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Abstract. The existences of an asymptotic spreading speed and traveling
wave solutions for a diffusive model which describes the interaction of mistletoe

and bird populations with nonlocal diffusion and delay effect are proved by

using monotone semiflow theory. The effects of different dispersal kernels on
the asymptotic spreading speeds are investigated through concrete examples

and simulations.

1. Introduction. Most mistletoes are vector-borne parasites whose vectors are
their avian seed-dispersers [3]. In most vector-borne parasites and diseases, the
vector maintains a parasitic, or, at best, a commensal relationship with the par-
asite. Mistletoes are unique among vector-borne parasites because they maintain
a mutualistic interaction with their vectors [2, 3, 7]. Birds obtain nutrients, en-
ergy, and, in the desert, water from mistletoes. In turn, mistletoes receive directed
movement of their propagules into safe germination sites [3].

Because of the apparently specialized nature of the interaction between mistletoes
and birds, the dispersal of mistletoes has received considerable attention [2, 3, 7,
15]. A model describing the dynamics of mistletoes in an isolated patch assuming
the birds are constant was considered in [14]. In order to better understand the
interaction between mistletoes and the avian seed dispersers, a mathematical model
which incorporated the spatial dispersal and interaction of mistletoes and birds
was derived and studied in [17] to gain insights of the spatial heterogeneity in
abundance of mistletoes. Fickian diffusion and chemotaxis were used to model
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the random movement of birds and the aggregation of birds due to the attraction
of mistletoes, respectively. The spread of mistletoes by birds is expressed by a
convolution integral with a dispersal kernel. A Holling type II functional response
was used to model the process that fruits were removed by birds. And a time delay
was introduced to model the maturation time of mistletoes. The model in [17] is a
reaction-diffusion equation of bird population with chemotactic effect and nonlocal
growth rate, coupled with a nonlocal delayed differential equation for the mistletoe
population. With appropriate initial and boundary conditions, it takes the following
form:

∂m

∂t
= αe−diτ

∫
Ω

k(x, y)
m(t− τ, y)b(t− τ, y)

m(t− τ, y) + w
dy − dmm, x ∈ Ω, t > 0,

∂b

∂t
= D∆b− β∇(b∇m) + b(1− b) + c

∫
Ω

k(x, y)
m(t, y)b(t, y)

m(t, y) + w
dy, x ∈ Ω, t > 0,

m(t, x) = m0(t, x), b(t, x) = b0(t, x), x ∈ Ω, −τ ≤ t ≤ 0,
(D∇b(t, x)− βb(t, x)∇m(t, x)) · n(x) = 0, x ∈ ∂Ω.

(1)

Here, Ω is the spatial habitat for both the mistletoes and birds, m(t, x) and b(t, x)
are the densities of mistletoes and birds at time t and location x ∈ Ω, respectively,
α is the hanging rate of mistletoe fruits to trees, di and dm are the mortality rates
of immature and mature mistletoes respectively, τ is the maturation time of mistle-
toes, D is the diffusion rate of birds, c is the conversion rate from mistletoe fruits
into bird population, and w is used to reflect the fact that birds may stop in other
trees and structures irrelevant to the dynamic process of mistletoes. Apart from
assuming logistic growth for birds population which measures the bird population
growth due to other food resources besides mistletoes in the habitat, we assume that
the birds make directed dispersal from lower to higher concentration of mistletoes,
since the birds are attracted by the trees with more mistletoes. Hence a chemotactic
term with β > 0 is included in the equation. The kernel function k(x, y) describes
the dispersal of mistletoe fruits by birds from location y to location x. Different
types of kernel functions are used to investigate (1), showing that the spatial het-
erogenous patterns of the mistletoes are related to the specific dispersal pattern of
birds which carry mistletoe seeds. A no-flux boundary condition is imposed for the
bird population so that the birds are confined to the known habitat.

Besides the spatial pattern formation studies in [17], the spatial invasive spread-
ing speeds of the mistletoes into new territories is of particular interest to the
conservation biologists. In this article, we consider the traveling wave dynamics of
(1) without the chemotactic effect (β = 0) in a linear habitat Ω = R, then system
(1) turns into

∂m

∂t
= αe−diτ

∫
R
k(x, y)

m(t− τ, y)b(t− τ, y)

m(t− τ, y) + w
dy − dmm, x ∈ R, t > 0,

∂b

∂t
= Dbxx + b(1− b) + c

∫
R
k(x, y)

m(t, y)b(t, y)

m(t, y) + w
dy, x ∈ R, t > 0,

m(t, x) = m0(t, x), b(t, x) = b0(t, x), x ∈ R, −τ ≤ t ≤ 0.
(2)

The parameters α, di, dm, D, c, w are assumed to be positive, and the time delay τ
is assumed to be nonnegative. Throughout this paper, we also make the following
assumptions.

(H1) dm < d̃m :=
αe−diτ

w
,
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(H2) k(x, y) = k(x − y), k : R → R+ is piecewise continuous, k(z) > 0, k(z) =

k(−z) for any z ∈ R,

∫
R

k(z)dz = 1 and

∫
R

k(z)eν|z|dz <∞ for any ν > 0.

Under the assumption (H1), it is known that (see [17]) (2) has a unique positive
constant equilibrium (m+, b+), in addition to trivial constant equilibria (0, 0) and
(0, 1). The kernel function k(x, y) satisfying (H2) is positive and symmetric, and
the dispersal only depends on the distance between two points in the habitat. We
also assume that the kernel function decays faster than an exponential function.
Note that our theoretical results for the existence of asymptotical spreading speed
and traveling wave are proved under the assumption that k(z) is positive in (H2),
but these results may still hold if k(z) is non-negative with a compact support
set or finite dispersal range. In Section 5, an example of non-negative and compact
support k(z) is shown in numerical simulation along with a positive kernel example.

Our purpose in the current paper is to investigate the asymptotic spreading
speed and traveling wave solutions of (2) under the assumptions (H1) and (H2),
by using the theory of traveling waves for monotone semiflows developed in [6, 11]
and related work. More precisely, we first prove the existence of the asymptotic
spreading speed ρ∗ of (2), which is later shown to be the minimal wave speed of
traveling wave solution. The main results are summarized in the following theorem
(the precise meaning of the asymptotic spreading speed is given in Section 3):

Theorem 1.1. Assume that the parameters α, di, dm, D, c, w are positive, the time
delay τ is nonnegative, and the assumptions (H1) and (H2) hold. Then,

(1) there exists ρ∗ > 0 which is the asymptotic spreading speed of (2).
(2) for any ρ ≥ ρ∗, system (2) has a traveling wave φ(x + ρt) connecting (0, 1)

and the unique positive equilibrium (m+, b+) such that φ(s) is smooth and
nondecreasing in s.

(3) there is no monotone traveling wave φ(x+ ρt) connecting (0, 1) and (m+, b+)
of (2) for 0 < ρ < ρ∗.

We also create some constructive ways to estimate the lower and upper bounds of
the asymptotic spreading speed ρ∗ by using some auxiliary systems whose asymp-
totic spreading speeds can be more explicitly calculated (see Section 3). These lower
and upper bounds can be numerically calculated by using the formulas derived in
this paper (see Section 5 for more details).

There have been many recent work in asymptotic spreading speed and traveling
wave solutions for cooperative reaction-diffusion systems. In [5, 8, 21, 22], traveling
waves of partially degenerate reaction-diffusion systems were considered. The as-
ymptotic spreading speed for cooperative systems was studied in [1, 9, 11, 12, 20],
and the traveling waves of delayed cooperative systems were considered in [10, 13,
18, 19].

The remaining part of this paper is organized as follows. Section 2 is devoted to
present the basic results on the equilibria of model (2) from [17] and to introduce
some notations and assumptions for the traveling waves from [11]. In Section 3,
we show the existence of the asymptotic spreading speed of (2) and provide some
lower and upper bound estimates of the asymptotic spreading speed. In Section
4, the existence of traveling wave solutions is shown by using recently developed
theory in [6], and the minimal wave speed coincides with the asymptotic spreading
speed proved in Section 3. Some examples and numerical simulations are shown in
Section 5 to illustrate the spreading dynamics of mistletoes and birds.
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2. Preliminaries. First we recall the basic kinetic dynamics of (2) shown in [17].

Define d̃m =
αe−diτ

w
and d∗m =

(1 + c)2α

4cwediτ
. It has been shown in [17] that the

following results on the existence of equilibria hold.

Lemma 2.1. Model (2) always has a trivial equilibrium E0 = (0, 0) and a boundary
equilibrium E1 = (0, 1), and for the constant interior equilibria, there are two cases:

1. If c > 1, then for dm > d∗m, there is no positive equilibrium; for dm ∈ (d̃m, d
∗
m),

there are two positive equilibria E± of (2); for dm ∈ (0, d̃m], there is a unique
positive equilibrium E+.

2. If 0 < c ≤ 1, then for dm > d̃m, there is no positive equilibrium; for dm ∈
(0, d̃m], there is a positive equilibrium E+.

It follows from Lemma 2.1 that under the assumption (H1), (2) admits three
equilibria

E0 = (0, 0), E1 = (0, 1), E+ = (m+, b+),

where m+ and b+ are uniquely determined by

b = 1 +
cm

m+ w
,

dm
αe−diτ

(m+ w) = b. (3)

Furthermore, E0 and E1 are unstable with respect to the corresponding kinetic
model, while E+ is locally asymptotically stable. Let M = m and B = b− 1. Then
(2) becomes:

∂M

∂t
= αe−diτ

∫
R

k(y)
M(t− τ, x− y)

M(t− τ, x− y) + w

(B(t− τ, x− y) + 1)dy − dmM, x ∈ R, t > 0,
∂B

∂t
= DBxx −B(1 +B)

+c

∫
R

k(y)
M(t, x− y)

M(t, x− y) + w
(B(t, x− y) + 1)dy, x ∈ R, t > 0,

M(t, x) = m0(t, x) := φ1(t, x), x ∈ R, −τ ≤ t ≤ 0,

B(t, x) = b0(t, x)− 1 := φ2(t, x), x ∈ R, −τ ≤ t ≤ 0,

(4)

which has exactly two nonnegative equilibria under the assumption (H1):

0 := (0, 0), K := (m+, b+ − 1).

The spatially homogeneous system associated with (4) is
M ′ =

αe−diτM(t− τ)(B(t− τ) + 1)

M(t− τ) + w
− dmM,

B′ = −B(1 +B) +
cM(B + 1)

M + w
.

(5)

In order to prove the existence of traveling wave solutions of (2) connecting E1 and
E+, it suffices to consider the traveling waves of (4) connecting 0 and K, which
belongs to the monostable case.

The proper phase space for (4) can be chosen as C := C([−τ, 0]×R,R2). Clearly,
any vector in R2 (which is constant in (t, x)), or any element in C := C([−τ, 0],R2)
(which is constant in x), can be regarded as an element in C. A natural order “≥”
in C is defined by: u ≥ v for u = (u1, u2) and v = (v1, v2) ∈ C, if ui(θ, x) ≥ vi(θ, x)
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for i = 1, 2, θ ∈ [−τ, 0] and x ∈ R; u > v if u ≥ v and u 6= v; and u � v if
ui(θ, x) > vi(θ, x). For any r ∈ R2 and r ≥ 0, define Cr := {φ ∈ C : r ≥ φ ≥ 0} and
Cr := {φ ∈ C : r ≥ φ ≥ 0}. The solution operator of (4) is defined by

Qt(φ)(θ, x) = (Q1
t (φ)(θ, x), Q2

t (φ)(θ, x))

=(Mt(θ, x, φ), Bt(θ, x, φ)), θ ∈ [−τ, 0], x ∈ R, φ ∈ C.
(6)

For any u = (u1(θ, x), u2(θ, x)) ∈ C, define the reflection operator R by

R[u](θ, x) = (u1(θ,−x), u2(θ,−x)).

Given y ∈ R, define the translation operator Ty by

Ty[u](θ, x) = (u1(θ, x− y), u2(θ, x− y)).

A set W ⊆ C is said to be T -invariant if Ty[W ] = W for any y ∈ R. In order to
apply the theory in [11] to address the existence of an asymptotic spreading speed
for (4), we need to verify that the solution operator Qt defined in (6) at time t = 1
satisfies the following conditions.

(A1) Q1[R[u]] = R[Q1[u]] and Ty[Q1[u]] = Q1[Ty[u]], for any y ∈ R.
(A2) Q1 : CK → CK is continuous with respect to the compact open topology.
(A3) One of the following two properties holds:

(a) {Q1[u](·, x) : u ∈ CK, x ∈ R} is precompact in CK, or
(b) Let X be the set of all bounded continuous functions from R to R2.

Q1[CK](0, ·) is precompact in X, and there is a positive number ς ≤ τ
such that Q1[u](θ, x) = u(θ + ς, x) for −τ ≤ θ ≤ −ς, and the operator

S[u](θ, x) =

{
u(0, x), −τ ≤ θ ≤ −ς,
Q1[u](θ, x), −ς ≤ θ ≤ 0,

(7)

has the property that S[Π](·, 0) := {S[u](θ, 0) : u ∈ Π} is precompact in CK
for any T -invariant set Π ⊂ CK with Π(0, ·) := {u(0, x) : u ∈ Π} precompact
in X.

(A4) Q1 : CK → CK is monotone in the sense that Q1[u] ≤ Q1[v] whenever u ≥ v
in CK.

(A5) Q1 : CK → CK admits exactly two fixed points 0 and K, and for any positive
number ε, there is ζ ∈ CK with ‖ζ‖ < ε such that Q1[ζ] � ζ, where ‖ · ‖ is
the maximum norm in C.

3. Asymptotic spreading speed. In this section, we show that the solution of
(4) possesses an asymptotic spreading speed as defined in [11]. To apply the ab-
stract theory in [11], we verify that Q1 defined in (6) satisfies properties (A1) −
(A5) defined in Section 2. It is straightforward to verify that (A1) holds, since
(M(t,−x), B(t,−x)) and (M(t, x−y), B(t, x−y)) are also solutions of (4) provided
that (M(t, x), B(t, x)) is a solution of (4) and y ∈ R. To prove (A2), we first prove
the following existence, uniqueness and continuous dependence of solutions of (4)
on the initial values.

Lemma 3.1. For any φ(θ, x) = (φ1(θ, x), φ2(θ, x)) ∈ CK, system (4) has a
unique nonnegative solution (M(t, x, φ), B(t, x, φ)) with initial value φ, satisfying
0 ≤ (M(t, x, φ), B(t, x, φ)) ≤ K for t ≥ 0.
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Proof. Let δ be a fixed positive constant, and define the operator F = (F1, F2) on
C([−τ,∞)× R,Θ), where Θ = [0,m+]× [0, b+ − 1], by

F [M,B](t, x)

=


δM + αe−diτ

∫
R

k(y)
M(t− τ, x− y)

M(t− τ, x− y) + w
(B(t− τ, x− y) + 1)dy

δB −B2 + c

∫
R

k(y)
M(t, x− y)

M(t, x− y) + w
(B(t, x− y) + 1)dy

 ,

for t ∈ (0,∞) and F [M(t, x), B(t, x)] = φ(t, x) for t ∈ [−τ, 0]. So F is a nonde-
creasing map on C([−τ,∞)×R,Θ) for a sufficiently large δ. In the following, we fix
δ > 0 so that F is a nondecreasing map. Let T (t), t ≥ 0, be the solution operator
generated by the Cauchy problem{

∂B

∂t
= DBxx − (δ + 1)B, x ∈ R, t > 0,

B(0, x) = ψ(x), x ∈ R,
in the space of bounded continuous functions on R. In particular, we have

|T (t)ψ(x)| ≤ max
x∈R
|ψ(x)|e−(δ+1)t, x ∈ R. (8)

Then system (4) is equivalent to the following integral equations:
M(t, x) = e−(δ+dm)tφ1(0, x) +

t∫
0

e−(δ+dm)(t−s)F1[M,B](s, x)ds := G1[M,B](t, x),

B(t, x) = T (t)φ2(0, x) +

t∫
0

T (t− s)F2[M,B](s, x)ds := G2[M,B](t, x),

(9)

for t > 0 and x ∈ R. Define a set

Γ :={(M,B) ∈ C([−τ,∞)× R,Θ) : M(θ, x) = φ1(θ, x),

B(θ, x) = φ2(θ, x), θ ∈ [−τ, 0]}.

with the metric of Γ induced by the norm defined on C([−τ,∞)× R,R):

‖(M,B)‖λ = sup
t∈[−τ,0],x∈R

(|M(t, x)|+ |B(t, x)|)

+ sup
t∈R+,x∈R

(|M(t, x)|+ |B(t, x)|)e−λt, for λ > 0.

Suppose that (M,B) ∈ Γ. We observe that

F1(m+, b+ − 1)

δ + dm
= m+, and

F2(m+, b+ − 1)

δ + 1
= b+ − 1. (10)

By using (10) and the monotonicity of F , we obtain

0 ≤ G1[M,B](t, x) ≤ e−(δ+dm)t

φ1(0, x) + F1(m+, b+ − 1)

t∫
0

e(δ+dm)sds


≤ e−(δ+dm)t

[
φ1(0, x)− F1(m+, b+ − 1)

δ + dm

]
+
F1(m+, b+ − 1)

δ + dm

= e−(δ+dm)t [φ1(0, x)−m+] +m+ ≤ m+,
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and similarly, also by using (8),

0 ≤ G2[M,B](t, x) ≤ e−(δ+1)t(b+ − 1) + F2(m+, b+ − 1)

t∫
0

e−(δ+1)(t−s)ds

=
F2(m+, b+ − 1)

δ + 1
= b+ − 1.

Hence G(Γ) ⊆ Γ. Moreover, for any (M,B), (M̄, B̄) ∈ Γ,

|G1[M,B]−G1[M̄, B̄]|

≤
t∫

0

δe−(δ+dm)(t−s)|M − M̄ |(s, x)ds

+

t∫
0

e−(δ+dm)(t−s)αe−diτ
∫
R

k(y)

∣∣∣∣ M(s− τ, x− y)

M(s− τ, x− y) + w
(B(s− τ, x− y) + 1)

− M̄(s− τ, x− y)

M̄(s− τ, x− y) + w
(B̄(s− τ, x− y) + 1)

∣∣∣∣ dyds
≤

t∫
0

δe−(δ+dm)(t−s)|M − M̄ |(s, x)ds+ αe−diτ
t∫

0

∫
R

e−(δ+dm)(t−s)k(y)

×
[
b+
w
|M − M̄ |(s− τ, x− y) + |B − B̄|(s− τ, x− y)

]
dyds.

Therefore,

|G1[M,B]−G1[M̄, B̄]|e−λt

≤
t∫

0

δe−(δ+dm+λ)(t−s)e−λs|M − M̄ |(s, x)ds+ αe−diτ
t∫

0

∫
R

e−(δ+dm+λ)(t−s)k(y)

×
[
b+
w
e−λs|M − M̄ |(s− τ, x− y) + e−λs|B − B̄|(s− τ, x− y)

]
dyds.

(11)
Similarly we also have

|G2[M,B]−G2[M̄, B̄]|e−λt

≤
t∫

0

(δ + 2(b+ − 1))e−(δ+1+λ)(t−s)e−λs|B − B̄|(s, x)ds+ c

t∫
0

∫
R

e−(δ+1+λ)(t−s)k(y)

×
[
b+
w
e−λs|M − M̄ |(s, x− y) + e−λs|B − B̄|(s, x− y)

]
dyds.

(12)
Letting A = δ + 2(b+ − 1) + (b+w

−1 + 1)(αe−diτ + c) and δ0 = δ + min{dm, 1}, we
get

‖G(M,B)−G(M̄, B̄)‖λ ≤ 2A

t∫
0

e−(δ0+λ)(t−s)‖(M,B)− (M̄, B̄)‖λds
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≤ 2A

δ0 + λ
‖(M,B)− (M̄, B̄)‖λ.

We choose λ > 0 large enough so that G is a contraction in Γ. This implies the
existence and uniqueness of solution to (4) from the contraction mapping principle.

Now by using Lemma 3.1, we prove that the solution operator Qt generates a
semiflow on CK which implies (A2).

Lemma 3.2. Let Qt be the solution operator of (4) defined in (6). Then {Qt}t≥0

is a semiflow on CK.

Proof. We prove that Qt is continuous in φ with respect to the compact open
topology uniformly for t ∈ [0, t0] with t0 > 0. Let T̃ (t) be the solution operator of
the heat equation

∂u

∂t
= D4u, t > 0, x ∈ R, u(0, x) = ψ(x), x ∈ R,

that is,

T̃ (t)ψ(x) =

∫
R

e
−(x−y)2

4Dt

√
4πDt

ψ(y)dy, t > 0, x ∈ R,

for any ψ in the set of all bounded continuous functions from R to R. Then, system
(4) can be rewritten into the following system of integral equations:

M(t, x, φ) = e−dmtφ1(0, x) +

t∫
0

e−dm(t−s)F̃1[M,B](s, x)ds := G̃1[M,B](t, x),

B(t, x, φ) = T̃ (t)φ2(0, x) +

t∫
0

T̃ (t− s)F̃2[M,B](s, x)ds := G̃2[M,B](t, x),

(13)
where

F̃ [M,B](t, x) =


αe−diτ

∫
R

k(y)
M(t− τ, x− y)

M(t− τ, x− y) + w
(B(t− τ, x− y) + 1)dy

−B −B2 + c

∫
R

k(y)
M(t, x− y)

M(t, x− y) + w
(B(t, x− y) + 1)dy

 .

Suppose that for φ1 = (φ1
1, φ

1
2), φ2 = (φ2

1, φ
2
2) ∈ CK. Define

ν(t, x) = (ν1(t, x), ν2(t, x)),

ν1(t, x) = |M(t, x, φ1)−M(t, x, φ2)|, ν2(t, x) = |B(t, x, φ1)−B(t, x, φ2)|,
ΩN (z) = [−τ, 0]× [z −N, z +N ], N > 0, z ∈ R,
|φ|ΩN (z) = sup

(θ,x)∈ΩN (z)

|φ1(θ, x)|+ sup
(θ,x)∈ΩN (z)

|φ2(θ, x)|, for φ = (φ1, φ2).

Fix t0 > 0 and ε > 0. Let k0 = (k1
0, k

2
0) = sup

s∈[−τ,t],x∈R
(ν1(s, x), ν2(s, x)). Set

χ =
(αe−diτ + c)(b+ + w)

w
+ (2b+ − 1) and ε0 =

ε

2χt0eχt0
. Then, there exists
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(t∗, x∗) such that νs(θ, x) ≤ k0 ≤ ν(t∗, x∗)+(ε0, ε0) for (s, θ, x) ∈ [0, t]× [−τ, 0]×R.

Choose η =
ε

4eχt0
and N = N(t0, ε) such that for 0 ≤ s ≤ t,∫

R

k(y)

[
b+
w
ν1(s, x∗ − y) + ν2(s, x∗ − y)

]
dy ≤ b+ + w

w
|νs|ΩN (x∗) + ε0.

With these choices, together with (11), (12) and (13), if |φ1 − φ2|ΩN (x∗) < η, then

|νt(θ, x)|ΩN (x∗)

≤ν1(t∗, x∗) + ν2(t∗, x∗) + ε

≤e−dmt
∗
ν1(0, x∗) + ν2(0, x∗)

+ αe−diτ
t∗∫

0

∫
R

e−dm(t∗−s)k(y)

[
b+
w
ν1(s− τ, x∗ − y) + ν2(s− τ, x∗ − y)

]
dyds

+

t∗∫
0

(2b+ − 1)ν2(s, x∗)ds+ c

t∗∫
0

∫
R

k(y)

[
b+
w
ν1(s, x∗ − y) + ν2(s, x∗ − y)

]
dyds

≤2|φ1 − φ2|ΩN (x∗) + (2b+ − 1)

t∫
0

(|νs|ΩN (x∗) + ε0])ds

+
(αe−diτ + c)(b+ + w)

w

t∫
0

(|νs|ΩN (x∗) + ε0)ds

≤2η + ε0tχ+ χ

t∫
0

|νs|ΩN (x∗)ds.

Now the Gronwall’s inequality implies that

|νt(θ, x)|ΩN (x∗) ≤ (2η + ε0tχ)eχt ≤ (2η + ε0t0χ)eχt0 = ε,

for t ∈ [0, t0] when |φ1 − φ2|ΩN (x∗) < η. This shows that Qt is continuous in φ with
respect to compact open topology uniformly for t ∈ [0, t0]. By the continuity of Qt
in t from Lemma 3.1, it then follows that Qt is continuous in (t, φ).

In the next three lemmas, we prove that the solution map Q1 satisfies the as-
sumptions (A3), (A4) and (A5). First we recall the following definition of upper
and lower solutions (see for example [21]).

Definition 3.3. A function (M,B) ∈ C1([−τ,∞) × R, [0,m+]) × C2([−τ,∞) ×
R, [0, b+ − 1]) is called an upper solution of (4) if it satisfies

∂M

∂t
≥ αe−diτ

∫
R

k(y)
M(t− τ, x− y)

M(t− τ, x− y) + w
(B(t− τ, x− y) + 1)dy − dmM(t, x),

∂B

∂t
≥ DBxx −B(t, x)(1 +B(t, x)) + c

∫
R

k(y)
M(t, x− y)

M(t, x− y) + w
(B(t, x− y) + 1)dy.

(14)

for all (t, x) ∈ [−τ,∞) × R. A lower solution of (4) is defined in a similar way by
reversing the inequalities in (14).
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For a pair of upper and lower solutions of (4), the following comparison principle
holds:

Lemma 3.4. Let (M,B) and (M,B) be a pair of upper and lower solutions of
(4) with M(θ, x) ≥ M(θ, x) and B(θ, x) ≥ B(θ, x) for θ ∈ [−τ, 0], x ∈ R. Then
M(t, x) ≥M(t, x) and B(t, x) ≥ B(t, x) for all t ≥ 0 and x ∈ R.

Proof. Denote v1(t, x) = M(t, x)−M(t, x), v2(t, x) = B(t, x)−B(t, x) and

v(t) = min
i=1,2

inf
x∈R

vi(t, x), t ≥ 0.

We now show that v(t) ≥ 0 for all t ≥ 0. If there exists a t0 > 0 such that v(t0) < 0,
then there is a t0 such that

v(t0)e−δt0 = min
t∈[0,t0]

v(t)e−δt < v(τ)e−δτ , ∀ τ ∈ [0, t0].

It easily follows that there exist an index i ∈ {1, 2} and a sequence of points
{xk}∞k=1 ⊂ [0, t0] such that vi(t0, xk) < 0 and limk→∞ vi(t0, xk) = v(t0). Let
{tk}∞k=1 ⊂ [0, t0] be a sequence such that

vi(tk, xk)e−δtk = min
t∈[0,t0]

vi(t, xk)e−δt.

Moreover, {xk}∞k=1 can be chosen properly as local minimums of vi(x, tk), that is,
∂v2i (tk,xk)

∂x2 ≥ 0 if the second order partial derivative of vi with respect to x exists.
Then, a similar argument as in [21] gives

∂vi(tk, xk)

∂t
≤ δvi(tk, xk).

If i = 1, we have

0 ≤∂v1(tk, xk)

∂t
+ dmv1(tk, xk)

− αe−diτ
∫
R

k(y)
M(tk − τ, xk − y)

M(tk − τ, xk − y) + w
(B(tk − τ, xk − y) + 1)dy

+ αe−diτ
∫
R

k(y)
M(tk − τ, xk − y)

M(tk − τ, xk − y) + w
(B(tk − τ, xk − y) + 1)dy

≤(δ + dm)v1(tk, xk)− αe−diτ
∫
R

k(y)
M

M + w
v2(tk − τ, xk − y)dy

− αe−diτ
∫
R

k(y)
w(B + 1)

(M + w)(M + w)
v1(tk − τ, xk − y)dy

≤(δ + dm)v1(tk, xk)− αe−diτ
∫
R

k(y)

[
m+

m+ + w
+
b+
w

]
v(tk)dy

≤(δ + dm)v1(tk, xk)− αe−diτ b+
w

v(tk) < 0,

and if i = 2, we have

0 ≤∂v2(tk, xk)

∂t
−D∂v

2
2(tk, xk)

∂x2
+ (1 +B +B)v2(tk, xk)
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− c
∫
R

k(y)
M(tk, xk − y)

M(tk, xk − y) + w
(B(tk, xk − y) + 1)dy

+ c

∫
R

k(y)
M(tk, xk − y)

M(tk, xk − y) + w
(B(tk, xk − y) + 1)dy

≤(δ + 1 +B +B)v2(tk, xk)

− c
∫
R

k(y)

[
M

M + w
v2(tk, xk − y) +

w(B + 1)

(M + w)(M + w)
v1(tk, xk − y)

]
dy

≤(δ + 1 +B +B)v2(tk, xk)− c
∫
R

k(y)

[
m+

m+ + w
+
b+
w

]
v(tk)dy

≤(δ + 1 +B +B)v2(tk, xk)− cb+
w
v(tk) < 0,

for sufficient large k and δ, which is a contradiction.

We observe that the property (A4) can be guaranteed by Lemma 3.4. Also the
comparison principle in Lemma 3.4 implies the following positivity result for the
solution of (4).

Corollary 3.5. For any φ ∈ CK with φ 6≡ 0, let (M(t, x, φ), B(t, x, φ)) be the
solution of (4) with initial condition φ. Then there exists t = t(φ) > 0 such that
M(t, x, φ) > 0 and B(t, x, φ) > 0 for any t > t(φ), x ∈ R.

Proof. Comparing the second equation of (4) with{
∂U

∂t
= 4U − U(1 + U), x ∈ R, t > 0,

U(0, x) = φ2(0, x), x ∈ R,
(15)

from Lemma 3.4, we know that B(t, x) ≥ U(t, x) > 0 for t > 0 and x ∈ R, since
each solution of (15) is positive provided the initial condition is nonnegative. Now
we claim that there exists a t0 ∈ [0, τ ] such that M(t0, x) 6≡ 0 for all x ∈ R. Assume,
by contradiction, that M(t, x) ≡ 0 for all t and x. From the first equation in (9),
we have φ1(t, x) ≡ 0 for t ∈ [−τ, 0] and x ∈ R, which is a contradiction. Then, for
t ∈ [t0, t0 + τ ], M(t, x) 6≡ 0 for all x ∈ R, since ∂M

∂t ≥ −dmM . From M ’s equation
in (4), we know that

M(t, x)

≥
t∫

0

e−dm(t−s)

αe−diτ ∫
R

k(y)
M(s− τ, x− y)

M(s− τ, x− y) + w
(B(s− τ, x− y) + 1)dy

 ds,
Let t(φ) = t0 +τ . It follows from the inequality above that M(t, x) > 0 for t > t(φ),
x ∈ R.

Now we are ready to prove the property (A3) and (A5) in the next two lemmas.

Lemma 3.6. Q1 satisfies (A3)(a) if τ ≤ 1, and satisfies (A3)(b) if τ > 1.

Proof. By Lemma 3.1, it follows that all solutions of (4) are bounded with initial
value φ ∈ CK. Since there is no diffusion term in M ’s equation of (4), it is immediate
that ∂M

∂t is bounded for t ≥ 0. By the Arzela-Ascoli Theorem, we obtain that

{Q1
t [u](·, x) : u ∈ CK, x ∈ R} is precompact in C([−τ, 0],R) if t ≥ τ . Therefore, Q1

t
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satisfies (A3)(a) for t ≥ τ . On the other hand if t < τ , we set ς = 1. Then, for the
T -invariant set Π defined in (A3), the set {S1[Π](θ, 0) : θ ∈ [−ς, 0]} is precompact
in C([−ς, 0],R) where S1 is the first component of the operator S defined in (7). It
is obvious that {S1[Π](θ, 0) : θ ∈ [−τ,−ς]} is an infinite set of constant functions in
C([−τ,−ς],R), hence it is precompact in C([−τ,−ς],R). Thus, Q1

t satisfies (A3)(b)
for t < τ .

For Q2
t , similar arguments in Lemma 2.3 in [4] imply that Q2

t [CK] is precompact
in C([−τ, 0]×R,R) if t ≥ τ , and if t < τ , S2[Π] is precompact in C([−τ, 0]×R,R)
for any T -invariant set Π ⊂ CK with Π(0, ·) precompact in X. This proves that Q2

t

satisfies (A3)(a) if t ≥ τ and (A3)(b) if t < τ , which completes the proof of the
lemma.

Lemma 3.7. For each t > 0, Qt satisfies (A5).

Proof. Let Q̂t be the restriction of Qt on C̄. Then Q̂t is the semiflow generated
by (5). Since (5) is a cooperative and irreducible system, it follows from Corollary

5.3.5 in [16] that K is a globally asymptotically stable equilibrium in C̄\{0}, and Q̂t
is a strongly monotone semiflow on C̄. By the Dancer-Hess connecting orbit lemma
(see [23]), it follows that Q̂t admits a strongly monotone full orbit connecting 0
and K. For any positive number ε, there exists ζ ∈ CK with ‖ζ‖ < ε such that

Q1[ζ] = Q̂t[ζ]� ζ, and hence, Qt satisfies (A5).

Now with all properties (A1)-(A5) proved, we are ready to apply the general
theory in [11, Theorem 2.17] to show that the map Q1 has an asymptotic spreading
speed ρ∗, which is also the asymptotic spreading speed of solutions to (2) in the
following sense.

Theorem 3.8. Assume that (H1) and (H2) hold, then there exists an asymptotic
spreading speed ρ∗ of Qt, in the following sense:

(1) For any ρ > ρ∗, if φ ∈ CK with 0 � φ � K and φ(·, x) = 0 for x outside a
bounded interval, then

lim
t→∞,|x|≥tρ

M(t, x, φ) = lim
t→∞,|x|≥tρ

B(t, x, φ) = 0.

(2) For any ρ < ρ∗ and any σ ∈ C̄K with σ � 0, there is a positive number rσ
such that if φ ∈ CK and φ� σ for x on an interval of length 2rσ, then

lim
t→∞,|x|≤tρ

M(t, x, φ) = m+, and lim
t→∞,|x|≤tρ

B(t, x, φ) = b+ − 1.

Next we give an estimate of the upper bound of the asymptotic spreading speed
ρ∗ by computing the spreading speed of a linear reaction diffusion system, which
will be used later on to show the existence of traveling wave solutions with upper
and lower solution method. First we consider the following linear system:

∂M

∂t
= αe−diτ

∫
R
k(y)

[
1

w
M(t− τ, x− y) +

m+

m+ + w
B(t− τ, x− y)

]
dy

−dmM, x ∈ R, t > 0,
∂B

∂t
= DBxx −B

+c

∫
R

k(y)

[
1

w
M(t, x− y) +

m+

m+ + w
B(t, x− y)

]
dy, x ∈ R, t > 0.

(16)
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For any µ ∈ R+, define M(t, x) = e−µxη1(t), B(t, x) = e−µxη2(t). Then η = (η1, η2)
satisfies

η′(t) = Uη(t) + V η(t− τ), (17)

where

U =

 −dm 0
cA(µ)

w
Dµ2 − 1 +

cm+A(µ)

m+ + w

 , (18)

and

V =

 αe−diτA(µ)

w

m+αe
−diτA(µ)

m+ + w
0 0

 . (19)

where A(µ) =

∫
R

k(y)eµydy < ∞ for any µ > 0. If η(t) is a solution of (17), then

e−µxη(t) is a solution of (16). Define

Btµ(η0) := Nt(η
0e−µx)(0) = η(t, η0), (20)

where Nt is the solution operator of (16), and η(t, η0) is the solution of (17) with
η0 = η(θ) for θ ∈ [−τ, 0]. Since system (17) is cooperative and irreducible, we know
from [16, Theorem 5.1] that its characteristic equation

∆(λ) = det(λI − U − V e−λτ ) = 0 (21)

have a real root λ(µ) > 0, and the real parts of all other roots are less than λ(µ).
Let q = (q1(θ), q2(θ)) be the eigenfunction of the infinitesimal generator corre-
sponding to λ(µ). In fact, u can take the form (q1(θ), q2(θ)) = (q10e

λ(µ)θ, q20e
λ(µ)θ)

with q10, q20 > 0, θ ∈ [−τ, 0]. Then eλ(µ)t is the principal eigenvalue of Btµ with

eigenfunction q. In particular, γ(µ) := eλ(µ) is the eigenvalue of B1
µ. Define

Φ(µ) :=
1

µ
ln γ(µ) =

λ(µ)

µ
, for µ ∈ R+. (22)

By using [11, Lemma 3.8], we have the following properties of Φ(µ).

Lemma 3.9. Let U and V be defined as in (18) and (19), and let λ(µ), γ(µ) and
Φ(µ) be defined as above. Then we have the following characteristics of Φ(µ):

(1) Φ(µ)→∞ as µ→ 0+;
(2) Φ(µ) is strictly decreasing for µ near 0;
(3) Φ′(µ) changes sign at most once on (0,∞);
(4) lim

µ→∞
Φ(µ) exists, where the limit may be infinite.

Now the following proposition provides an estimate of an upper bound of the
asymptotic speed of spread ρ∗.

Proposition 3.10. Let ρ∗ be the asymptotic spreading speed of Qt defined as in
Theorem 3.8, and let λ(µ), γ(µ) and Φ(µ) be defined as above. Then

ρ∗ ≤ inf
µ>0

Φ(µ) = inf
µ>0

λ(µ)

µ
.

Proof. Suppose that (M(t, x), B(t, x)) is the solution of (4) with initial condition
φ ∈ CK. It is easy to verify that it is a lower solution of (16), which implies
Q1(φ) ≤ N1(φ) for any φ ∈ CK. Also note that N1 and B1

µ satisfies (C1)-(C6) in
[11]. By Theorem 3.10 in [11], it suffices to show that the principal eigenvalue γ(0)
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is greater than 1, and the infimum of Φ(µ) is attained at some positive µ∗ > 0. For
µ = 0, (21) becomes

∆(λ) = (λ+ dm −
αe−diτ

w
e−λτ )(λ+ 1− cm+

m+ + w
)− cm+αe

−diτ

w(m+ + w)
e−λτ

= λ2 + (dm + 1− cm+

m+ + w
)λ+ (1− cm+

m+ + w
)dm −

αe−diτ

w
(λ+ 1)e−λτ = 0.

Let
h1(λ) = λ2 + (dm + 1− cm+

m+ + w
)λ+ (1− cm+

m+ + w
)dm,

h2(λ, τ) =
αe−diτ

w
(λ+ 1)e−λτ .

Then we have h1(0) = (1 − cm+

m+ + w
)dm < h2(0, τ) =

αe−diτ

w
, since dm < d̃m :=

αe−diτ

w
. If τ ≥ 1, we have

∂h2

∂λ
≤ 0 for λ ≥ 0. If τ < 1, then h2(λ, τ) reaches

its unique local (thus global) maximum at λ =
1

τ
− 1 and tends to 0 as λ → +∞.

Moreover h1(λ) is convex for λ > 0, while for any fixed τ > 0, h2(λ, τ) has at most
one reflection point for λ > 0. Accordingly, there is a unique λ∗ > 0 such that
h1(λ∗) = h2(λ∗, τ) no matter what value τ takes. This implies that λ(0) = λ∗ > 0,
and hence γ(0) > 1, i.e. the condition (C7) in [11] is satisfied.

It remains to show that Φ(µ) attains its infimum at some µ∗ > 0. This is
accomplished by proving that lim

µ→∞
Φ(µ) =∞. From (21),

∆(λ) = λ2 + (dm −Dµ2 + 1− cm+

m+ + w
A(µ))λ+ (−Dµ2 + 1− cm+

m+ + w
A(µ))dm

− αe−diτ

w
A(µ)(λ−Dµ2 + 1)e−λτ = 0,

(23)
Similar as above, we define

h3(λ) = λ2 + (−Dµ2 + dm + 1− cm+

m+ + w
A(µ))λ+ (−Dµ2 + 1− cm+

m+ + w
A(µ))dm,

h4(λ, τ) =
αe−diτ

w
A(µ)(λ−Dµ2 + 1)e−λτ .

For any large µ, we have h3(Dµ2 − 1 + τ−1) < 0, h′3(λ) > 0 for λ > Dµ2 − 1 + τ−1

and lim
λ→∞

h3(λ) = ∞. Also, h4(Dµ2 − 1 + τ−1, τ) > 0,
∂h4(λ, τ)

∂λ
< 0 for λ >

Dµ2 − 1 + τ−1, and lim
λ→+∞

h4(λ, τ) = 0. So (23) admits a unique positive root

λ(µ) > Dµ2 − 1 + τ−1. Therefore, lim
µ→∞

Φ(µ) = lim
µ→∞

λ(µ)

µ
=∞.

Finally we provide an estimate of the lower bound of the asymptotic spreading
speed ρ∗ of (2). Choose any small ε > 0. Let P εt , t ≥ 0, be the solution operator of
the following linear system:

∂M

∂t
= αe−diτ

∫
R

k(y)
1

w + ε
M(t− τ, x− y)dy − dmM, x ∈ R, t > 0,

∂B

∂t
= DBxx − (1 + ε)B + c

∫
R

k(y)
1

w + ε
M(t, x− y)dy. x ∈ R, t > 0.

(24)
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Similar arguments as in the proof of Proposition 3.10 show that P εt also satisfies
(C1)-(C7) in [11]. Moreover, for given ε ∈ (0, 1), there exists ε = (ε1, ε2) such that
the solution (M,B) of (24) satisfying

0 < M(t, x, u) < ε, 0 < B(t, x, u) < ε, t ∈ [0, 1],

for any initial u = (u1, u2) with 0 ≤ u1 ≤ ε1, 0 ≤ u2 ≤ ε2. Thus (M(t, x, u), B(t, x,
u)) satisfies

∂M

∂t
= αe−diτ

∫
R

k(y)
M(t− τ, x− y)

M(t− τ, x− y) + w
(B(t, x− y) + 1)dy − dmM

≥ αe−diτ
∫
R

k(y)
1

w + ε
M(t− τ, x− y)dy − dmM, t ∈ [0, 1],

and

∂B

∂t
= DBxx −B(1 +B) + c

∫
R

k(y)
M(t, x− y)

M(t, x− y) + w
(B(t, x− y) + 1)dy

≥ DBxx − (1 + ε)B + c

∫
R

k(y)
1

w + ε
M(t, x− y)dy, t ∈ [0, 1].

The comparison principle implies that P εt [u] ≤ Qt[u] for t ∈ [0, 1]. In particular,
P ε1 [u] ≤ Q1[u] for 0 ≤ u1 ≤ ε1, 0 ≤ u2 ≤ ε2. By using Theorem 3.10 in [11] again,
we know that the asymptotic spreading speed of P εt is attained by the infimum of

Ψε(µ) :=
Λε(µ)

µ
, and Λε(µ) is the principal eigenvalue of(
Λ + dm −

αe−diτA(µ)

w + ε
e−Λτ

)
(Λ−Dµ2 + 1 + ε) = 0, (25)

which is the characteristic equation for the equation of η corresponding to (24).
One can show that results in Lemma 3.9 also hold for Ψε(µ). Moreover from the
comparison argument above, we have

ρ∗ ≥ inf
µ>0

Ψε(µ), (26)

which provides a lower bound of the asymptotic spreading speed of (2). Since ε > 0
can be chosen arbitrarily, then indeed we have

ρ∗ ≥ inf
µ>0

Ψ(µ) = inf
µ>0

Λ(µ)

µ
, (27)

where Λ(µ) is the principal eigenvalue of(
Λ + dm −

αe−diτA(µ)

w
e−Λτ

)
(Λ−Dµ2 + 1) = 0. (28)

In summary we obtain the following result for the lower bound of the asymptotic
spreading speed ρ∗:

Proposition 3.11. Let ρ∗ be the asymptotic spreading speed of Qt defined as in
Theorem 3.8, and let Λ(µ) and Ψ(µ) be defined as above. Then

ρ∗ ≥ inf
µ>0

Ψ(µ) = inf
µ>0

Λ(µ)

µ
.



1758 C.-C. WANG, R.-S. LIU, J.-P. SHI AND C. M. DEL RIO

In particular, Λ(µ) = max{Dµ2 − 1,Λ2(µ)} where Λ2(µ) is the unique positive

number satisfying f(Λ, µ) := Λ + dm −
αe−diτA(µ)

w
e−Λτ = 0.

For a fixed µ > 0, the existence and uniqueness of Λ2(µ) follows easily from the

monotonicity of the function f(Λ, µ) in Λ, the assumption (H1) that dm−
αe−diτ

w
=

dm − d̃m < 0 and the assumption (H2) that A(µ) > 1 for µ > 0.
The results in Propositions 3.10 and 3.11 imply that ρ∗(c) ≥ ρ∗(0) for c > 0,

since ρ∗(0) is a lower bound of ρ∗(c) for positive c. This suggests that the additional
birth of the birds due to mistletoes will speed up the spreading of the mistletoe and
bird into new territory.

4. Traveling wave. In this section we prove the existence of traveling wave so-
lutions with speed ρ ≥ ρ∗, where ρ∗ is the asymptotic spreading speed defined in
Section 3. A traveling wave front of (4) is a solution with the special from

M(t, x) = φ1(x+ ρt) := φ1(s), B(t, x) = φ2(x+ ρt) := φ2(s), (29)

where ρ > 0 is the wave speed. Substituting (29) into (4) gives

ρφ′1 = αe−diτ
∫
R

k(y)
φ1(s− y − ρτ)

φ1(s− y − ρτ) + w
(φ2(s− y − ρτ) + 1)dy − dmφ1,

ρφ′2 = Dφ′′2 − φ2(1 + φ2) + c

∫
R

k(y)
φ1(s− y)

φ1(s− y) + w
(φ2(s− y) + 1)dy,

(30)

where ′ denotes d
ds .

The existence of traveling wave solution is proved using the newly developed
theory in [6], even though the system is not linearly determined. Note that the
solution operator Qt fails to be compact for any t > 0 due to time delay and the
absence of diffusion term for the mistletoe’s equation. We have the following result
regarding the existence of traveling wave solutions for any ρ ≥ ρ∗, the asymptotic
spreading speed.

Theorem 4.1. Assume that (H1) and (H2) hold, and let ρ∗ be the asymptotic
spreading speed of Qt defined as in Theorem 3.8. Then for any ρ ≥ ρ∗, system (4)
has a monotone traveling wave solution connecting 0 and K with wave speed ρ, and
for 0 < ρ < ρ∗, system (4) has no monotone traveling wave solution connecting 0
and K. That is, the asymptotic spreading speed ρ∗ is also the minimal wave speed for
the monotone traveling waves. Furthermore, these traveling waves are also classical
solutions to (4).

Proof. We apply the abstract theory in [6]. In Section 3, we have proved the
existence of an asymptotic spreading speed ρ∗ following the theory in [11] by showing
that assumptions (A1)-(A5) in Section 2 are satisfied. Note that Theorem 4.1 in [6]
requires conditions (A1), (A2′) and (A3)-(A5) of paper [6], which are not exactly
the same ones in Section 2 here. Comparing the conditions, we can see that (A1),
(A4) and (A5) in Section 2 (or [11]) and the ones in [6] are exactly same. The
condition (A2′) in [6] can be proved for our situation by using arguments in the
proof of Lemmas 3.1 and 3.2. Hence we only need to verify the assumption (A3)
in [6]. It is sufficient to show that the solution operator Qt satisfies a certain
compactness property (point-α-contraction), that is, there exits k ∈ [0, 1) such that
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for any u ∈ M, α(Qt[u](0)) ≤ kα(u(0)), for t > 0, where M is the set of all non-
decreasing and bounded functions from R to C, and α(·) is the Kuratowski measure
for a bounded set in C([−τ, 0],R2).

Indeed we can follow the same idea of the proof of Theorem 5.2 in [6] to write
Qt = Lt + St, where Lt is the solution map of a delay differential equation, and St
is compact. Then we obtain that

α(Qt[u](0)) ≤ α(Lt[u](0)) + α(St[u](0)) ≤ e−γtα(u(0)),

for some positive γ > 0. Therefore, by Theorem 4.1 in [6], it follows that ρ∗ is the
minimal wave speed for monotone traveling waves connecting 0 and K.

It remains to show the smoothness of wave profile (M(x+ρt), B(x+ρt)) for any
ρ ≥ ρ∗. Note that

B(x+ ρt) = T̃ (t)[B](x) +

t∫
0

T̃ (t− s)F̃2[M,B](x− ρs)ds.

By the expression of T̃ , it follows that B is twice differentiable. For M(x+ ρt), we
have

M(x+ ρt) = M(x) +

t∫
0

(F̃1[M,B](x− ρs)− dmM(x− ρs))ds,

which implies M ′ exists for any x ∈ R.

5. Examples and simulations. It is important to have more information about
the asymptotic spreading speed ρ∗. From the comparison arguments used in Section
3, we have that

ρ∗L ≡ inf
µ>0

Λ(µ)

µ
≤ ρ∗ ≤ inf

µ>0

λ(µ)

µ
≡ ρ∗U , (31)

where λ(µ) and Λ(µ) are defined through auxiliary systems (16) and (24). We can
have a more precise estimate of the spreading speed ρ∗ with further assumptions.
Indeed from (23), λ(µ) is the principal eigenvalue of the eigenvalue problem

(λ−Dµ2 + 1)(λ+ dm − d̃mA(µ)e−λτ )− cm+

m+ + w
A(µ)(λ+ dm) = 0, (32)

hence ρ∗U depends on D, dm, d̃m, A(µ), τ and c. On the other hand, Λ(µ) is the
principal eigenvalue of the eigenvalue problem

(Λ−Dµ2 + 1)(Λ + dm − d̃mA(µ)e−Λτ ) = 0, (33)

which is same as (32) with c = 0. Hence when D, dm, d̃m, A(µ), τ and c are known,
then the upper and lower bounds of ρ∗ can always be numerically calculated. We
use two examples to illustrate the effect of the kernel function k(z) which determines
A(µ).

Example 5.1. Suppose that the kernel function is a Dirac delta function k(z) =
δ(z), that is, the birds drop mistletoe seeds only locally. Note that in this case, the
assumption (H2) is not satisfied, but the proof given in this paper can be modified
to cover this case as well. In this example we have A(µ) ≡ 1. If in addition we
assume that the delay τ = 0, then we obtain that

ρ∗L =

√
D

d̃m − dm + 1
(d̃m − dm), where d̃m =

α

w
. (34)
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For delay τ > 0, there exists a unique Λτ > 0 such that Λτ +dm− d̃mA(µ)e−Λττ = 0

where d̃m =
αe−diτ

w
and Λτ is strictly decreasing in τ . Then ρ∗L =

√
D

Λτ + 1
Λτ .

For small τ > 0, it is easy to see that Λτ ≈
d̃m − dm
1 + d̃mτ

. Hence in this case, the

asymptotic spreading speed is smaller when τ is larger.
On the other hand, the upper bound ρ∗U is determined by the eigenvalue problem

(λ−Dµ2 + 1)(λ+ dm − d̃me−λτ )− cm+

m+ + w
(λ+ dm) = 0. (35)

In general we can obtain that ρ∗U = ρ∗L + O(c), and when τ = 0 and c > 0 is small
we obtain that

ρ∗U ≈

√
D

d̃m − dm + 1

[
(d̃m − dm) +

cm+

m+ + w
(d̃m + 1/2)

]
.

Example 5.2. Consider that the kernel function is a square wave with a finite
influence region. Given K > 0, and let

k(z) =

{
K−1, |z| < K/2,
0, otherwise.

(36)

Note that here again (H2) is not satisfied as k(z) is not strictly positive. But
numerical simulation shows that a spreading speed and travel waves exist. The
upper and lower bounds given above can still be explicitly calculated. Indeed

A(µ) =

∫ K/2

−K/2
K−1eµ|y|dy =

2

Kµ
(e

Kµ
2 − 1). Then the principal eigenvalue λ(µ)

(as well as Φ(µ) = λ(µ)/µ) of (32) and the principal eigenvalue Λ(µ) (as well as
Ψ(µ) = Λ(µ)/µ)(33) can be calculated numerically. Here we use the following set
of parameters:

Parameter w α c di dm τ D
Value 1 1 0.5 0.1 0.1 1 1

Table 1. Parameter values used in Example 5.2

In Fig. 1, the graphs of Φ(µ) and Ψ(µ) with K = 4, 6, 8 and 10 are plotted,
from which the upper and lower bounds of the asymptotic spreading speed ρ∗ can
be estimated. For example, if K = 4, then 0.91 ≤ ρ∗ ≤ 1.83, and if K = 10, then
2.27 ≤ ρ∗ ≤ 3.99. It appears that ρ∗ is increasing in K, which means that the
spreading is faster when the bird flying range is wider. A numerical simulation of
the traveling wave with square wave kernel and parameters given in Table 1 with
K = 4 is given in Fig. 2. The wave profile of the corresponding traveling waves
with K = 4 and K = 10 are given in Fig. 3 and 4.

Example 5.3. Let the kernel k(z) be a normal distribution function with mean
zero and variance σ2, that is,

k(z) =
1√
2πσ

exp

(
− z2

2σ2

)
, (37)

Then Φ(µ) and Ψ(µ) for this kernel can also be calculated numerically, and are
plotted in Fig. 5 with same parameters as in Table 1 and standard deviation
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Figure 1. The graph of Φ(µ) (left) and Ψ(µ) (right) for the kernel
given by (36) with different parameter K. The graphs of Ψ(µ)
for different K overlap since the principal eigenvalues of (33) are
Dµ2 − 1 for large µ, which is independent of K.

Figure 2. A solution of (2) for the kernel defined by (36) with
parameters given in Table 1 and K = 4, which tends to a traveling
wave solution.
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Figure 3. Wave profiles for mistletoes (left) and birds (right) of
the traveling wave solution of (2) for the kernel defined by (36)
with K = 4 and other parameters given in Table 1.
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Figure 4. Wave profiles for mistletoes (left) and birds (right) of
the traveling wave solution of (2) for the kernel defined by (36)
with K = 10 and other parameters given in Table 1. The wave
speed with K = 10 is faster than the one with K = 4.

σ = 1, 2, 3, 4. For example, if σ = 1, then 0.63 ≤ ρ∗ ≤ 1.13, and if σ = 4, then
2.54 ≤ ρ∗ ≤ 3.62. Apparently the asymptotic spreading speed ρ∗ is increasing as
the variance σ2 increases. A numerical simulation of the traveling wave with normal
distribution kernel and parameters given in Table 1 with σ = 2 is given in Fig. 6.
The wave profile of the corresponding traveling waves with σ = 2 and σ = 4 are
given in Fig. 7 and 8.
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Figure 5. The graph of Φ(µ) (left) and Ψ(µ) (right) for the kernel
given by (37) with different variances.

It is well known that the Fisher-KPP equation Bt = DBxx + B(1 − B) has a

family of traveling wave solutions with wave speed ρ ≥ ρ0 =
√

4D. In particular
the asymptotic spreading speed for the Fisher-KPP equation is ρ0 =

√
4D (see [1]).

Apparently this family of traveling wave solutions can also be regarded as travel-
ing wave solutions of (2) connecting the equilibria (0, 0) and (0, 1) with mistletoe
population always being zero. For parameters given in Table 1, we have ρ0 = 2.
From Example 5.2, one can see that when ρ∗ < 1.83 < 2 = ρ0 when K = 4, while
ρ∗ > 2.27 > 2 = ρ0 when K = 10. Similar phenomenon occurs in Example 5.3 with
normal distribution kernel. This suggests two different invasion scenarios: (i) when
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Figure 6. A solution of (2) for the kernel defined by (37) with
σ = 2 and other parameters given in Table 1.
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Figure 7. Wave profiles for mistletoes (left) and birds (right) of
the traveling wave solution of (2) for the kernel defined by (37)
with σ = 2 and other parameters given in Table 1.
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Figure 8. Wave profiles for mistletoes (left) and birds (right) of
the traveling wave solution of (2) for the kernel defined by (37)
with σ = 4 and other parameters given in Table 1. The wave speed
with σ = 4 is faster than the one with σ = 2.
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ρ∗ < ρ0, the birds will invade the new territory with a speed ρ0 without the existence
of mistletoes, and a second (and slower) wave of mistletoes and birds will follow
with a speed ρ∗ which will increase the bird population to a higher value b+ > 1;
and (ii) when ρ∗ > ρ0, the wave of mistletoes and birds is faster than the bird-only
wave, hence when the two wave propagations both exist, the mistletoe-bird wave
will catch up with and supersede the bird-only wave.
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