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We study a classically scale-invariant model in which strong dynamics in a dark sector sets the scale of 
electroweak symmetry breaking. Our model is distinct from others of this type that have appeared in the 
recent literature. We show that the Higgs sector of the model is phenomenologically viable and that the 
spectrum of dark sector states includes a partially composite dark matter candidate.
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1. Introduction

The Lagrangian of the standard model has precisely one dimen-
sionful parameter, the squared mass of the Higgs doublet field. This 
mass sets the scale of electroweak symmetry breaking, which is 
communicated to the standard model fermions via their Yukawa 
couplings. The origin and stability of the hierarchy between the 
electroweak scale and the Planck scale have motivated many of 
the leading proposals for physics beyond the standard model. In 
this Letter, we study the phenomenology of a specific model in 
which the Higgs mass squared arises as a result of strong dynam-
ics in a dark sector. Other models of this type have been discussed 
in the recent literature [1,2]; we explain how our model differs 
from those proposals below.

It is well known that the Yukawa coupling between a scalar 
φ and fermions can lead to a linear term in the scalar poten-
tial if the fermions condense. Such a term alters the potential so 
that the scalar develops a vacuum expectation value (vev). If the 
scalar squared mass term is absent, then the scale of the scalar vev 
is set entirely by that of the strong dynamics that produced the 
condensate. If these fields carry electroweak quantum numbers, 
then electroweak symmetry will be spontaneously broken. A sim-
ple model based on this idea was proposed by Carone and Georgi 
in Ref. [3]. In this Letter, we consider a similar theory in which the 
scalar and fermions in question do not carry electroweak charges. 
The vev of φ does not break electroweak symmetry, but provides 
an origin for the Higgs squared mass via the Higgs portal coupling 
λpφ†φH† H . As long as λp has the appropriate sign, electroweak 
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symmetry breaking is triggered at a scale set by the strong dy-
namics of the dark sector.

The choice of a classically scale-invariant scalar potential can be 
justified by various arguments. We place them in two categories:

1. The model is tuned. Dimensionful parameters might not as-
sume natural values as a consequence of the probability distri-
bution over the string landscape, which is poorly understood. If 
one takes this point of view, it is not unreasonable to consider ex-
tensions of the standard model that are designed to address its 
deficiencies (for example, extensions that provide for viable dark 
matter physics) that appear tuned but are parametrically simple 
and can be easily tested in experiment. Our model is of this type 
and could easily be ruled out (or supported) by upcoming dark 
matter searches.

2. The model is not tuned. If there are no physical mass scales be-
tween the weak and Planck scales, then the only possible source 
of a Higgs quadratic divergences is from the cut off of the the-
ory. Although field theoretic completions to low-energy effective 
theories lead generically to quadratic divergences proportional to 
the square of the cutoff [4], this may not be the case for quantum 
gravitational physics at the Planck scale [5]. As argued in Ref. [6], 
a spacetime description itself may break down at this scale and 
one’s intuition based on quantum field theories may be flawed. 
If one takes this point of view, it is not unreasonable to assume 
that a Higgs mass generated via dimensional transmutation in the 
infrared is only multiplicatively renormalized [7] and to explore 
the phenomenological consequences. A significant number of re-
cent papers have adopted this perspective [1,2,8,9].

The model we propose has a dark sector SU(2)L × SU(2)R chiral 
symmetry that is spontaneously broken by a fermion condensate 
triggered by strong dynamics. An SU(2)D subgroup of the global 
symmetry is gauged, and the dark fermions have Yukawa cou-
plings to a scalar that is a doublet under this gauge symmetry. The 
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dark sector would be an electroweak neutral clone of the model in 
Ref. [3], except that a U(1) gauge factor is replaced by a discrete 
subgroup to avoid a massless dark photon. The presence of an 
SU(2)D -doublet scalar immediately distinguishes the model from 
most related ones in the literature which employ a dark singlet to 
communicate dark sector strong dynamics through the Higgs por-
tal [1]. We note that the model of Ref. [2] has the same dark sector 
global chiral symmetry as ours, but does not gauge any subgroup. 
This leads to a different particle spectrum and phenomenology. 
We also utilize a non-linear chiral Lagrangian approach, familiar 
from the study of technicolor and QCD, which provides a con-
venient framework for the systematic description of dark sector 
phenomenology at low energies.

Our paper is organized as follows. In the next section we define 
the model. In Section 3, we consider phenomenological constraints. 
In Section 4, we study the relic density and direct detection of the 
dark matter candidate in the model, which is a partially composite 
dark sector state. In Section 5, we present our conclusions.

2. The model

The gauge group of the model is GSM × SU(N) × SU(2)D . The 
first factor refers to the standard model gauge group, while the 
second is responsible for confinement in the dark sector. The GSM
singlet fields (which we will call the dark sector, henceforth) are: 
a complex SU(2)D -doublet scalar φ, a left-handed SU(2)D -doublet 
fermion ϒL ≡ (pL, mL)

T and two right-handed singlet fermions pR

and mR . The fermions transform in the fundamental representa-
tion of the SU(N) group. The field content is analogous to that of 
the technicolor model in Ref. [3] with SU(2)W replaced by SU(2)D

and U(1)Y replaced by a Z3 factor. As we will see below, the latter 
choice is the simplest way to preserve a convenient analogy be-
tween the two theories while also eliminating an unwanted mass-
less gauge field. The dark sector has a global SU(2)L ×SU(2)R chiral 
symmetry that is spontaneously broken when the dark fermions 
condense

〈p p + m m〉 ≈ 4π f 3 , (2.1)

where f is the dark pion decay constant. We refer to the un-
broken SU(2) subgroup of the global symmetry as dark isospin. 
Spontaneous chiral symmetry breaking results in an isotriplet of 
dark pions

� =
3∑

a=1

πa σ a

2
, (2.2)

where σ a are the Pauli matrices. As in the chiral Lagrangian ap-
proach of Ref. [3], we adopt a nonlinear representation

� = exp(2i�/ f ) , (2.3)

which transforms under the global chiral symmetry as � → L�R†, 
where L and R are the transformation matrices for SU(2)L and 
SU(2)R , respectively. It will be convenient to define the following 
four-by-four matrix field

	 ≡ (
iσ 2φ∗ φ

)
, (2.4)

and the nonlinear field redefinition

	 = σ + f ′
√

2
�′ (2.5)

with �′ = exp(2i�′/ f ′). The kinetic terms for 	 and � are

LKE = 1

2
tr

(
Dμ	† Dμ	

)
+ f 2

4
tr

(
Dμ�† Dμ�

)

= 1

2
∂μσ∂μσ + f 2

4
tr

(
Dμ�† Dμ�

)

+ (σ + f ′)2

4
tr

(
Dμ�′ † Dμ�′) . (2.6)

Here Dμ = ∂μ − igD Aa
μ

σ a

2 , where Aa
μ is the SU(2)D gauge field. 

Study of the terms quadratic in the fields allows one to identify 
an unphysical linear combination of fields �u that becomes the 
longitudinal component of Aa

μ , and an orthogonal state πp that is 
physical:

πu = f � + f ′�′√
f 2 + f ′ 2

, (2.7)

πp = − f ′� + f �′√
f 2 + f ′ 2

. (2.8)

The πp multiplet will later be identified as the dark matter candi-
date in the theory.

Explicit breaking of the chiral symmetry originates from the 
Yukawa couplings. Assuming that the fields transform under the 
Z3 symmetry as

ϒL → ϒL , φ → ωφ , pR → ω pR , mR → ω2 mR , (2.9)

where ω3 = 1, we find that the Yukawa couplings are given as in 
Ref. [3] by

−Ly = y+ϒ L φ̃ pR + y−ϒ Lφ mR + h.c. (2.10)

Defining ϒR ≡ (pR , mR) and the matrix Y ≡ diag(y+, y−) this may 
be re-expressed as

−Ly = ϒ̄L	Y ϒR + h.c. , (2.11)

which implies that we may treat (	Y ) as a chiral-symmetry-
breaking spurion with the transformation property

(	Y ) → L(	Y )R† . (2.12)

The lowest order term in the chiral Lagrangian that involves (	Y )

is

L = c14π f 3 tr(	Y �†) + h.c. (2.13)

where c1 is expected to be of order unity by naive dimensional 
analysis [10]. This term determines the physical dark pion mass

m2
π = 2c1

√
2

4π f

f ′ ( f 2 + f ′2) y , (2.14)

where y ≡ (y+ + y−)/2, as well as a linear term in the scalar po-
tential

V y(σ ) = −8
√

2πc1 f 3 y σ . (2.15)

This term sets the scale of the dark scalar vev, which determines 
the induced mass term for the standard model Higgs doublet H
via a coupling in the potential V = V 0 + V y , where V 0 represents 
the scale-invariant terms:

V 0(φ, H) = λ

2
(H† H)2 − λp(H† H)(φ†φ) + λφ

2
(φ†φ)2. (2.16)

In the ultraviolet (UV), before the dark fermions have condensed, 
vacuum stability of Eq. (2.16) requires that

λ > 0 and λλφ > λ2
p . (2.17)
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Noting that φ†φ = tr(	†	)/2 = (σ + f ′)2/2 and working in uni-
tary gauge where H = [0, (v + h)/

√
2 ]T , the potential may be re-

expressed as

V (h,σ ) = λ

8
(v + h)4 − λp

4
(v + h)2(σ + f ′)2 + λφ

8
(σ + f ′)4

− 8
√

2πc1 f 3 y σ , (2.18)

after the dark fermions have condensed. Minimization of Eq. (2.18)
leads to the following expressions for the vevs v and f ′:

v3 = 2

(
λp

λ

)3/2
(

λφ − λ2
p

λ

)−1

8
√

2πc1 f 3 y, (2.19)

f ′ 3 = 2

(
λφ − λ2

p

λ

)−1

8
√

2πc1 f 3 y. (2.20)

Of course, we fix v = 246 GeV to obtain the correct electroweak 
gauge boson masses. The mass squared matrix in the (h, σ ) basis 
is given by

M2 =
⎛
⎝ λ −√

λλp

−√
λλp

1
2

(
3λφλ

λp
− λp

)
⎞
⎠ v2 , (2.21)

which is positive definite for positive couplings with λλφ > λ2
p .

One of the eigenvalues of this matrix corresponds to the 
squared mass of the Higgs scalar observed at the LHC, m2

h0
=

(125.09 GeV)2 [11]. We call the remaining mass eigenstate field 
η below, and define the mixing angle θ by(

cos θ − sin θ

sin θ cos θ

)(
h0
η

)
=

(
h
σ

)
. (2.22)

The value of the angle θ is given by tan 2θ = 2M2
12/(M2

11 − M2
22)

where M2
jk are elements of the matrix in Eq. (2.21).

With the Higgs sector of the theory now defined, we proceed in 
the next section to study its phenomenology. The parameters that 
define the Higgs sector are y+ , y− , c1, λ, λp , λφ , f , f ′ and v . We 
set the order-one coupling c1 = 1 for definiteness, and fix values 
for the Yukawa couplings assuming, for simplicity, that y+ = y− . 
The remaining six parameters are constrained by v = 246 GeV, 
mh0 = 125.09 GeV, and the two minimization conditions given in 
Eqs. (2.19), (2.20). This leaves two degrees of freedom. We choose 
the free parameters to be f and λp and map out the constraints 
on the model on the f –λp plane. This choice lends itself to easy 
physical interpretation since f parameterizes the scale of the dark 
sector strong dynamics, while λp indicates how strongly the dark 
sector couples to the visible one.

3. Phenomenological constraints

We determine whether a given point on the f –λp plane is al-
lowed by imposing the following constraints:

1. Absence of Landau poles below the Planck scale. The presence 
of such a Landau pole would suggest the onset of new physics at 
an intermediate scale, contradicting our initial assumptions. Since 
a coupling that blows up will become non-perturbative first, we 
eliminate the possibility of Landau poles by imposing perturba-
tivity constraints on the running couplings. For this purpose, we 
use the one-loop renormalization group equations (RGEs), which 
we provide in Appendix A. For the couplings λ, λp and λφ , one-
loop corrections become equal in size to tree-level diagrams when, 
for example, λ ≈ 16π2; to avoid the complete breakdown of the 
perturbative expansion, we set a generous upper limit on each of 

these couplings to be one-third of this value, 16π2/3, evaluated at 
all scales between mZ and the reduced Planck mass M∗ . By sim-
ilar reasoning, we place upper limits on the gauge and Yukawa 
couplings of 4π/

√
3. For our numerical results, we choose a per-

turbative value of the SU(2)D gauge coupling (35% of 4π/
√

3 in 
the example we present) that is large enough to assure that the 
isotriplet gauge multiplet is heavier than the physical pions πp ; 
this will be required for our dark matter solutions, as discussed 
in the next section. We take the SU(N) gauge coupling to be at 
our perturbativity limit, 4π/

√
3, at mZ and choose N = 4. Since 

the SU(N) gauge coupling is asymptotically free in our theory, it 
remains perturbative for all scales higher than mZ (where we eval-
uate the RGEs), but it blows up quickly below mZ , consistent with 
our assumption of strong dynamics in the infrared.

2. Vacuum stability. The presence of the non-vanishing Higgs 
portal coupling requires that vacuum stability be studied in the 
context of a two-Higgs doublet model. In two-Higgs-doublet mod-
els, one can assure that the scalar potential remains bounded from 
below by taking the stability conditions derived from the tree-level 
potential and testing whether they continue to hold for values 
of the couplings evaluated at higher-renormalization scales, up to 
the Planck scale. The justification for this approach can be found 
in Ref. [12]. We implement this by evaluating Eq. (2.17) using 
the one-loop renormalization group equations provided in the ap-
pendix. The scale at which a vacuum instability first arises depends 
on the free parameters of the model. A given point in the f –λp
plane satisfies the stability criterion if we find numerically that no 
violation of the stability conditions arises before the Planck scale. 
For the dark-matter allowed points described later, the Higgs quar-
tic coupling at the weak scale is larger than its standard model 
value, which contributes to the model’s vacuum stability.

3. Sufficiently standard-model-like Higgs boson. Standard model 
Higgs boson couplings are altered in this model by a factor of 
cos2 θ , which can be no smaller that 0.7 without spoiling global 
fits to Higgs data [13]. The η couplings to the visible sector are 
like those of the Higgs but suppressed by sin2 θ ; non-observation 
of the η in heavy Higgs search data from the LHC is assured for 
any η mass within the range experimentally studied, 145–710 GeV, 
provided that sin2 θ � 0.1 [14]. For simplicity, we require that each 
point in the f –λp plane satisfy sin2 θ < 0.1. Our final set of al-
lowed points in parameter space discussed in Section 4 will cor-
respond to η masses in the range 178–203 GeV, falling within the 
LHC range. Note that we do not consider potentially tighter mix-
ing angle bounds on very light η from LEP2 since we will see later 
that this region of parameter space is excluded by our fourth con-
straint.

4. Approximate chiral symmetry. Our effective chiral Lagrangian 
is valid provided that sources of explicit chiral symmetry break-
ing are small compared to the chiral-symmetry-breaking scale 
�χ ≡ 4π f . We reject points in which the dark fermion masses 
m± exceed one-third �χ , or equivalently

1√
2

y± f ′ < 4

3
π f . (3.1)

This assures that our initial assumption of an approximate SU(2)L ×
SU(2)R global symmetry remains valid.

We show results for a particular choice of y in Fig. 1. We have 
chosen to study values of f near or below the scale where the 
SU(N) gauge coupling becomes strong. The shaded regions satisfy 
the first three of the constraints discussed in this section. The up-
per branch of points corresponds to an η heavier that the SM Higgs 
boson, while the lower branch corresponds to the opposite. The 
points which also satisfy our fourth constraint lie above the solid 
black line. We find that viable dark matter solutions exist only for 
0.23 < y < 0.52; we have picked an intermediate value of y as a 
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Fig. 1. Regions of the parameter space consistent with perturbativity and stability 
constraints, as well as sin2 θ < 0.1. Points above the solid black line are consistent 
with approximate dark sector chiral symmetry. Two branches of points correspond 
to mη > mh0 (upper branch) and mη < mh0 (lower branch). The triangular points in 
the upper branch are consistent with current dark matter constraints.

representative choice. The dark matter results included in this fig-
ure will be discussed in the following section.

4. Dark matter

The dark sector of the model includes stable dark pions and 
baryons, provided that the pions are lighter than the baryons 
and the SU(2)D gauge multiplet. In the case we consider, where 
y+ = y− , the stabilizing symmetry is the residual dark SU(2) 
isospin, which is non-anomalous and unbroken by higher-di-
mension operators (which are absent by the assumed scale in-
variance of the theory). If y+ and y− are unequal, then only the 
lightest of the dark pion triplet would be stable; for simplicity, we 
consider the degenerate case here. The dark baryons are separately 
stable due to a conserved dark baryon number. However, esti-
mating the dark baryon–antibaryon annihilation cross section by 
scaling the analogous quantity measured experimentally in QCD, 
we find that dark baryon contribution to the relic density is or-
ders of magnitude smaller than that of the πp for the parameter 
choices of relevance to our analysis.1

The Higgs sector mixing angle θ is generally small, and we 
can estimate the annihilation cross section by the contributions 
that are lowest order in sin θ : this selects πa

pπ
a
p → ηη, where 

πp = ∑3
a=1 πa

pσ
a/2, with πp defined in Eq. (2.8). The πpπpη and 

πpπph0 vertices originate from Eq. (2.13):

L ⊃ − m2
π

2 f ′ (η cos θ + h0 sin θ)πa
pπ

a
p . (4.1)

The first term contributes to the annihilation process of interest 
via t- and u-channel pion exchange diagrams. Working in the non-
relativistic limit, we find the thermally averaged annihilation cross 
section times velocity

1 We will see in our figures that the relevant πp masses are comparable to the 
scale �χ = 4π f , which we expect to be of order the dark baryon masses; how-
ever, in the effective chiral Lagrangian, the baryon mass terms involve additional 
unknown parameters that we may choose to assure that the dark baryons are heav-
ier than the πp . We check directly that the SU(2)D gauge multiplet is also heavier.

Fig. 2. Dark pion–nucleon elastic scattering cross section for the points within 
the dark-matter-preferred band of Fig. 1. The current bounds from LUX [18] and 
XENON100 [19] are also shown.

〈σann v〉 = 1

16π

m6
π

f ′ 4

(
1 − m2

η

m2
π

)1/2 [
cos2 θ

m2
η − 2m2

π

]2

, (4.2)

with m2
π given by Eq. (2.14). Using this, we calculate the freeze-

out temperature T F and the dark matter relic density by standard 
methods [15]. Defining x = mπ/T and taking into account the dark 
sector spectrum in evaluating g∗(x), the number of relativistic de-
grees of freedom at the temperature T , we find freeze-out temper-
atures near xF ≈ 26. The relic density is given by

�Dh2 ≈ 3 · (1.07 × 109 GeV−1)xF√
g∗(xF )MPl〈σann v〉F

(4.3)

which we require to reproduce the WMAP result 0.1138 ±
0.0045 [16] within two standard deviations. In Fig. 1, the region 
consistent with πp dark matter is the band of triangular points in 
the upper branch of otherwise allowed points. For our choice of 
gD ≈ 2.54, the SU(2)D gauge bosons are heavier than the πp for 
each triangular point shown. We do not display results for other 
choices of y in the range 0.23 < y < 0.52 which are similar qual-
itatively to the plot in Fig. 1. The main effect of increasing y over 
this range is to enlarge the upper branch of points while moving 
the solid black exclusion line upwards until it is roughly contigu-
ous with the band preferred by dark matter considerations when 
y = 0.52.

Finally, we compare the direct detection predictions of the 
model with current experimental bounds. The πp –nucleon spin-
independent elastic scattering cross section is determined by 
t-channel h0 and η exchange diagrams following from the vertices 
in Eq. (4.1). We find

σSI(πp N → πp N)

= f 2
N

16π

m2
πm2

N

v2 f ′ 2
sin2 2θ

(m2
η − m2

h0
)2

m4
ηm4

h0

(
mNmπ

mN + mπ

)2

, (4.4)

where f N parameterizes the Higgs–nucleon coupling and mN is the 
nucleon mass. The value of f N = 0.35 is used [17]. Results corre-
sponding to the dark-matter-preferred band in Fig. 1 are shown in 
Fig. 2, which includes the current LUX [18] and XENON100 [19]
bounds for comparison. All the points shown are currently allowed 
by direct search constraints, though they are in a region not far 
from the current bounds. This suggests that future results from 
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the LUX experiment may begin to substantially restrict the pre-
ferred dark matter parameter space of the model.

5. Conclusions

We have studied a classically scale-invariant model that pro-
vides an origin for the electroweak scale via dark sector strong 
dynamics. The dark sector has a structure similar to the bosonic 
technicolor model proposed in Ref. [3]: a fermion condensate is 
responsible for the instability that leads to a scalar doublet acquir-
ing a vev. In the model of Ref. [3], the fermion condensate and the 
scalar vev each contribute to the breaking of electroweak symme-
tries. Here, the analogous fields are electroweak singlets; the scalar 
vev breaks a dark SU(2) gauge group and induces a mass term for 
the standard model Higgs doublet field via couplings in the Higgs 
potential. We found regions in the parameter space of the model 
where all the couplings can be run up to the Planck scale while 
remaining perturbative, where the scalar potential satisfies vac-
uum stability constraints, and where the Higgs boson is sufficiently 
standard-model-like to be consistent with existing collider data. In 
addition, we showed that the partially composite dark isotriplet 
bosons in the model can provide a viable dark matter candidate, 
providing the desired relic density while evading current direct 
detection bounds. In addition, the model predicts that the dark 
matter-nucleon elastic scattering cross section lies just beyond the 
current LUX bounds. Hence, the model may be ruled out, or given 
experimental support, as the LUX data set is enlarged.
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Appendix A. RGEs

The RGEs used in our analysis are as follows:

16π2 dλφ

dt
= 4Nλφ

(
y2− + y2+

)
− 4N

(
y4− + y4+

)
− 9g2

Dλφ

+ 9

4
g4

D + 4λ2
p + 12λ2

φ , (A.1)

16π2 dλ

dt
= 9

4

(
2

5
g2

1 g2
2 + 3

25
g4

1 + g4
2

)
− λ

(
9

5
g2

1 + 9g2
2

)
+ 12λy2

t + 12λ2 + 4λ2
p − 12y4

t (A.2)

16π2 dλp

dt
=

[
2N

(
y2− + y2+

)
+ 9

2

(
−1

5
g2

1 − g2
2 − g2

D

)

+ 6λ − 4λp + 6λφ + 6y2
t

]
λp , (A.3)

16π2 dyt

dt
=

[
−17

20
g2

1 − 9

4
g2

2 − 8g2
3 + 9

2
y2

t

]
yt , (A.4)

16π2 dy−
dt

=
[(

N + 3

2

)
y2− +

(
N − 3

2

)
y2+ − 9

4
g2

D

− 3(N2 − 1)

N
g2

N

]
y− , (A.5)

16π2 dy+
dt

=
[(

N − 3

2

)
y2− +

(
N + 3

2

)
y2+ − 9

4
g2

D

− 3(N2 − 1)

N
g2

N

]
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dt
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− 43
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D , (A.7)

16π2 gN

dt
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[
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3
− 11

3
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]
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N , (A.8)

16π2 dgi

dt
= bi g3

i . (A.9)

Here t = ln(μ/mZ ), where μ is the renormalization scale, bi =(
41
10 ,− 19

6 ,−7
)

, the SU(5) normalization for the hypercharge was 
used and gN is the SU(N) gauge coupling.
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