infrequently, larvae should be provided higher concentrations of food. Likewise, if 226 

algae with diameters significantly smaller than 10 µm are used, the amount of food should be 

scaled up proportionately to the volume of the individual algal cells. 228 
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To feed larval cultures, briefly and lightly centrifuge algal cultures, discard the supernatant algal 230 

growth medium, and resuspend algae in FSW or ASW. Care should be taken to avoid forming too 

hard a pellet during centrifugation as this will kill algae; dead algae forms a recognizable plume 232 

upon resuspension. A few trials will yield an appropriate centrifugation time and speed for 

concentrating algae using the available equipment. Estimate algal concentration in this stock 234 

solution with a hemacytometer or flow cytometer, then add the appropriate volume to each culture 

vessel to achieve the desired initial concentration. See Strathmann (2014) for further details. Note 236 

that a centrifugation step is not technically required, but we recommend it in order to limit the 

introduction of the algal growth medium into larval cultures.  238 

 

Algae cultures, free of pathogens and contaminants, are imperative to the successful rearing of 240 

planktotrophic larvae. There should be regular routine screening and cleaning of stock algae 

cultures. As needed, new algae cultures can be obtained from a reputable source, (e.g., in the USA 242 

the UTEX Culture Collection of Algae and the National Center for Marine Algae and Microbiota, 

Aqualgae in Europe, and the Australian National Algae Supply Service). F/2 –a medium in which SW 244 

is enriched with nutrients, trace elements and vitamins to support algal growth– is an appropriate 

culture medium for most microalgae (diatoms may require additional compounds, notably silica). 246 

FSW or ASW should first be sterilized either by autoclaving or microwaving, and then cooled to 

room temperature before adding the concentrated components of the f/2 medium (pre-mixed 248 

concentrate is available commercially, or can be made from published recipes, e.g., Guillard, 1975), 

and then inoculating the new medium with algal cells. Cultures typically grow well at room 250 

temperature, either under 12:12 grow lights or in indirect light near windows. Stock algae cultures 
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of many species can be kept as cool as 10°C (with grow lights) for long term maintenance. Note that 252 

natural plankton can also be used as a food source if algal cultures are unavailable or if more natural 

feeding regimes are desired. See Strathmann (2014) for more details. 254 

 

While exposure to light is essential for healthy algal cultures, it is not clear that larvae need or 256 

benefit from lighting, though this has not been well-studied. Successful larval development has 

been reported with a variety of light conditions, including ambient light, timed full spectrum 258 

fluorescent lights and complete darkness. Milonas, Pernet & Bingham (2010) report some surprising 

differences in growth trajectory in echinoid larvae raised in 12:12 light regimes versus those in 260 

complete darkness. Montgomery, Hamel & Mercier (2018) highlighted the role of light intensity and 

wavelength on larval swimming behavior. 262 

 

5) Clean cultures gently  264 

 

Water changes may be accomplished by reverse filtering the water from cultures a mesh size 266 

smaller than the size of the larvae. In very small cultures (a few hundred milliliters per container or 

less), equipment for reverse filtration can consist of a turkey baster and a filter basket (e.g., a plastic 268 

beaker with the bottom cut out and replaced with a Nitex mesh screen). In larger cultures (> 0.5 L), 

we recommend a reverse filtration apparatus like the one shown in Figure 1A: a 50-ml conical tube 270 

with a small hole cut in the bottom, and a Nitex mesh screen affixed to the opening. A line of tubing 

is inserted snugly in the hole in the bottom and into the conical tube (see also Leahy, 1986). The 272 

smaller the inner diameter of the tubing, the slower and gentler will be the reverse filtering process. 

With this method, upwards of 95% of the culture water can be exchanged at each water change 274 
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(see Fig. 1B).  The larvae can then be poured into a smaller vessel for examination in a binocular 

microscope, or selection of a subset for fixation, biochemical analysis, etc. 276 

 

Forward filtering of larvae, where the entire volume of the cultures is passed through a Nitex filter 278 

basket, is often used in medium and large scale culturing systems. We have also successfully used 

forward filtration in small scale culture of certain robust larvae, as detailed below.  280 

 

Frequency of water changes is dependent on a number of factors, including larval density, rearing 282 

temperature and developmental mode (planktotrophy versus lecithotrophy). Detailed suggestions 

for water change frequency can be found in the sections below on small, medium and large scale 284 

culturing methods, as well as in the sections on taxon specific approaches that follow. 

 286 

When larvae are concentrated during water changes, the researcher may wish to select a few larvae 

for more detailed microscopic examination. To visualize live, ciliated larvae in a compound 288 

microscope, the larvae need to be immobilized but not crushed. Our favored method to accomplish 

this is to use modeling clay to raise the cover glass slightly above the surface of the slide.  290 

 

First, one or more larvae are transferred along with a small drop of SW onto a slide. Next, the four 292 

corners of a cover glass are scraped gently through a soft piece of modeling clay (dry or brittle clay 

will crack the cover glass during this operation) so that very small amounts of the clay are visible in 294 

each of the four corners. This raised cover glass is then lowered gently onto the sample. If the space 

under the cover glass is too tall, the larvae will continue to swim. In that case, the cover glass can be 296 

carefully pressed down until the larvae are trapped but not crushed. After observations, the cover 
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glass can be lifted and the larvae returned to their culture vessels if desired; Heyland & Hodin (2014) 298 

have shown that such "post-observation" larvae subsequently develop normally, and at the same 

rate as their unmanipulated siblings. For other microscopy methods for examining larvae, see M.F. 300 

Strathmann (1987) and R.R. Strathmann (2014). 

 302 

 

Small-scale culturing methods 304 

 

Hundreds to thousands of echinoderm larvae can be cultured in FSW or ASW in 2-4 L containers. 306 

Even smaller scale cultures (e.g., 250 ml to 1 L) are often desirable when greater numbers of 

replicates or treatments are needed, though the smaller volumes mean that fewer larvae can be 308 

maintained per replicate container.  Many species can be kept at room temperature (20-22°C), but in 

other cases larvae require cooler or warmer temperatures. In locations where flowing SW is available 310 

at the ambient local ocean temperatures, standing culture containers in aquaria work well. 

Alternate approaches include standing cultures in chilling or heating water baths, or using constant 312 

temperature rooms or incubators for cultures. 

 314 

Stirring in small-scale culture can be accomplished by swinging paddles (Fig. 1C), airlift-droplet 

stirrers, small rotating paddles (M.F. Strathmann, 1987), or other forms of agitation, such as shaking 316 

incubators or gyratory shaker platforms (Aronowicz, 2007). In small-scale closed cultures, we 

recommend that water changes generally be done approximately every other day, though daily 318 

water changes may be required if higher than ideal densities are needed. Daily water changes may 

also be desired in warmer temperature closed cultures, where evaporation and harmful bacterial 320 
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and protist growth are a greater concern. 

 322 

The following reverse filtration water change protocol greatly reduces the level of unwanted 

particles (e.g., decaying algal food) at each water change while minimizing loss of larvae. Such 324 

unwanted particles at water changes can interfere with larval feeding (Lizárraga, Danihel & Pernet, 

2017) and could be a source for bacterial and protist growth. In this protocol, the remaining water in 326 

a culture vessel after reverse filtration is first poured into one bowl. The empty culture vessel is 

rinsed (e.g., with a squirt bottle) thoroughly with FSW or ASW and those rinses are poured into a 328 

second bowl; the reverse filtration apparatus and screen is also rinsed into this second bowl with 

FSW or ASW. This second bowl will now contain the vast majority of unwanted particles and a 330 

handful of larvae, the latter of which can be transferred manually into the first bowl, and the 

remaining contents of the second bowl discarded. The first bowl can now be further cleaned, if 332 

desired, by manual removal of remaining unwanted particles, and then the larvae returned to their 

cleaned and refilled culture vessel. 334 

 

An alternative protocol is forward filtration, which has been used successfully in small-scale 336 

culture of echinoid, asteroid, and ophiuroid larvae (Fig. 2; Leahy, 1986). This technique uses a filter 

basket made from a beaker with the bottom cut off and replaced with an appropriately-sized Nitex 338 

mesh (i.e., significantly smaller in mesh size than the larvae). The filter basket stands in a bowl that is 

wider and shorter than the sides of the basket. The contents of the culture are gently poured into 340 

the basket, the water and waste products are then flushed through the bottom of the basket and 

into and over the sides of the bowl; the larvae remain in suspension within the basket. The culture 342 

vessel is washed, refilled, food is added, and the larvae are returned to the culture vessel. This 
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forward filtering protocol is rapid, and when done carefully (including daily if needed), results in few 344 

larvae being lost. It is also an effective method to lower the density of ciliates or other protists. Note 

that especially fragile larvae (e.g., ophioplutei with slender arms, such as Ophiotrix spp., and 346 

diadematoid plutei) may not be amenable to this forward filtering technique. 

 348 

An important distinction is whether the embryos and larvae are positively or negatively buoyant. 

For species with negatively or neutrally buoyant larvae the shaking or mixing methods described 350 

above can be applied; modifications are needed for species with positively buoyant larvae 

(Aronowicz, 2007). For example, yolky embryos and larvae that do not require algal food can be 352 

kept in plastic tea infusers where oxygen can enter through the mesh if kept in a larger aquarium or 

flow-through SW system. Alternatively, embryos and larvae can be enclosed in roller bottle culture 354 

systems filled to the brim, and thus without air volume. The larvae will be protected from capture or 

rupture in the surface tension and from damage by paddles. Longer culture periods between water 356 

changes using the roller bottle system have been successfully employed for the planktotrophic sea 

urchin Lytechinus variegatus (Tom Capo, pers. comm.) with two modifications: (1) larvae are 358 

maintained under sufficient light to support continued algae growth within the culture vessels; and 

(2) the openings of the bottles are secured with parafilm followed by plastic wrap and a rubber 360 

band. This latter presumably allows sufficient gas exchange to avoid oxygen depletion, something 

also provided by the algae included as food.  362 

 

Short-term culturing (a few days at most) can also be done in multi-well plates, shot glasses or petri 364 

dishes. This approach is particularly useful when individual larvae need to be monitored (e.g., for 

larval cloning; McDonald & Vaughn, 2010). It is recommended to provide a minimum of 1 ml of 366 
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water with algae per larva and change water daily. If possible, such containers should be agitated, 

for example, with a shaker platform set to fewer than 80 rotations per minute or with a plankton 368 

wheel. For tropical species, water changes using this method may need to be conducted more than 

once per day to limit harmful bacterial or protist growth. Note that tissue culture-treated multi-well 370 

plates should be washed thoroughly before first use, especially taking care to remove the tissue 

culture treatment from the surface: treated well plates have been shown to be biologically active 372 

(Herrmann, Siefker & Berking, 2003). As above, to avoid negative interactions with plasticware, we 

recommend glass for long-term cultures when possible. 374 

 

Finally, if flowing SW is available, larvae can be reared in small containers with filter windows to 376 

prevent loss of larvae. The larvae are supplied with SW though a dripper tap system. The dripper 

valves used in garden watering systems are very useful in this context (Kamya, Dworjanyn, Hardy, 378 

Mos, Uthicke & Byrne, 2014). This works well for both planktotrophic and lecithotrophic larvae. For 

the former, the system can be periodically turned off to allow larvae to feed on added 380 

phytoplankton. 

 382 

 

Medium-scale culturing methods 384 

 

If more than a few thousand late stage larvae are required, a medium-scale culturing method may 386 

be useful. One such system is pictured in Figure 3: a 75-L cylindrical culturing tank with gentle 

aeration to maintain gas exchange, prevent stratification and maintain the algae and as many as 388 

20K larvae in suspension. At the bottom of the tank is a valve that is opened to drain the tank at 
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water changes, every 2-3 d. The water is drained slowly through a Nitex mesh basket of a mesh size 390 

significantly smaller than the size of the larvae. The mesh basket (e.g., a large plastic beaker with the 

bottom cut off and replaced with the appropriately-sized Nitex mesh, or a 30-cm wide plumbing 392 

tubing with a Nitex mesh similarly affixed at one end) is taller and narrower than a bucket in which it 

is sitting. As the water is drained from the tank, it passes through the mesh and into and 394 

overflowing the sides of the bucket; the larvae are always maintained suspended in water inside the 

mesh basket. Once recovered, the larvae can be examined while the tank is cleaned if needed, 396 

refilled with FSW or ASW and re-stocked with algae. Then, the larvae are returned to the tank. 

 398 

Because late-stage larvae of some species might settle on the sides of the column, the researcher 

employing this system might consider moving late-stage larvae into smaller vessels for settlement 400 

and subsequent study. 

 402 

An alternative method of medium-scale culturing (which can also be modified for small or large 

scale applications), is a constant flow-through system. Here, there is no need to change water, as 404 

clean SW is being constantly circulated through the system. In one design, round 4-L plastic 

containers with perforated and meshed walls (see below) are placed inside a larger tank supplied 406 

with running ambient SW (approximately 20 L per h). This suits laboratory scale cultures in the 

context of basic (Gianasi, Hamel & Mercier, 2018a; Montgomery, Hamel & Mercier, 2017, 2018) and 408 

applied research (Gianasi, Hamel & Mercier, 2018b). The size of the comtainers can be scaled up as 

needed; black containers provide a darker environment, which may be beneficial both for 410 

encouraging settlement in some larvae and for locating recently settled juveniles. In order to ensure 

a constant flow of SW into the rearing vessels, holes (~40 cm2) are cut out along the walls close to 412 
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the bottom of the round containers and covered with mesh (chosen to be as large as possible while 

retaining the embryos and larvae). The parameters of the SW are left to fluctuate with ambient 414 

conditions, including temperature. 

 416 

The main challenge here is providing food, as food will be flushed through the system at the same 

rate as the water flow. Two solutions that have proven effective are: 1) a drop-by-drop system 418 

where food is provided continuously; and 2) punctuated pulses of food several times a day, with or 

without temporary cessation of water flow through the cultures during feeding bouts (see Mercier & 420 

Hamel, 2013). As mentioned previously, the best way to determine that an appropriate amount of 

food is being added in any culturing system is to examine the larvae carefully throughout larval 422 

development. 

 424 

Overall, flow-through culture requires very little maintenance. In systems that use natural SW, the 

meshed windows must be cleaned weekly to maintain optimum water circulation, and the bottom 426 

of the vessels must also be vacuumed (i.e., by siphoning through a narrow diameter tubing), on a 

regular basis to remove debris and dead embryos and larvae. Note that organisms smaller than the 428 

mesh size will inevitably enter such cultures. 

 430 

 

Large-scale culturing methods 432 

 

In an aquaculture context, or if hundreds of thousands of larvae or juveniles are otherwise required, 434 

a large-scale culturing technique should be employed. In many ways, larger tanks are more 
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forgiving and easier to work with than smaller tanks: temperature and pH tend to be more stable, 436 

and there are fewer replicates and tanks to monitor and clean. However, when we move to larger 

cultures the stakes are higher, with 'more eggs in the same basket.' As tanks get larger, flow 438 

dynamics change, which could be a source of stress on larvae or otherwise lead to changes in larval 

behavior.    440 

 

Simply put, scaling up requires more of everything: food, water, electricity, tanks, space, labor and 442 

patience. It is important that pumps, compressors, blowers, pipes, filters and sieves be sized 

correctly as you increase scale. It is vital that the broodstock is healthy, and that the researcher be 444 

conscious of the "Top Five Things" suggested above. 

 446 

We will give an example here based on the Ānuenue Urchin Hatchery in Oahu, Hawai'i, where the 

collector urchin Tripneustes gratilla is cultured from egg to juvenile in about 23 d. Larvae are housed 448 

in 200-L conical bottom tanks provided with steady but gentle aeration (see Medium-scale 

culturing methods section, above). 450 

 

The following routine is repeated daily: 452 

• A known volume of water is sampled first thing in the morning to measure overnight 

phytoplankton consumption and larval density, health and growth. 454 

• Larvae are fed fresh food to hold them until the daily water exchange.  

• 200-L tanks (Fig. 4A) are drained down to 100 L with a Banjo screen filter (Fig. 4B).  456 

• Water is exchanged –using clean, pH adjusted, UV sterilized FSW– at a rate of 5 L per min for 

60 min (i.e.,  a 300% water exchange). 458 
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• Tanks are refilled; larvae are fed a base quantity of cultured phytoplankton. 

• A water sample is taken 2-4 h later to determine phytoplankton density and estimate 460 

feeding rate.  

• If necessary, larvae are fed again at the end of the day. 462 

   

Care must be taken during water exchanges and tank changes to insure that larvae do not get 464 

injured or stuck to sieves or screens.  Therefore, if higher draining rates are required, a greater 

surface area of the sieve or mesh is needed. 466 

 

Large-scale culture vessels need to be cleaned and sanitized regularly, while ensuring that larvae 468 

never come into contact with cleaning agents. Chlorine, iodine or acid may be used to sanitize 

equipment. Any of these or ozone may be used to clean plumbing. Viricides such as Virkon Aquatic 470 

may be used in footbaths and to sanitize walls and floors in larval labs as well as phytoplankton labs. 

One effective protocol is to use 12.5% sodium hypochlorite (bleach) for most disinfecting 472 

procedures: it is inexpensive, easily acquired, approved for use in agriculture and food systems, can 

be neutralized with sodium thiosulfate, and is quite effective. Appropriate protective equipment 474 

should be worn.  

 476 

With larger systems, it is important to implement “clean in place” methodologies, including 

benchtops and the 200-L tanks. When possible, the entire system should be sanitized from end to 478 

end. Saltwater plumbing and aeration supply plumbing should be cleaned frequently. Saltwater 

supply lines can be flushed with freshwater daily and should be sterilized between larval cycles, as 480 

should aeration systems. Smaller, unattached parts of the system should be broken down and 
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placed in a chlorine bath, including sieves, beakers, pitchers, Banjo screens, and siphon tubes. It is 482 

just as vital to make sure that all equipment is free from bleach before putting it back into service 

(Hill, Berthe, Lightner & Sais, 2013). 484 

 

Note that the example outlined above is rather modest in size relative to many aquaculture 486 

operations, which can use 1000 to 20000-L tanks (or even greater) for larval culture, for instance 

those employed for the culture of commercial holothuroids (e.g., Mercier & Hamel, 2013; Yang, 488 

Hamel & Mercier, 2015). Either regular water changes and siphoning of the bottom of the tanks to 

remove dead larvae and debris are performed every other day (with similar methods as described 490 

above), or a flow-through system of SW exchange is used. To minimizes manipulations and 

decreases stress to the larvae, some laboratories start the culture in vessels that are only one third 492 

full and simply add more FSW or ASW at regular intervals until the vessel is full, after which water 

changes can be made for the remainder of the culture period (Zhang et al, 2015).   494 

 

 496 

TAXON SPECIFIC APPROACHES 

 498 

In the following sections, we detail specific advice and approaches for culturing larvae of the four 

most-studied classes of echinoderms: the Asteroidea (sea stars), Echinoidea (sea urchins, sand 500 

dollars and kin), Holothuroidea (sea cucumbers) and Ophiuroidea (brittle stars and basket stars). 

Note that many of the methods outlined below in a given section might apply equally well to larvae 502 

from the other three classes. For information on collection, spawning, and fertilization of each of 
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these four classes, see Chapter 1 in this volume on "Obtaining animals and gametes for 504 

embryological studies of echinoderms". See also Chapter 6 in this volume for more details on the 

sea urchin Lytechinus pictus. Because of the dearth of studies (especially recent studies) on Crinoidea 506 

(feather stars and sea lilies; the fifth extant echinoderm class), and in the interest of space, we here 

refer the interested reader to Holland (1991), Balser (2002) and Amemiya, Hibino, Nakano, 508 

Yamaguchi, Kuraishi & Kiyomoto (2015), and references therein.  

 510 

Asteroidea 

 512 

Asteroid echinoderms typically develop via either feeding or non-feeding planktonic stages, or in 

benthic broods protected by a parent. All species with feeding (planktotrophic) larvae develop 514 

through a bipinnaria stage; most also have a subsequent brachiolaria stage (McEdward & Miner, 

2001; Fig. 5). Non-feeding (lecithotrophic) planktonic stages are diverse in developmental pattern, 516 

form, and nomenclature (McEdward & Janies, 1993; McEdward & Miner, 2001).  

 518 

Rearing planktotrophic sea star larvae 

 520 

Establishing cultures. The embryos of sea stars with feeding larvae are ready to be distributed into 

culture vessels when they hatch (as swimming blastulae or gastrulae, depending on species), 522 

approximately 2-4 d post fertilization (dpf) for tropical and temperate species. 

 524 

Providing larval food. Sea star larvae can capture and ingest particles of a wide range of shapes and 

sizes (R.R. Strathmann, 1971, 1987). Cells of many easily cultured micro-algae can thus be used as 526 
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food, as detailed above (see Top Five Things section).  

 528 

Cleaning cultures. Sea star larvae are somewhat delicate and can be damaged during cleaning, 

causing mortality and even cloning in some species. As a compromise, most larval biologists clean 530 

and feed cultures every 2-3 d, though if avoidance of mortality is critically important, longer 

intervals are possible (Bashevkin, Lee, Driver, Carrington & George, 2016). The flow-through dripper 532 

tap system (see Small-scale culturing methods section, above) significantly reduces the buildup of 

dead larvae, waste material and bacteria, and thereby reduces the need for frequent cleaning.  534 

 

Cleaning may be achieved by reverse or forward filtration (see above), always being careful to 536 

minimize turbulence and contact of larvae with filtering surfaces to reduce damage to the larvae. 

Once concentrated, larger larvae can be picked out of the container one by one with a large-bore 538 

pipette and transferred to fresh FSW or ASW in a clean culture vessel (i.e., a 100% water exchange). If 

larvae are sufficiently large and swim to the surface when stirring is paused, then the 540 

reverse/forward filtration step can be skipped, and larvae picked out from the surface with a 

pipette, as above. Direct transfer is an excellent way to keep track of the total numbers of larvae. 542 

Nevertheless, for cultures of hundreds or more larvae per container, direct transfer is likely 

impractical, and bulk culturing methods (as described above) can be employed. 544 

 

Rearing lecithotrophic sea star larvae  546 

 

Establishing cultures. Like feeding larvae, the embryos of sea stars with non-feeding larvae can be 548 

distributed into culture vessels when they hatch, typically as swimming blastulae, ~4-5 dpf for 
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temperate species or ~1-3 dpf for tropical and subtropical species (Birkeland, Chia & Strathmann, 550 

1971; Chen & Chen, 1992; Chia, 1966; M.F. Strathmann, 1987). These embryos are often positively 

buoyant, so proximity to the water surface is not a good indication that they have hatched. The 552 

larvae can be maintained in small volumes of FSW or ASW in glass bowls or plastic tissue culture 

dishes with culture temperature carefully controlled. Gentle stirring may help to keep delicate 554 

larvae out of the surface tension, as can frequent dripping of water on to the surface of the culture 

vessel (Aronowicz, 2007), as well as the addition of small amounts of cetyl alcohol (Hurst, 1967). 556 

Note that some lecithotrophic sea star larvae do not encounter problems when at the surface per 

se, but do have problems at the surface-vessel interface, as the larvae can adhere to the sides of the 558 

vessel.  

 560 

For medium-scale culturing of non-feeding larvae of sea stars, please refer to the general section on 

Medium-scale culturing methods, above. 562 

 

Cleaning cultures. If cultures of non-feeding larvae are low in larval density, cleaning should be 564 

carried out quite infrequently (1-2 times per week) to minimize the risk of damaging larvae. Instead 

of allowing them to contact filtering meshes, it is best to either gently transfer these larvae one by 566 

one by wide-bore pipette (easily done, as they are typically quite large and brightly colored) or use 

beakers or other vessels smaller than the size of the culture vessel to gently scoop up the buoyant 568 

larvae and then transfer them to clean FSW or ASW. Higher temperature cultures require more 

frequent transfers. 570 

 

There are also diverse taxa of brooding asteroids that offer easy access to all developmental stages 572 
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through the crawl away juvenile. These species range from external brooders that care for their 

young under the oral surface (e.g., Leptasterias spp.; Fig. 6) to the viviparous asterinids that give 574 

birth to juveniles (e.g., Parvulastra vivipara and Cryptasterina hystera) (Byrne, 1996, 2005; George, 

1994). 576 

 

Induction of settlement, completion of metamorphosis and early juvenile growth 578 

 

Competent larvae of asteroids with planktotrophic and lecithotrophic development settle readily in 580 

response to a biofilm on the surface of the culture container or other surfaces such as shell 

fragments placed in the containers. The competent larvae of many species appear to settle 582 

particularly well in response to the addition of coralline algae, including the crustose form on small 

rocks and geniculate algal fragments (Fig. 7). These substrates are useful as the newly 584 

metamorphosed juveniles can be transferred to new containers by picking up the shells, small rocks 

or pieces of algae.   586 

 

Asteroid juveniles start life as predominantly herbivores feeding on biofilms and algae, with some 588 

becoming predators with time (Martinez, Byrne & Coleman, 2017). Thus, to rear juvenile asteroids, it 

is important to renew the algae or shell fragments with biofilm regularly to ensure enough food. 590 

However, as in adult asteroids, we have noticed that cannibalism by juveniles can occur within as 

few as 3 d post-metamorphosis, even when food is provided. Therefore, maintaining juvenile 592 

asteroids for study should be done at very low densities.  

 594 
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The ability to generate 1000’s of juveniles by rearing the benthic larvae of direct developing species 

such as Leptasterias hexactis Stimpson and Parvulastra exigua Lamarck provide the easiest way to 596 

access asteroid juveniles for study (Fig. 6; Byrne, 1995; George, 1994; Hodin, 2006).  

 598 

 

Echinoidea 600 

 

History of echinoid larval culturing 602 

 

Echinoids have perhaps the richest history of marine invertebrate larval culturing. The first 604 

microscopic observation of fertilization was in sea urchins (Derbès, 1847), and Müller (1846) coined 

the term "pluteus" (L: easel) to describe the larval form. Echinoids serve as the stereotype for 606 

deuterostome development (Pearse & Cameron, 1991). Mortensen published extensive 

observations of larval development on tropical taxa (1921, 1931, 1937, 1938) and summarized 608 

(1921) prior echinoderm larval rearing accomplishments, mainly using European, Scandinavian or 

Mediterranean taxa. Mortensen reared larvae without providing food, transferring larvae to fresh 610 

SW (thus containing the natural assemblages of food) every day to few days, which he described as 

quite laborious, and he recounts an experience in Mauritius in which his cultures died due to the 612 

use of harbor water that was polluted with sewage (Mortensen, 1931). His culturing experiences 

appear to have hinged on the same factors as those of modern researchers: frequent water changes 614 

with fresh, clean SW, and abundant food (Leahy, 1986).   

 616 

More recently, echinoid larvae have emerged as useful subjects for studies of swimming and 
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feeding (Strathmann & Grunbaum, 2006; Wheeler, Chan, Anderson & Mullineaux, 2016), physiology 618 

and metabolism (Leong & Manahan, 1997; Marsh, Maxson & Manahan, 2001), ocean acidification 

impacts (Dupont, Ortega-Martínez & Thorndyke, 2010), immune systems (Ho, , Buckley, Schrankel, 620 

Schuh, Hibino, Solek et al, 2016) and larval cloning (McDonald & Vaughn, 2010), among other topics. 

Microscopic methods (preservation and various labeling methods) have improved significantly in 622 

recent years (Strickland, von Dassow, Ellenberg, Foe, Lenart & Burgess 2004), including a method 

that maintains intact skeletal elements during long-term storage (Emlet, 2010; Turner, 1976). Larval 624 

and juvenile skeleton (in all echinoderms) can be visualized by an inexpensive modification of any 

compound microscope with cross-polarized light (e.g., see Figs. 8C, 9D, 12A and 14C,D below; M.F. 626 

Strathmann, 1987) 

  628 

Rearing planktotrophic echinoid larvae (echinoplutei) 

 630 

The dominant life-history mode among echinoids is obligate planktotrophy, where adults release 

many small eggs (<250 µm diameter, averaging ~100-125 µm) that give rise to pluteus larvae (Fig. 632 

8) that must feed on phytoplankton for a time in order to attain sufficient energy to complete 

metamorphosis (reviewed in McEdward & Miner 2001; Soars, Prowse & Byrne, 2009). This obligate 634 

feeding period can last from days to a year or longer, depending on egg size, food levels and 

developmental temperature. Planktotrophic echinoid larvae tend to develop quite synchronously 636 

to the stage at which they are competent to settle, making them a good choice for a variety of 

studies ranging from larval physiology to the impact of stressors (such as ocean acidification) on 638 

larval development. 

 640 
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Planktotrophic larvae reared in low food, near starvation conditions (generally accepted to be less 

than 500-1000 algal cells per ml) respond by growing relatively longer feeding structures –the 642 

skeleton-supported larval "arms" that extend and support a continuous ciliated feeding band. This 

response is one of the best-studied examples of phenotypic plasticity among marine invertebrates 644 

(reviewed in McAlister & Miner, 2018) and may be associated with the evolutionary transition to 

lecithotrophic development in some groups (Strathmann, Fenaux & Strathmann, 1992). The relative 646 

ease of measuring arm length in these larvae offers precise quantitative measures of larval growth 

and quality, and makes echinoid larvae a beneficial choice for a wide range of manipulative 648 

experiments. 

 650 

Developmental staging in echinoplutei 

 652 

Development proceeds post-fertilization through identifiable embryonic stages, hatching as 

blastulae, followed by gastrulation, prism (body skeletal rods present), and the early pluteus 654 

capable of feeding (Kumé & Dan, 1968). The timing of development to each stage varies by species 

and rearing temperature, but most species will attain the early pluteus stage at about 2-5 dpf.  656 

 

Early pluteus larvae have two pairs of arms (the "4-arm stage"), the longer postorals (PO) and the 658 

anterolaterals (AL), which is followed in most species by a 6- and then an 8-arm stage (see Smith, 

Smith, Cameron & Urry, 2008). There is considerable evolutionary diversity of echinopluteus 660 

morphology with some species possessing 10 arms (e.g., Fig. 8A) or even 12 arms, single or dual 

posterior arms, terminal spines that may assist in defense, as well as fleshy, ciliated vibratile lobes or 662 

epaulettes, that develop late in development and increase swimming speed (Fig. 8; Emlet, 1988; 
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Hart, 1991; Strathmann, 1971; Wray, 1992). Some species within the family Diadematidae have a 664 

particularly distinct larval form, termed "Echinopluteus transversus" (Fig. 8G; Huggett, King, 

Williamson & Steinberg, 2005; Mortensen, 1921, 1937; Soars et al, 2009), and characterized by 666 

strikingly long PO arms (up to several mm's long) with all other arms highly reduced (AL) or absent 

(PD and PR).  668 

 

One benchmark that can be used to determine the stage at which larval density should be lowered 670 

is the first appearance of juvenile specific structures. In most echinoids (cidaroids are an exception), 

this stage is visible as the timing of invagination of the echinus rudiment (rudiment soft tissue stage 672 

i in Heyland & Hodin, 2014), which will contribute to the ectoderm of the juvenile, and is generally 

reached at approximately 30-50% of the way through the larval period when the larvae are fed ad 674 

libitum. 

 676 

Development of structures fated to form the juvenile proceed in parallel to larval development, the 

timing of which varies by species and with amount of food provided. This is a second aspect of the 678 

phenotypic plasticity alluded to above: high food causes larvae to proceed with juvenile structure 

development at the expense of larval arms. Heyland & Hodin (2014) have dissected formation of the 680 

juvenile structures in the purple sea urchin Strongylocentrotus purpuratus (Fig. 8C) into 8 soft tissue 

stages and 10 juvenile skeletal stages. Subsequent studies have revealed that this basic scheme 682 

applies to a wide diversity of echinoids, although there are interesting variations among taxa (e.g., 

Kitazawa, Kobayashi, Kasahara, Takuwa & Yamanaka, 2012) as well as heterochronies during larval 684 

development (J. Hodin, unpublished), and once juveniles have emerged (Burke, 1980, Emlet, 2010). 

 686 
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Rearing lecithotrophic echinoid larvae 

 688 

Non-feeding (lecithotrophic) development is found in approximately 20% of extant echinoid 

species; including extinct taxa it has been estimated to have evolved independently in a minimum 690 

of 14 lineages (Wray, 1992; Wray & Bely, 1994; Wray & Raff, 1991).  Compared to the elaborate 

feeding morphology of planktotrophic echinoplutei, lecithotrophic larvae are highly derived, 692 

morphologically simple and convergent across taxa (Wray, 1992; Wray & Raff, 1991).  One well 

studied species is Heliocidaris erythrogramma, which has a highly reduced larva that develops from 694 

large eggs and metamorphoses in 3-6 d, quite unlike its planktotrophic cousin, H. tuberculata (Fig. 

8E,F; Byrne, Emlet & Cerra, 2001). This change in life history is accompanied by apparent shifts in the 696 

embryonic fate map, cleavage patterns, process of formation of juvenile structures and 

corresponding gene expression (Israel, Martik, Byrne, Raff, Raff, McClay et al, 2016; Wray & Raff, 698 

1989). There are also diverse taxa of brooding echinoids with crawl away juveniles, such as the 

lantern urchin Cassidulus caribbaearum (Fig.9; Gladfelter, 1978; Hodin, 2006). 700 

 

Induction of settlement and completion of metamorphosis 702 

 

As far as we are aware, all echinoids that have been tested respond to "excess” potassium in SW by 704 

completing their transformation from larva to juvenile (n.b., excess potassium is potassium added 

above the background concentration). The concentration of potassium chloride (KCl) that elicits this 706 

effect does vary among taxa from 40 mM excess KCl in the NE Pacific sand dollar Dendraster 

excentricus to 120mM excess in the Hawai'ian shingle urchin Colobocentrotus atratus (Table 1). We 708 

recommend that the researcher studying a species not mentioned in Table 1 expose larvae to a 
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range of KCl concentrations to determine the minimum effective dose for that species. We 710 

recommend a 1 h exposure to excess potassium followed by transfer into clean FSW or ASW for 

recovery and completion of metamorphosis. 712 

 

One disadvantage of excess potassium exposure is that it stuns the larvae, so they do not exhibit 714 

the normal progression of pre-settlement behaviors (see Bishop & Brandhorst, 2007); in that sense, 

the process seems somewhat short-circuited. We therefore recommend that whenever possible, 716 

researchers attempt to find "natural inducers": namely, the kinds of compounds or substrates that 

larvae might respond to in the field. Nevertheless, our unpublished observations indicate that there 718 

is little to no difference in growth and survival of S. purpuratus juveniles during the week after 

recovery from KCl exposure (70 mM excess) when compared to those settling in response to a 720 

natural inducer (in this case, fronds of the coralline alga Calliarthron tuberculosum Postels & 

Ruprecht).  722 

 

Natural inducers tend to be quite species-specific; therefore reviewing the entire spectrum of 724 

natural inducers for echinoids is beyond the scope of this chapter. In some cases, larvae settle 

readily in response to microbial biofilms (reviewed in Hadfield, 2011), sometimes grown in the 726 

presence of conspecifics. In other cases, the triggers appear to be specific types of benthic algae, 

often coralline algae (though in most cases the possibility that the trigger is a specific biofilm 728 

growing on the surfaces of these algae has not been excluded; Hadfield, 2011). Histamine, a 

compound released by macroalgae, appears to be an effective settlement trigger in a variety of 730 

echinoids, in some cases at concentrations that have been measured in the field near to the source 

algae (Swanson, Byrne, Prowse, Mos, Dworjanyn & Steinberg, 2012). In S. purpuratus, histamine 732 
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exposure modulates competence to settle rather than triggering settlement per se (Sutherby, 

Giardini, Nguyen, Wessel, Leguia & Heyland, 2012). For various sand dollars, settlement can be 734 

triggered by sand from aquaria housing adults (Allen, 2012; Highsmith, 1982; Highsmith & Emlet, 

1986; Vellutini & Migotto 2010). For the NE Pacific sand dollar, D. excentricus, a specific peptide 736 

released from adults into the sand appears to be the trigger (Burke, 1984); but a simple SW extract 

of the aquarium sand is highly effective (Hodin, Ferner, Ng, Lowe & Gaylord, 2015; Hodin, Ferner, Ng 738 

& Gaylord 2018). 

 740 

Echinoid settlement and the drastic morphological changes associated with the completion of 

metamorphosis can be observed in real time under a dissecting or compound microscope after 742 

settlement has been induced. In most echinoids the major events of this process (Bishop & 

Brandhorst, 2007) are completed within a few hours. 744 

 

Early juvenile rearing 746 

 

Most echinoids settle a few days to a week or so before their juvenile mouths open, during which 748 

time they use up endogenous reserves from the larva. Once their mouths are open, they are more or 

less ready to begin feeding (Fadl & Heyland, 2017; Gosselin & Jangoux, 1998; Miller & Emlet, 1999).  750 

At that point, in particular with juveniles deriving from planktotrophic larvae, juveniles need to be 

transferred onto natural biofilms or cultures of benthic diatoms such as Navicula or Nitzschia 752 

species, or they will soon die of starvation (Xing, Wang, Cao & Chang, 2007). Pure cultures of a 

variety of benthic diatoms can be obtained, for example, from the UTEX Culture Collection of Algae 754 

(TX, USA), the National Center for Marine Algae and Microbiota (ME, USA), the Australian National 
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Algae Supply Service and Aqualgae (Spain/Portugal). Either flowing sea water or frequent water 756 

exchanges appear to be required for good growth and survival during the critical first weeks 

following settlement, during which time juveniles can grow quite rapidly. Eventually juveniles can 758 

be transitioned from biofilm/diatom cultures to small pieces of adult food (macroalgae and kelp). 

Leahy (1986) recommends feeding diatoms to S. purpuratus juveniles for 2 weeks, then transitioning 760 

the juveniles to rocks covered with natural biofilm for 1 month, then to pieces of thin seaweed such 

as the sea lettuce Ulva for 1-2 months, and then ultimately to pieces of kelp.  762 

 

 764 

Holothuroidea 

 766 

Holothuroid echinoderms, commonly called sea cucumbers, exhibit a diversity of reproductive 

strategies from small, poorly-provisioned, unprotected pelagic propagules to large, abundantly-768 

provisioned, brood-protected benthic propagules, and nearly everything in between. However, the 

majority of species can be classified as either planktotrophic (producing small, feeding larvae) or 770 

lecithotrophic (producing large, non-feeding larvae).  

 772 

Of the approximately 1400 sea cucumber species described so far, around 80 are harvested 

commercially (Purcell, Mercier, Conand, Hamel, Toral-Granda, Lovatelli et al, 2013). They are a 774 

valuable commodity in many countries of Asia, the Americas, and the tropical Indo-Pacific, where 

they are mainly processed for trade on Chinese markets (Hamel & Mercier, 2008a; Toral-Granda, 776 

Lovatelli & Vasconcellos, 2008; Yang et al, 2015). Today, many sea cucumber populations are 

overexploited and some species are listed as endangered on the IUCN Red List (Purcell, Polidoro, 778 
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Hamel, Gamboa & Mercier, 2014). Apart from their commercial importance, sea cucumbers are 

ecologically significant members of benthic communities (Purcell, Conand, Uthicke & Byrne, 2016) 780 

and they are a promising subject for studies of their remarkable regenerative abilities (Zhang, Sun, 

Yuan, Sun, Gao, Zhang et al, 2017). Therefore, interest in the development of breeding programs for 782 

sea cucumber is trending upward, and knowledge of larval development has been gathered from a 

diversity of tropical and temperate species in the context of scientific research and hatchery 784 

production.  

 786 

Here we summarize the rearing protocols that have been developed to date, chiefly for commercial 

sea cucumbers, including the top three planktotrophic aquaculture species (Apostichopus japonicus 788 

Selenka, Holothuria scabra Jaeger and Isostichopus fuscus Ludwig; Fig. 10A,B), and two other 

commercially harvested species, one planktotrophic (Apostichopus californicus Stimpson), and one 790 

lecithotrophic (Cucumaria frondosa Gunnerus; Fig. 10C,D). Additional information will relate to an 

unusual lecithotrophic species with no commercial interest (Psolus chitinoides Clark) and a brooding 792 

species that does not produce dispersing larvae (Leptosynapta clarki Heding). 

 794 

Rearing planktotrophic sea cucumber larvae 

 796 

Larval cultures may follow two main protocols: most use closed conditions and water changes at 

regular intervals, although some use flow-through (open) conditions. Ultimately, the quality of the 798 

water supply is the primary determinant of success.   

 800 

Culture. The developmental biology of planktotrophic sea cucumber species is very consistent: the 
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auricularia larva metamorphoses through a doliolaria stage into a pentactula. The various 802 

developmental stages have been outlined for I. fuscus (Fig. 11; Mercier, Ycaza and Hamel, 2004), H. 

scabra (Agudo, 2007; Hamel, Pawson, Conand & Mercier, 2001) and A. japonicus (Qiu, Zhang, Hamel 804 

& Mercier, 2015). In most hatcheries, larvae are cultured in opaque conical tanks with central 

draining; smaller vessels are used in many laboratories (see above). Full details of commercial 806 

culture methods have been summarized previously (Mercier & Hamel, 2013; Zhang et al, 2015). 

Generally, early embryos are stocked at densities that do not exceed 1-5 individuals per ml due to 808 

density-dependent mortality (Sui, 1990), asynchrony and delayed growth in high densities, and 

even embryo fusion, which among other things increases developmental asynchrony in cultures 810 

(Gianasi et al, 2018a).  

 812 

Please refer to the General Culturing Methods above for recommended larval densities and water 

changes in closed cultures, and from small to large scale. Good results can also be obtained under 814 

flow-through (open) cultures with 200% or more water renewal every day. Under both closed and 

flow-through conditions, siphoning the bottom to remove dead larvae, detritus and bacterial mats 816 

is crucial. 

 818 

We recommend gentle aeration to maintain oxygen levels and to provide mixing of the cultures 

(Mercier & Hamel, 2013; Zhang et al, 2015); one should avoid fine bubbles that may obstruct the 820 

digestive tract of some larvae. The optimal adjustments for pH, temperature, salinity, and dissolved 

oxygen are species-specific, but typically, water pumped in from offshore locations in the regions 822 

where the adults are found is sufficient to promote good larval cultures.  

 824 
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Feeding. All planktotrophic species need to be fed micro-algae until they reach the doliolaria (non-

feeding) stage. The algal cultures should be of high quality and free of bacteria and copepods; 826 

locally available strains provided as a mix of species may yield better results in some cases than 

monocultures. The most common species of micro-algae used are Dunaliella euchlaia, Chaetoceros 828 

gracilis, C. muelleri, C. calcitrans, Phaeodactylum tricornutum, Rhodomonas salina and Tetraselmis 

chuii.  830 

 

A number of investigators and hatcheries use alternative sources of food when live algae are not 832 

available or deemed too costly. Commercial marine micro-algae have been used successfully (Hair, 

Pickering, Meo, Vereivalu, Hunter, Cavakiqali et al, 2011). Exact mixes and densities of food deemed 834 

to optimize larval health and growth are species-specific (Mercier & Hamel, 2013). Researchers 

should monitor larvae to ensure that algal cells are found in their digestive tract, at which point, 836 

adding more algae is not required; larvae of sea cucumbers collected from the field rarely exhibit 

full digestive tracts, and thus probably do not require much food to survive. Indeed, overfeeding 838 

can quickly lead to fouling of the culture vessels under closed conditions. Under flow-through 

(open) conditions, cultures can be maintained with a continuous drop-by-drop supply of algae or 840 

via daily meals (Mercier & Hamel, 2013).  

 842 

Health. Diseases can develop in embryos and larvae, particularly when culturing at larger scales. A. 

japonicus is by far the most extensively cultivated species with billions of larvae produced annually 844 

(Yang et al, 2015) and is (unsurprisingly) also the species with the highest number of reported 

problems. Central to culture issues is the accumulation of excess food, feces, and harmful 846 

microorganisms. Symptoms dubbed ‘rotting edges’, ‘stomach ulceration’ (auricularia stage), and 
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‘gas bubble disease’ are the most common. The best way to avoid or mitigate these problems is 848 

prevention, careful monitoring to remove the first affected individuals, or use of antibiotic and other 

treatments when available (Mercier & Hamel, 2013).  850 

 

The most pathogenic agents reported in cultures of H. scabra are bacteria causing ectoderm 852 

ulceration (Eeckhaut, Parmentier, Becker, Gomez Da Silva & Jangoux, 2004). The most common 

culprit identified in lesions are Vibrio sp., Bacteroides sp. and α-Proteobacterium (Becker, Gillan, 854 

Lanterbecq, Jangoux, Rasolofonirina, Rakotovao et al, 2004). In the case of I. fuscus, infestation of the 

digestive system of early larvae by protozoan parasites is the most common (Mercier, Ycaza, 856 

Espinoza, Haro & Hamel, 2012). In the worst cases, the digestive tract completely shrivels up and 

disappears, which is usually fatal. Although antibiotics and chemicals [e.g., 858 

ethylenediaminetetraacetic acid (EDTA)] have been used to mitigate these problem in commercial 

settings, they are not generally recommended (Zhang et al, 2015). Larger larval cultures of sea 860 

cucumber can be plagued by copepod infestations, which are presumed to compete for food and 

directly damage the larvae.  862 

 

Rearing lecithotrophic sea cucumber larvae 864 

 

While it may be achieved under closed conditions with regular water changes (see above), the 866 

culture of sea cucumber propagules is optimal in a flow-through system (see Medium-scale 

culturing methods, above) with 200% or more daily turnover of ambient SW. Exposing propagules 868 

early in their development to natural conditions not only increases survival rates, but also yields 

healthier propagules that are strong enough to be released back in the ocean or in pens for grow 870 
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out. For sea cucumbers, survival rates between fertilization and settlement may increase from 1-3% 

(typical of closed culture) to 15-40% (under flow-through), depending on the other culture 872 

parameters (Mercier & Hamel, 2013).  

 874 

Culture. The major peculiarity of lecithotrophic development, apart from the larger size of the non-

feeding larvae, is that the typical auricularia larval stage of planktotrophic sea cucumber species is 876 

absent, and the doliolaria stage is often replaced by a vitellaria. C. frondosa is very likely the most 

studied lecithotrophic sea cucumber, and can thus serve as a case study (Fig. 10C,D; Hamel & 878 

Mercier, 1996). This species is found on hard substrates in cold waters across the North Atlantic and 

Arctic (Hamel & Mercier, 2008b). Embryos of C. frondosa are typically incubated at densities of ~0.4 880 

embryos per ml in round 4-L plastic containers with black bottom and walls (perforated and 

meshed; see Medium-scale culturing methods, above), which are placed inside a larger tank 882 

supplied with running ambient SW (20 L per h). With C. frondosa the rearing temperature generally 

varies between ~1°C during the late winter spawning to ~5°C at the time of settlement. For an 884 

effective small-scale method of culturing of lecithotrophic sea cucumbers in multiple replicates, see 

Aronowicz (2007). 886 

 

Brooding species 888 

 

Embryos and juveniles of the burrowing sea cucumber L. clarki from the NE Pacific have been used 890 

to study the developing nervous system. After collection by sifting sediment, this species can be 

easily maintained in the lab and broods can be collected and studied during their reproductive 892 

season. Their size, optical clarity and relatively fast development (days) makes them ideal organisms 



 

40 

for whole mount observations (Hoekstra, Moroz & Heyland, 2012).  894 

 

Induction of settlement, completion of metamorphosis and early juvenile growth  896 

 

The goal of larval cultures is often to rear them to settlement; in the case of hatcheries, this is the 898 

main goal. At temperatures between 20-25°C, settlement occurs after about 12-16 dpf in A. 

japonicus and H. scabra (Hamel et al, 2001; Qiu et al, 2015), and  21-27 dpf in I. fuscus (Mercier et al, 900 

2004). While some of the larvae in the three species will settle without stumulation, conditioned 

surfaces can increase the number of larvae that successfully settle (Mercier & Hamel, 2013); similar 902 

observations have been made in A. californicus (approximately 30 d to settlement at 14°C; C. Lowe, 

pers. comm.) and other NE Pacific species. When planktotrophic sea cucumber larvae reach the 904 

doliolaria stage, they are approaching competence to settle, which occurs at the subsequent 

pentactula stage. 906 

 

In both lecithotrophic and planktotrophic species, early juveniles do require a food source. If the 908 

system supplying SW to the rearing tanks does not have any filtration, then natural plankton (e.g., 

small ciliates, flagellates, diatoms and copepod nauplii) and suspended organic material present in 910 

ambient SW will be available. Attempts to mimic the natural habitat are a good idea; in the case of 

C. frondosa, small rocks often covered with coralline algae can be spread evenly inside the rearing 912 

tanks to provide shelter and substrate that will favor settlement (Hamel & Mercier, 1996) and 

promote health in early juveniles (Gianasi et al, 2018b). 914 

 

 916 
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Ophiuroidea 

 918 

There are two main larval types found among ophiuroids with larval development: the 

ophiopluteus and the vitellaria (compare Fig. 12A and C; Brooks & Grave, 1899;  Byrne & 920 

Selvakumaraswamy, 2002; Fenaux, 1969; Hendler, 1975, 1991; McEdward & Miner, 2001; Mortenson, 

1921, 1938; Stancyk, 1973). The ophiopluteus is primarily a feeding (planktotrophic) larva, but in 922 

several species, a non-feeding (lecithotrophic) ophiopluteus is present (Allen & Podolsky, 2007; 

Hendler, 1991; Mladenov, 1979) and there is one report of a facultatively-feeding ophiopluteus 924 

(Allen & Podolsky, 2007). The vitellaria larva is obligately lecithotrophic and it is the more common 

non-feeding larval form (Cisternas & Byrne, 2005).  926 

 

Developmental patterns in ophiuroids with larval development are broadly categorized based on 928 

the predominant larval form (ophiopluteus vs. vitellaria), feeding type (feeding vs. non-feeding 

larva) and the pattern of metamorphosis that the larva undergoes to give rise to the juvenile (Fig. 930 

13; Byrne & Selvakumaraswamy, 2002; Cisternas & Byrne, 2005; Hendler, 1975, 1991; McEdward & 

Miner, 2001). Ophiuroids that do not develop through a free-living (pelagic, benthic or 932 

encapsulated) larva, instead brood embryos internally which are later released from the parent as 

advanced juveniles (Hendler, 1991). 934 

 

Rearing planktotrophic ophiuroid larvae (ophioplutei) 936 

 

For planktotrophs, low densities are recommended, in particular at late stages of development. 938 

Larval cultures require either very gentle stirring with paddles (as described above) or gentle 
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rocking; we recommend the latter for ophioplutei that have long and slender arms such as those of 940 

Ophiothrix species (e.g., Fig. 12B). Because most ophioplutei are quite fragile and the arms may 

break easily, we suggest that densities be reduced to 1 larva per ml or lower as development 942 

progresses and lower still as larvae near metamorphic competence. Similarly, water changes can be 

reduced to every four days maximum or once a week to reduce any damage caused by handling. 944 

Depending on the amount and frequency of food added, these water changes may need to be 

adjusted accordingly. When larvae are subject to high food regime, more frequent water changes 946 

are necessary to prevent a build-up of ciliates in the culture. 

 948 

Water changes. For reverse filtration (see above) the size of the mesh should be at least 50 µm less 

than the maximum diameter of the larval body and arms so as to avoid passing the larvae through 950 

the mesh. Before aspirating water through the filter (and after removal from the stirring 

mechanism), one should let the larvae sink down from the top of the water surface to about 1/3 952 

down the water column. This will reduce damaging the larvae in the filtration process and minimize 

the chance of larvae being caught on the underside of the mesh. For fragile larvae, we recommend 954 

retaining a greater proportion of the water in the vessel so that larvae are not damaged by excessive 

concentration and contact with the filters. Ideally, containers, paddles and other equipment should 956 

be washed in hot tap water at least once a week during the culturing process to avoid biofilms from 

forming. 958 

 

Advanced ophioplutei metamorphose while suspended in the water column and these can be 960 

easily identified by changes in the shape of the larval body: degeneration of larval arms, with the 

exception of the two posterolateral arms, reduction in the oral hood and mouth opening, increasing 962 
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opacity of the central portion of the larval body, and appearance of the star-shaped juvenile 

rudiment (Fig. 14; Byrne & Selvakumaraswamy, 2002; Selvakumaraswamy & Byrne, 2006). At this 964 

stage larvae are usually located in the mid-water column, and care should be taken when removing 

water as the posterolateral arms are easily broken. 966 

 

Cloning by ophioplutei. A new ophiopluteus can develop by cloning from the tissue suspended 968 

between the posterolateral arms that are released by the juvenile at settlement (Fig. 14; Balser, 

1998), as has been recorded in Ophiopholis aculeata and unidentified ophioplutei found in the Gulf 970 

Stream off Florida.  

 972 

Food sources and feeding regime. A mixed diet containing microalgae and diatoms is more 

commonly used for feeding ophioplutei but single strain diets may also be used (Mladenov, 1985; 974 

Podolsky & McAlister, 2005; Selvakumaraswamy & Byrne, 2000; Yamashita, 1985). The most 

commonly used algae (in the 2-15 µm diameter range) include Dunaliella tertiolecta, Amphidinium 976 

earterae, Isochyrsis galbana, Isochyrsis sp, Rhodomonas spp., Tetraselmis chuii and diatoms like 

Chaetoceros calcitrans, C. gracillis, C. muelleri, Pavlova viridis and Phaeodactylum tricornutum. The 978 

optimal diet including a mix of strains, densities, particle sizes and other factors are as yet to be 

determined. Cultures are typically fed every 2 d, with suggested densities (based on 5-10 µm algal 980 

cells) of approximately 7.5x103 cells per ml every two days for ophioplutei of tropical species (Allen 

and Podolsky 2007) and 2x104 cells per ml every four days for larvae of temperate species 982 

(Selvakumaraswamy & Byrne, 2000). 

 984 

Rearing lecithotrophic ophiuroid larvae 
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 986 

For ophiuroid species with non-feeding larvae, embryos can be distributed into containers with FSW 

or ASW after fertilization. The embryos and larvae need gentle agitation (rocking or bubbling from a 988 

pipette) to break the surface tension and to prevent damaging embryos. They can also be 

maintained at low densities (1 larva per ml) in small culture dishes (~250 ml); these larvae are large 990 

and often buoyant, and can easily be transferred individually with a wide-bore pipette. Similarly, for 

negatively buoyant larvae, water can be removed from the surface through a filter mesh as they 992 

swim close to the bottom of the dish. Water changes can be carried out twice a week and containers 

cleaned once a week as previously described for planktotrophs.  994 

 

Notes on ophiuroids that brood embryos 996 

 

Ophiuroids that brood embryos are often small-bodied hermaphroditic species that produce large 998 

eggs, retained in the ovaries after fertilization until an advance juvenile stage (Fig. 15; Byrne, 1991; 

Hendler, 1975, 1991). Embryos are brooded internally in the bursae at the base of the arms and the 1000 

juveniles emerge through the bursal slit ( Byrne, 1991; Hendler, 1975).  

 1002 

Some brooding ophiuroids are known to be matrotrophic (i.e., they support embryos with 

maternally derived extraembryonic nutrition) including Amphipholis squamata (Fig. 15C; Fell, 1946), 1004 

Amphiura magellanica Ljungman (Mortensen, 1920), Ophiactis kroeyeri Lütken (Mortensen, 1920), 

Ophiophycis gracilis Mortensen (1933) and Ophionotus hexactis Smith (Mortensen, 1921). Few 1006 

species are known to brood pelagic-type lecithotrophic larvae. A vitellaria larva that lacks ciliary 

bands has been reported in Ophionereis olivacea Clark (Byrne, 1991) and Ophiopeza spinosa has a 1008 



 

45 

swimming vitellaria larva (Fig. 15B; Byrne, Cisternas & O'Hara, 2008). 

 1010 

The embryos, larvae and early juveniles of southern tropical O. spinosa (Fig. 15 A,B; Byrne et al, 2008) 

and the cosmopolitan temperate and warm temperate brooder A. squamata (Fig. 15C; M.F. 1012 

Strathmann, 1987) can be dissected out of the bursae and transferred individually with a pipette to 

dishes (e.g., 6-well culture dishes) with 10 ml FSW or ASW. The aboral side of the parent’s disc can be 1014 

removed by cutting along its edge with scissors and severing the connective tissue that connects 

the disc to the skeletal elements above each arm. The bursae, which can be seen inter-radially and 1016 

on both sides of the base of each of the arms, can gently be teased apart with fine forceps to reveal 

the embryos and juveniles (Fig. 15). FSW or ASW can be replaced every two days as indicated for 1018 

other larval cultures until metamorphosis into juveniles is complete. 

 1020 

Encapsulated embryos 

 1022 

A number of ophiuroids have embryos that develop within capsules such as O. hexactis (Mortensen, 

1921), Amphioplus abditus Verrill (Hendler, 1977) and Amphiodia occidentalis Lyman (Emlet, 2006). Of 1024 

these, only the embryos of A. abditus have been cultured. After spawning, fertilized eggs can be 

transferred with pipettes to glass dishes at densities of 2-5 embryos per ml in 50 ml of FSW or ASW. 1026 

Water can easily be aspirated as the embryos are attached to the bottom of the dish via their 

fertilization envelopes. Water should be replaced every two days until development is completed 1028 

(Hendler, 1977). 

 1030 

Induction of settlement, completion of metamorphosis and early juvenile growth 
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 1032 

Unlike other echinoderms, ophiuroid larvae appear to settle naturally and without the need for 

specific exogenous settlement cues (Allen & Podolsky, 2007; Hendler, 1991; Selvakumaraswamy & 1034 

Byrne, 2006). They may be seen sinking to the bottom of the container, testing the surfaces with 

their juvenile podia. The larval arms appear to be released from the juvenile body in mid-water or 1036 

upon attachment to a surface (Fig. 14D,E; Hendler, 1991; Selvakumaraswamy & Byrne, 2006). Once 

the larvae have metamorphosed and settled, the developing juveniles are usually found attached to 1038 

the sides or bottom of the container. Water can be gently decanted out and replaced once a week 

from here onwards as needed. Juveniles have been cultured for a short period of time (a few weeks) 1040 

in these conditions (P. Selvakumaraswamy, pers. comm.). 

 1042 

For juveniles deriving from lecithotrophic (vitellaria) larvae, we have continued the larval culturing 

techniques for vitellaria outlined above with good success after settlement for ~10 d and until the 1044 

mouth opens. 

 1046 
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TABLES 

 1416 

Order: Family 

  Species 

KCl concen-
tration References 

Clypeasteroida: Clypeasteridae 

  Clypeaster rosaceus Linnaeus 80 mM Heyland, Reitzel, Price & Moroz, 2006b 

Clypeasteroida: Dendrasteridae 

  Dendraster excentricus Eschscholtz 40 mM Heyland & Hodin 2004, Hodin et al, 2015 

Clypeasteroida: Mellitidae 

  Leodia sexiesperforata Leske 40 mM Heyland Reitzel & Hodin, 2004 

  Mellita tenuis Clark 40 mM Heyland et al, 2004 

Diadematoida: Diadematidae 

  Diadema antillarum Philippi 40 mM A.H and J.H unpublished* 

Echinoida: Echinometridae 

  Colobocentrotus atratus Linnaeus 120 mM J.H. unpublished 

  Echinometra lucunter Linnaeus 70 mM J.H. unpublished 

  Echinometra viridis Agassiz 70 mM J.H. unpublished 

  Heterocentrotus mammillatus Linnaeus 120 mM J.H. unpublished 

Echinoida: Strongylocentrotidae 

  Mesocentrotus franciscanus Agassiz 100 mM 

Carpizo-Ituarte, Salas-Garza & Parés-Sierra, 
2002; Salas-Garza, Carpizo-Ituarte, Pare ́s-
Sierra, Marti ́nez-Lo ́pez & Quintana-
Rodri ́guez, 2005 

  Strongylocentrotus droebachiensis Müller 70 mM J.H. unpublished 

  Strongylocentrotus fragilis Jackson 100 mM J.H. unpublished 

  Strongylocentrotus pallidus Sars 70 mM J.H. unpublished 

  Strongylocentrotus purpuratus Stimpson 70 mM Gaylord, Hodin & Ferner, 2013 

Echinoida: Toxopneustidae 

  Lytechinus pictus Verrill 40 mM Cameron Tosteson & Hensley, 1989 

  Lytechinus variegatus Lamarck 40 mM Heyland, Price, Bodnarova-Buganova & 
Moroz, 2006a 
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Table 1. Minimum effective KCl concentrations for induction of settlement (complete 

transformation from larva to juvenile) with a 1 h exposure in various echinoids. Note that these 1422 

concentrations are the excess potassium added to SW (which already contains potassium at 

approximately 90 mM). Our experience is that there are significant differences among species in the 1424 

rate at which they show signs of settlement following KCl exposure, from minutes (e.g., D. 

excentricus) to 12 h (e.g., in some S. fragilis larvae; note that '12 h' here is 1 h of exposure and 11 h of 1426 

recovery). Asterisks refer to limited data – in such cases, a higher concentration than the one listed 

could be more effective. 1428 

 

 1430 

 

 1432 

FIGURE LEGENDS 

 1434 

Fig. 1. Small scale culturing methods. A) Simple and effective reverse filtration apparatus. A small 

hole is cut in the bottom of a 50-ml centrifuge tube, and plastic air tubing is inserted in the hole.  1436 

The opening of the tube is covered with an appropriate-sized Nitex mesh. Here a commercially-

available Nitex filter basket is shown which snaps in place in the 50-ml tube opening; note that not 1438 

all 50-ml tubes fit these caps snugly. B) Simultaneous reverse filtration of multiple gallon jars with 

reverse filtration apparatuses akin to those shown in (A). C) Mechanical stirring rack in place with 1440 

gallon jars and paddles. Photos by P. Kitaeff (A) and S. George (B,C). 

 1442 
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Fig. 2. Forward filtration set-up as an alternative water change method for small scale 

culturing. First, clean SW is poured into the filter basket to cover the filter mesh. Then, as pictured, 1444 

the culture is gently poured into the filter basket, allowing the water to fill (and spill over the sides 

of) the small glass bowl and into the larger retention bowl. The small glass bowl and filter basket 1446 

can then be moved directly to a dissection microscope to observe the concentrated larvae. The filter 

basket is then lifted out of the small glass bowl, inverted over a clean culture vessel containing clean 1448 

sea water, and rinsed into that vessel with clean SW. The components of this system are shown in 

the inset. Note that, when assembled, the small glass bowl sits atop the large Petri dish shown in the 1450 

inset at left so that the rim of the small glass bowl is above the rim of the larger retention bowl. 

Photos by B. Pernet. 1452 

 

Fig. 3. An example medium scale larval culturing set-up.  Larvae and food are kept in suspension 1454 

in this 75-L cylindrical tank by gentle aeration. For water changes, the valve at the bottom drains the 

tank; larvae are retained on a Nitex mesh by a forward filtration method similar to that pictured in 1456 

Fig. 2 but at a larger scale. To maintain the larvae below ambient temperatures in this set-up, the 

tank is kept within a temperature controlled, insulated cabinet. Photo by C. Lowe. 1458 

 

Fig. 4. An example large scale culturing set up. A) Interior of climate controlled larval rearing 1460 

room. The black cylinders are 200-L cone bottom larval rearing tanks where larvae and 

phytoplankton are suspended with gentle aeration. B) Banjo screens are used for daily water 1462 

exchanges by reverse filtration; this is a larger version of the reverse filtration apparatus shown in 

Fig 1A. C) When larvae need to be moved, or if the tanks are in need of thorough cleaning, forward 1464 

filtration is carried out with a screened bucket and tote system. The principle is the same as the set-
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up shown in Fig. 2, but at a larger scale. Photos by D.L. Cohen.  1466 

 

Fig. 5. Asteroid planktotrophic larval development through metamorphosis, as exemplified by 1468 

the NE Pacific ochre sea star Pisaster ochraceus Brandt at approximately 14°C. A) Early bipinnaria 

stage larva. B) Early brachiolaria stage larva. C) Advanced brachiolaria. Note the juvenile rudiment 1470 

with 5-fold symmetry apparent (white arrowhead), as well as closeups of the juvenile skeleton (upper 

inset) and brachiolar arms (lower inset). N.b., the inset photos are from different larvae than the one 1472 

pictured in the main panel in (C). D) Juvenile. Scale bars: (A)–200 µm; (B)–400 µm; (C)–1000 µm; (D)–

300 µm. Main panel photos by S. George; inset photos in (C) by J. Hodin.  1474 

 

Fig. 6. Asteroid benthic larval development through metamorphosis in the six-armed brooding 1476 

sea star Leptasterias hexactis Stimpson, from the NE Pacific. Dissected oocytes will mature with 1-

methyladenine by standard methods (See Chapter 1 in this volume); embryos can thus be cultured 1478 

in vitro apart from the mother through the juvenile stage (see Hodin, 2006). A) 2-cell stage. B) 

Modified non-feeding brachiolaria larva. C) Brachiolaria larva undergoing metamorphosis, oral view, 1480 

with podia forming (arrowhead) along each ambulacrum (arm) in the juvenile portion of the larva 

(lower left). At this stage, the primordia of 5 of the 6 juvenile arms are well-formed– with 3 pairs of 1482 

podia each. The primordium of the 6th arm is the last to form, here with only one pair of podia just 

visible (white arrows). D) Aboral view of 6-armed juvenile, with spines and tube feet visible. Scale 1484 

bars: (A)–260 µm; (B)–100 µm; (C,D)–120 µm. Photos by J. Hodin. 

 1486 

Fig. 7. Asteroid settlement on coralline algae (Amphiroa sp.), in the six armed cushion star 

Meridiastra gunnii Gray, from subtropical and temperate Australian waters. (A) Several settled M. 1488 
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gunnii larvae and juveniles (orange) on an Amphiroa frond. (B) Close-up of a single settled M. gunnii 

larva. Scale bars: approx. 1 mm. Photos by M. Byrne. 1490 

 

Fig. 8. Larval diversity in echinoids. A) 10-arm feeding pluteus of the NW Atlantic purple-spined 1492 

sea urchin Arbacia punctulata Lamarck (Arbaciidae), pieced together from two photographs. B) 8-

arm feeding pluteus of the NE Pacific purple sea urchin, Strongylocentrotus purpuratus Stimpson 1494 

(Strongylocentrotidae). C) Advanced 8-arm pluteus of the NE Pacific sand dollar, Dendraster 

excentricus Eschscholtz (Clypeasteridae). Well-developed adult spines (arrowhead) and other 1496 

juvenile structures are visible in the large rudiment of this competent larva. D) 8-arm feeding 

pluteus of the tropical E Pacific urchin Echinometra vanbrunti Aggasiz (Echinometridae). E,F) Larvae 1498 

from two sister species of Australian urchins from the genus Heliocidaris (Echinometridae) with 

radically different developmental modes. E) 8-arm feeding pluteus of H. tuberculata Lamarck. F) 1500 

Non-feeding (lecithotrophic) larva of H. erythrogramma Valenciennes; juvenile rudiment clearly 

visible (one of the five primary podia indicated with white arrowhead). G) Feeding pluteus larva, 1502 

resulting from a hybrid cross between two Indian Ocean long-spined urchins (Diadematidae): 

Diadema savignyi Audouin (male) and Diadema setosum Leske (female). Effectively, this advanced 1504 

larva has only one pair of enormous arms remaining; the three other arm pairs formed transiently 

earlier in ontogeny. Scale bars: (A,D,E)–65 µm; (B)–90 µm; (C)–110 µm; (F)–60 µm; (G)–190 µm. 1506 

Photos by J. Hodin (A-C), J. McAlister (D), R. Emlet (E), P. Cisternas (F) and S. Dautov (G). E reproduced 

by permission from Byrne et al (2001). 1508 

 

 1510 
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Fig. 9. Echinoid benthic larval development through metamorphosis in the brooding lamp 1512 

urchin, Cassidulis caribaearum Lamarck (Cassidulidae), from the Eastern Caribbean. A) Larval brood 

among the oral spines of the mother. B) 8-cell stage. C) Non-feeding reduced pluteus larva (at 1514 

approximately the same stage as the brooded larvae in A). D) Post-metamorphic juvenile, at which 

point the offspring crawl away from the mother. Scale bars: (A)–500 µm; (B)- 70 µm; (C)–120 µm; (D)-1516 

200 µm. Photos by J. Hodin. 

 1518 

Fig. 10. Holothuroid adults and larvae of two commonly-cultured species. A) Adult of the brown 

sea cucumber, Isostichopus fuscus Ludwig, an endangered species from the Tropical Pacific and 1520 

Latin America. B) Auricularia larva of I. fuscus. C) Adult of the orange-footed sea cucumber, 

Cucumaria frondosa Gunnerus, from the North Atlantic. D) Pentactula larva of C. frondosa. Scale bars: 1522 

(A)–10 cm; (B)–440 µm; (C)–12 cm; (D)–350 μm. Photos by A. Mercier and J.-F. Hamel. 

 1524 

Fig. 11. Holothuroid planktotrophic larval development through metamorphosis in I. fuscus. A) 

Fully developed auricularia larva. B) Doliolaria larva. C) Pentactula undergoing settlement. D) Newly 1526 

settled juvenile. Scale bars: 200 μm. Photos by A. Mercier and J.-F. Hamel. 

 1528 

Fig. 12. Main larval types in ophiuroids. Fully developed planktotrophic ophioplutei of A) 

Ophiactis resiliens Lyman from Oceania and B) the spiny brittle star Ophiothrix spiculata Le Conte 1530 

from the Eastern Pacific. C) Lecithotrophic ophiopluteus of Macrophiothrix caenosa Hoggett from 

Western Australia. D) Vitellaria larva of Clarkcoma canaliculata Lütken from Oceania. Scale bars: 100 1532 

µm. Photos by P. Cisternas (A, B, D) and J.D. Allen (C). 

 1534 
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Fig. 13. Developmental patterns of ophiuroids with larval development (Type I and Type II) 

classified according to mode of larval feeding (planktotrophy versus lecithotrophy) and larval form 1536 

during metamorphosis. 

 1538 

Fig. 14. Ophiuroid planktotrophic development though metamorphosis and post-settlement 

cloning in the daisy brittle star, Ophiopholis aculeata Lyman, a species with circumpolar distribution 1540 

in the North. A) Initiation of 5-fold symmetry in the rudiment; at this stage, the primordia of the 5 

arms (one indicated with arrow) are visible on the left side. B) Disintegration of the larval arms as the 1542 

larva nears the settlement stage. C) Settled juvenile. D) Cloning via discarded pair of posterolateral 

arms. E) Still image from a video showing discarded posterolateral arms swimming away from a just-1544 

settled juvenile. Scale bars: 100 µm. Photos by J. Hodin. 

 1546 

Fig. 15. Brooding ophiuroids. A,B) Ophiopeza spinosa Ljungman. A) The disc and some of the 

digestive system has been removed to show developing offspring inside the bursae (arrows). B) 1548 

Vitellaria larval stage from brood clutch in O. spinosa. C) Developing embryo of Amphipholis 

squamata Delle Chiaje partially attached to the bursal wall. Scale bars: (A)–600 µm; (B)–300 µm; (C)–1550 

100 µm.  Photos by M. Byrne (A, B) and P. Cisternas (C). B reproduced by permission from Byrne et al 

(2008). 1552 



FIGURE AND TABLES

Fig. 1. Small scale culturing methods. A) Simple and e�ective reverse ◆ltration apparatus. A small 
hole is cut in the bottom of a 50-ml centrifuge tube, and plastic air tubing is inserted in the hole.  
The opening of the tube is covered with an appropriate-sized Nitex mesh. Here a commercially-
available Nitex ◆lter basket is shown which snaps in place in the 50-ml tube opening; note that not 
all 50-ml tubes ◆t these caps snugly. B) Simultaneous reverse ◆ltration of multiple gallon jars using 
reverse ◆ltration apparatuses akin to those shown in (A). C) Mechanical stirring rack in place with 
gallon jars and paddles. Photos by P. Kitae� (A) and S. George (B,C).



Fig. 2. Forward "ltration set-up as an alternative water change method for small scale 
culturing. First, clean seawater is poured into the ◆lter basket to cover the ◆lter mesh. Then, as 
pictured, the culture is gently poured into the ◆lter basket, allowing the water to ◆ll (and spill over 
the sides of) the ◆nger bowl and into the larger retention bowl. The ◆nger bowl and ◆lter basket can
then be moved directly to a dissection microscope to observe the concentrated larvae. The ◆lter 
basket is then lifted out of the ◆nger bowl, inverted over a clean culture vessel containing clean sea 
water, and rinsed into that vessel with clean seawater. The components of this system are shown in 
the inset. Note that, when assembled, the ◆nger bowl sits atop the large Petri dish shown in the 
inset at left so that the rim of the ◆nger bowl is above the rim of the larger retention bowl. Photos 
by B. Pernet.



Fig. 3. An example medium scale larval culturing set-up.  Larvae and food are kept in suspension
in this 75-liter cylindrical tank by gentle aeration. For water changes, the valve at the bottom drains 
the tank; larvae are retained on a Nitex mesh by a forward ◆ltration method similar to that pictured 
in Fig. 2 but at a larger scale. To maintain the larvae below ambient temperatures in this set-up, the 
tank is kept within a temperature controlled, insulated cabinet. Photo by C. Lowe.



Fig. 4. An example large scale culturing set up. A) Interior of climate controlled larval rearing 
room. The black cylinders are 200-L cone bottom larval rearing tanks where larvae and 
phytoplankton are suspended with gentle aeration. B) Banjo screens are used for daily water 
exchanges by reverse ◆ltration; this is a larger version of the reverse ◆ltration apparatus shown in 
Fig 1A. B) When larvae need to be moved, or if the tanks are in need of thorough cleaning, forward 
◆ltration is carried out using a screened bucket and tote system as described in the legend to Fig. 3. 
The principle is the same as the set-up shown in Fig. 2, but at a larger scale. Photos by D.L. Cohen. 



Fig. 5. Asteroid planktotrophic larval development through metamorphosis, as exempli◆ed by 
the NE Paci◆c ochre sea star Pisaster ochraceus Brandt at approximately 14°C. A) Early bipinnaria 
stage larva. B) Early brachiolaria stage larva. C) Advanced brachiolaria. Note the juvenile rudiment 
with 5-fold symmetry apparent (white arrowhead), as well as closeups of the juvenile skeleton 
(upper inset) and brachiolar arms (lower inset). N.b., the inset photos are from di�erent larvae than 
the one pictured in the main panel in (C). D) Juvenile. Scale bars: (A)–200µm; (B)–400 µm; (C)–1000 
µm; (D)–300 µm. Main panel photos by S. George; inset photos in (C) by J. Hodin. 



Fig. 6. Asteroid benthic larval development through metamorphosis in the six-armed brooding 
sea star Leptasterias hexactis Stimpson, from the NE Paci◆c. Dissected oocytes will mature by 1-
methyladenine using standard methods (See Chapter 1 in this volume), and in this way, embryos 
can be cultured in vitro apart from the mother through the juvenile stage (see Hodin 2006). A) 2-cell 
stage. B) Modi◆ed non-feeding brachiolaria larva. C) Brachiolaria larva undergoing metamorphosis, 
oral view, with podia forming (arrowhead) along each ambulacrum (arm) in the juvenile portion of 
the larva (lower left). At this stage, the primordia of 5 of the 6 juvenile arms are well-formed– with 3 
pairs of podia each. The primordium of the 6th arm is the last to form, here with only one pair of 
podia just visible (white arrows). D) Aboral view of 6-armed juvenile, with spines and tube feet 
visible. Scale bars: (A)–260µm; (B)–100 µm; (C,D)–120 µm. Photos by J. Hodin.



Fig. 7. Asteroid settlement on coralline algae (Amphiroa sp.), in the six armed cushion star 
Meridiastra gunnii Gray, from subtropical and temperate Australian waters. (A) Several settled M. 
gunnii larvae and juveniles (orange) on an Amphiroa frond. (B) Close-up of a single settled M. gunnii 
larva. Scale bars: approx. 1 mm. Photos by M. Byrne.



Fig. 8. Larval diversity in echinoids. A) 10-arm feeding pluteus of the NW Atlantic purple-spined 
sea urchin Arbacia punctulata Lamarck (Arbaciidae), pieced together from two photographs. B) 8-
arm feeding pluteus of the NE Paci◆c purple sea urchin, Strongylocentrotus purpuratus Stimpson 
(Strongylocentrotidae). C) Advanced 8-arm pluteus of the NE Paci◆c sand dollar, Dendraster 
excentricus Eschscholtz (Clypeasteridae). Well-developed adult spines (arrowhead) and other 
juvenile structures are visible in the large rudiment of this competent larva. D) 8-arm feeding 
pluteus of the tropical E Paci◆c urchin Echinometra vanbrunti Aggasiz (Echinometridae). E,F) Larvae 
from two sister species of Australian urchins from the genus Heliocidaris (Echinometridae) with 
radically di�erent developmental modes. E) 8-arm feeding pluteus of H. tuberculata Lamarck. F) 
Non-feeding (lecithotrophic) larva of H. erythrogramma Valenciennes; juvenile rudiment clearly 
visible (one of the ◆ve primary podia indicated with white arrowhead). G) Feeding pluteus larva, 
resulting from a hybrid cross between two Indian Ocean long-spined urchins (Diadematidae): 
Diadema savignyi Audouin (male) and Diadema setosum Leske (female). E�ectively, this advanced 
larva has only one pair of enormous arms remaining; the three other arm pairs formed transiently 
earlier in ontogeny. Scale bars: (A,D,E)–65 µm; (B)–90 µm; (C)–110 µm; (F)–60 µm; (G)–190 µm. 
Photos by J. Hodin (A-C), J. McAlister (D), R. Emlet (E), P. Cisternas (F) and S. Dautov (G). E reproduced
by permission from Byrne et al. (2001).



Fig. 9. Echinoid benthic larval development through metamorphosis in the brooding lamp 
urchin, Cassidulis caribaearum Lamarck (Cassidulidae), from the Eastern Caribbean. A) Larval brood 
among the oral spines of the mother. B) 8-cell stage. C) Non-feeding reduced pluteus larva (at 
approximately the same stage as the brooded larvae in A). D) Post metamorphic juvenile, at which 
point the o�spring crawl away from the mother. Scale bars: (A)–500 µm; (B)- 70 µm; (C)–120 µm; (D)-
200 µm. Photos by J. Hodin.



Fig. 10. Holothuroid adults and larvae of two commonly-cultured species. A) Adult of the brown 
sea cucumber, Isostichopus fuscus Ludwig, an endangered species from the Tropical Paci◆c and 
Latin America. B) Auricularia larva of I. fuscus. C) Adult of the orange-footed sea cucumber, 
Cucumaria frondosa Gunnerus, from the North Atlantic. D) Pentactula larva of C. frondosa. Scale bars:
(A)–10 cm; (B)–440 um; (C)–12 cm; (D)–350 Fm. Photos by A. Mercier and J.-F. Hamel.



Fig. 11. Holothuroid planktotrophic larval development through metamorphosis in I. fuscus. A)
Fully developed auricularia larva. B) Doliolaria larva. C) Pentactula undergoing settlement. D) Newly 
settled juvenile. Scale bars: 200 Fm. Photos by A. Mercier and J.-F. Hamel.



Fig. 12. Main larval types in ophiuroids. Fully developed planktotrophic ophioplutei of A) 
Ophiactis resiliens Lyman from Oceania and B) the spiny brittle star Ophiothrix spiculata Le Conte 
from the Eastern Paci◆c. C) Lecithotrophic ophiopluteus of Macrophiothrix caenosa Hoggett from 
Western Australia. D) Vitellaria larva of Clarkcoma canaliculata Lütken from Oceania. Scale bars: 
100µm. Photos by P. Cisternas (A, B, D) and J.D. Allen (C).



Fig. 13. Developmental patterns of ophiuroids with larval development (Type I and Type II) 
classi◆ed according to mode of larval feeding (planktotrophy versus lecithotrophy) and larval form 
during metamorphosis.



Fig. 14. Ophiuroid planktotrophic development though metamorphosis and post-settlement 
cloning in the daisy brittle star, Ophiopholis aculeata Lyman, a species with circumpolar distribution 
in the North. A) Initiation of 5-fold symmetry in the rudiment; at this stage, the primordia of the 5 
arms (one indicated with arrow) are visible on the left side. B) Disintegration of the larval arms as the
larva nears the settlement stage. C) Settled juvenile. D) Cloning via discarded pair of posterolateral 
arms. E) Still image from a video showing discarded posterolateral arms swimming away from a just-
settled juvenile. Scale bars: 100µm. Photos by J. Hodin.



Fig. 15. Brooding ophiuroids. A,B) Ophiopeza spinosa Ljungman. A) The disc and some of the 
digestive system has been removed to show developing o�spring inside the bursae (arrows). B) 
Vitellaria larval stage from brood clutch in O. spinosa. C) Developing embryo of Amphipholis 
squamata Delle Chiaje partially attached to the bursal wall. Scale bars: (A)–600 µm; (B)–300 µm; (C)–
100 µm.  Photos by M. Byrne (A, B) and P. Cisternas (C). B reproduced by permission from Byrne et al.
(2008).
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