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Brief Communications

Synaptic Depression Influences Inspiratory–Expiratory
Phase Transition in Dbx1 Interneurons of the preBötzinger
Complex in Neonatal Mice

X Andrew Kottick and X Christopher A. Del Negro
Department of Applied Science, The College of William and Mary, Williamsburg, Virginia 23187

The brainstem preBötzinger complex (preBötC) generates the rhythm underlying inspiratory breathing movements and its core in-
terneurons are derived from Dbx1-expressing precursors. Recurrent synaptic excitation is required to initiate inspiratory bursts, but
whether excitatory synaptic mechanisms also contribute to inspiratory– expiratory phase transition is unknown. Here, we examined the
role of short-term synaptic depression using a rhythmically active neonatal mouse brainstem slice preparation. We show that afferent
axonal projections to Dbx1 preBötC neurons undergo activity-dependent depression and we identify a refractory period (�2 s) after
endogenous inspiratory bursts that precludes light-evoked bursts in channelrhodopsin-expressing Dbx1 preBötC neurons. We demon-
strate that the duration of the refractory period— but neither the cycle period nor the magnitude of endogenous inspiratory bursts—is
sensitive to changes in extracellular Ca 2�. Further, we show that postsynaptic factors are unlikely to explain the refractory period or its
modulation by Ca 2�. Our findings are consistent with the hypothesis that short-term synaptic depression in Dbx1 preBötC neur-
ons influences the inspiratory– expiratory phase transition during respiratory rhythmogenesis.

Key words: breathing; central pattern generator; oscillation; respiration

Introduction
Breathing movements emanate from neural rhythms in the
preBötzinger complex (preBötC) of the ventrolateral medulla
(Smith et al., 1991; Feldman et al., 2013; Moore et al., 2013).
The breathing cycle consists of an inspiratory phase in which
preBötC neurons discharge bursts of spikes synchronously
followed by a two-part expiratory phase in which preBötC
neurons remain quiescent, at least during the initial postin-

spiratory stage (but may recover spontaneous activity during
the second expiratory stage). Core rhythm-generating pre-
BötC interneurons are derived from progenitors that express
the homeobox gene Dbx1 (henceforth referred to as Dbx1
neurons), which are glutamatergic and interconnected bilat-
erally in the preBötC (Bouvier et al., 2010; Gray et al., 2010).
AMPAR-mediated excitatory interactions are required to ini-
tiate inspiratory bursts (Funk et al., 1993; Wallén-Mackenzie
et al., 2006), but there is no consensus regarding the cellular
and synaptic mechanisms that terminate inspiratory bursts
and lead to the quiescent postinspiratory phase of respiratory
cycle (i.e., inspiratory– expiratory phase transition).

A longstanding view posits that the inspiratory– expiratory
phase transition depends on respiratory circuits throughout the
pons and medulla operating via postsynaptic inhibition (Richter,
1982; Bianchi et al., 1995). However, the obligatory role of inhi-
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Significance Statement

Theories of breathing’s neural origins have heretofore focused on intrinsically bursting “pacemaker” cells operating in conjunc-
tion with synaptic inhibition for phase transition and cycle timing. However, contemporary studies falsify an obligatory role for
pacemaker-like neurons and synaptic inhibition, giving credence to burst-generating mechanisms based on recurrent excitation
among glutamatergic interneurons of the respiratory kernel. Here, we investigated the role of short-term synaptic depression in
inspiratory– expiratory phase transition. Until now, this role remained an untested prediction of mathematical models. The
present data emphasize that synaptic properties of excitatory interneurons of the respiratory rhythmogenic kernel, derived from
Dbx1-expressing precursors, may provide the core logic underlying the rhythm for breathing.
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bition is falsified by experiments that block chloride-mediated
synaptic transmission in respiratory networks but do not signif-
icantly perturb respiratory rhythm in vitro (Brockhaus and Bal-
lanyi, 1998; Ren and Greer, 2006; Feldman et al., 2013) or in vivo
(Janczewski et al., 2013; Sherman et al., 2015). One alternative
mechanism that does not depend on distributed inhibitory cir-
cuits is the “group pacemaker,” which instead focuses on collec-
tive activity among preBötC neurons. According to this model,
recurrent excitatory synaptic activity initiates inspiratory bursts
(for which there is strong evidence: Rekling and Feldman, 1998;
Pace et al., 2007; Carroll and Ramirez, 2013; Carroll et al., 2013)
and short-term synaptic depression promotes burst termination
and inspiratory– expiratory phase transition (but this latter part
remains an untested model prediction: Rubin et al., 2009).

Using the group-pacemaker model as our conceptual frame-
work, we investigated the role of short-term synaptic depression
in respiratory rhythm generation. Our results in a reduced slice
context support the group-pacemaker model and are consistent
with the notion that presynaptic depression in Dbx1 preBötC
neurons facilitates inspiratory burst termination and influences
postinspiratory network activity.

Materials and Methods
The Institutional Animal Care and Use Committee at the College of
William & Mary approved these protocols. We used female mice that
express Cre recombinase fused to a tamoxifen-sensitive mutant form of
the human estrogen receptor (CreERT2) in cells that express the Dbx1
gene Dbx1 CreERT2. For optical stimulation experiments, female Cre-
driver mice were mated with male reporter mice with a Rosa26 locus
that was modified by targeted insertion of a loxP-flanked STOP
cassette followed by a channelrhodopsin-tdTomato fusion gene
(Rosa26 hChR2(H134R)-tdTomato, stock no. 12567; The Jackson Laboratory).
To record Dbx1 neurons, female Cre-driver mice were mated with male
reporter mice that express Cre-dependent tdTomato (Rosa26 tdTomato,
stock no. 007905; Jackson Laboratory). Tamoxifen (22.5 mg/kg body
mass) was administered to pregnant females at embryonic day 9.5. Cre-
mediated recombination resulted in the expression of the hChR2-
tdTomato or cytosolic tdTomato in neurons with progenitors that
express Dbx1.

We anesthetized neonatal mice via hypothermia and dissected their
neuraxes in artificial CSF (aCSF) containing the following (in mM): 124
NaCl, 3 KCl, 1.5 CaCl2, 1 MgSO4, 25 NaHCO3, 0.5 NaH2PO4, and 30
dextrose equilibrated with 95% O2/5% CO2, pH 7.4. This aCSF was
varied in one set of experiments by substituting MgCl2 for MgSO4.
Therefore, changes in CaCl2 were counterbalanced by MgCl2 to maintain
the net divalent cation concentration and Cl � gradient.

Transverse medullary slices (500 �m thick) that expose the preBötC
rostrally (Ruangkittisakul et al., 2014) were perfused with 26°C aCSF at 5
ml/min. Extracellular K � was elevated to 9 mM to sustain respiratory
rhythm and motor output, which we recorded from hypoglossal (XII)
nerve rootlets. The XII discharge was amplified (2000�), band-pass fil-
tered (300 –1000 Hz), and then full-wave rectified and smoothed for
display.

We obtained whole-cell patch-clamp recordings under visual control
using bright-field imaging on a fixed-stage microscope. Dbx1 neurons
were identified by epifluorescence (Cy3 filter set). Patch pipettes (4 – 6
M�) were fabricated from capillary glass (1.50 mm outer diameter, 0.86
mm inner diameter). Patch pipette solution contained the following (in
mM): 140 potassium gluconate, 5 NaCl, 0.1 EGTA, 10 HEPES, 2 Mg-ATP,
0.3 Na3-GTP, and 50 �M Alexa Fluor 488 hydrazide dye (Invitrogen).
Membrane potential was amplified (100�) and low-pass filtered (1 kHz)
using a current-clamp amplifier before being digitally acquired at 10
kHz.

A glass micropipette connected to a stimulus isolation unit (3 �A for 5
ms) was used to stimulate midline-crossing axons. Evoked EPSPs with
amplitudes that exceeded baseline potential fluctuations by �2 SD were
considered for analysis. The preBötC contralateral to the whole-cell re-

cording site was illuminated using a 100-�m-diameter fiber coupled to a
100 mW 473 nm laser (IkeCool). AMPA (100 �M, Sigma-Aldrich) was
applied to Dbx1 preBötC neurons using a patch pipette connected to a
pressure ejection system (5 pulses at 5 psi for 5 ms each; Toohey). Midline
electrical stimulations and AMPA application experiments were per-
formed in 3 mM extracellular K � to decrease baseline membrane poten-
tial fluctuations and to minimize contributions from spontaneous EPSPs
(sEPSPs).

We measured the peak amplitude and area of inspiratory bursts in
Dbx1 preBötC neurons by digitally smoothing the membrane potential
trajectory to eliminate spikes but preserve the underlying envelope of
depolarization. Ionotropic receptor antagonists were applied at these
concentrations (in �M): 10 CNQX, 20 DL-APV, 5 picrotoxin, and 5
strychnine (Sigma-Aldrich).

We report all measurements as mean � SD. SPSS software (IBM)
compared group means and probability distributions for statistical hy-
pothesis testing. Paired-sample t tests evaluated mean differences be-
tween two groups and the Kolmogorov–Smirnov test compared
cumulative probability distributions. Nonparametric Friedman tests
evaluated mean differences in repeated-measures experiments when data
did not meet the assumptions of normality and homogeneity of variance
required for parametric analysis.

Results
Dbx1 Cre-driver mice (Dbx1 CreERT2) were coupled with two dif-
ferent flox-stop reporter strains to selectively record and optically
manipulate Dbx1 neurons in transverse brainstem slices that pro-
vide optimal experimental access to the preBötC. We identified
Dbx1 neurons by native fluorescence in the region of the slice
ventral to the semicompact division of the nucleus ambiguous
and orthogonal to the dorsal boundary of the principal loop of
the inferior olive, which corresponds to the rostral face of the
preBötC (Fig. 1A; Ruangkittisakul et al., 2014). Dbx1 preBötC
neurons, dialyzed with Alexa Fluor 488 through the patch pipette

Figure 1. Rhythmically active slices expose Dbx1 preBötC neurons. A, Rostral slice surface
from a Dbx1 CreERT2;Rosa26 tdTomato mouse pup showing hypoglossal motor nucleus (XII), semi-
compact division of the nucleus ambiguus (scNA), and the principal loop of the inferior olive
(IOloop) sites colocalized with the preBötC (left). Dotted box marks the preBötC. B, Whole-cell
recordings in Dbx1 CreERT2;Rosa26 tdTomato (top) and Dbx1 CreERT2;Rosa26 thChR2-tdTomato (bottom)
mouse slices. Shown are tdTomato (left), Dodt contrast microscopy (middle), and Alexa Fluor
488 introduced via patch pipette (right). C, Inspiratory bursts in the Dbx1 preBötC neuron from
B (top) with XII motor output.
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(Fig. 1B), discharged inspiratory bursts in phase with inspiratory-
related XII nerve output (Fig. 1C).

Dbx1 preBötC interneurons project commissural axons to
form synaptic connections with the contralateral preBötC (Bou-
vier et al., 2010). To determine whether excitatory synapses onto
Dbx1 preBötC neurons undergo activity-dependent depression,
we repetitively stimulated commissural axons during whole-cell
recordings in Dbx1 CreERT2;Rosa26 tdTomato mouse slices. We ob-
served a progressive amplitude reduction of evoked EPSPs (Fig.
2A, n 	 8 Dbx1 neurons, 3 trials/neuron). Furthermore, the
number of failures increased during each trial such that the last
five pulses experienced a 40 –50% failure rate (Fig. 2B). These
data indicate that excitatory synapses among Dbx1 preBötC neu-
rons undergo activity-dependent depression even when activated
at a rate of 5 Hz, which is lower than typical intraburst spike
frequency of 15–50 Hz.

We reasoned that, if short-term synaptic depression influ-
ences inspiratory– expiratory phase transition, then its effects
would be measurable at the network level immediately after
an endogenous inspiratory burst. First, we tested whether
inspiratory-like bursts could be triggered by light in Dbx1 CreERT2;
Rosa26 hChR-tdTomato mouse slices. We evoked bursts using 100 ms
pulses of blue light delivered to the preBötC contralateral to the
whole-cell recording site. Evoked bursts were reversibly blocked
by the AMPAR antagonist CNQX, but not by coapplication of the
NMDA receptor antagonist AP5 with the GABAA and glycine
receptor antagonists picrotoxin and strychnine (Fig. 3A). These
data demonstrate that evoked bursts depend on AMPAR-
mediated synaptic interactions, akin to endogenous inspiratory
bursts (Funk et al., 1993; Wallén-Mackenzie et al., 2006), whereas
NMDA receptors and chloride-mediated inhibition are dispens-
able (Brockhaus and Ballanyi, 1998; Ren and Greer, 2006; Feld-
man et al., 2013; Janczewski et al., 2013; Sherman et al., 2015).

We applied transient light pulses at varying intervals after en-
dogenous inspiratory bursts, which reliably evoked subsequent
bursts for intervals �2 s. However, intervals 
2 s failed to evoke
a burst (Fig. 3B). In this context, we defined the refractory period
as the minimum duration after an endogenous inspiratory burst
necessary to evoke a subsequent inspiratory-like burst of ampli-
tude �75% of the average endogenous inspiratory burst (Fig.

3C). The refractory period duration was significantly shorter
than the endogenous burst period (1.94 � 0.74 s vs 5.80 � 1.49 s,
n 	 10 preparations, Student’s t(8) 	 7.62, p 	 5.6E-6). These
data suggest that an �2 s refractory period is a previously unrec-
ognized component of the respiratory cycle in Dbx1 preBötC
neurons. This refractory period is relevant during the postin-
spiratory phase (�2 s in duration), but not the remaining 3– 4 s of
the expiratory phase in vitro.

Presynaptic and postsynaptic factors cause short-term synap-
tic depression and both could potentially contribute to the refrac-
tory period (Fig. 3). First, we examined postsynaptic AMPAR
desensitization as a potential contributing factor to the refractory
period by comparing the amplitude of sEPSPs that were measur-
able before and after endogenous inspiratory bursts in Dbx1 pre-
BötC neurons (Fig. 4A, left). We observed no difference in the
cumulative probability sEPSP amplitude histogram (Fig. 4A,
right, n 	 8 Dbx1 neurons, 10 cycles/neuron, Kolmogorov–
Smirnov test statistic D 	 0.081, p 	 0.89), suggesting that AM-
PARs do not remain desensitized for seconds after endogenous
inspiratory bursts and therefore do not contribute to the refrac-
tory period. Nevertheless, it is conceivable that the sEPSPs we

Figure 2. Activity-dependent synaptic depression in Dbx1 preBötC neurons. A, Evoked EPSPs
in response to 5 Hz electrical stimulation of midline-crossing axons (top); group data from eight
Dbx1 preBötC neurons (time synced) are also shown (bottom). Red circles show EPSP ampli-
tudes; black bars show mean � SD. B, Relative frequency of failures to evoke an EPSP as a
function of pulse number.

Figure 3. Light-evoked inspiratory-like bursts in Dbx1 CreERT2;Rosa26 hChR2-tdTomato mouse
slices. A, Pharmacology of evoked bursts. Time calibration applies to A. B, Laser pulses delivered
at increasing intervals after endogenous inspiratory bursts. Voltage calibration applies to A and
B. C, Burst amplitude and area plotted versus the time interval between the endogenous in-
spiratory burst and stimulus onset. Endogenous control bursts are plotted at the 0 s tick. Time
calibration for B and C is the abscissa.
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measured might originate from tonic (noninspiratory) neurons
upstream of the preBötC, the excitatory synaptic properties of
which may differ from excitatory synapses among Dbx1 neurons
in the preBötC. Therefore, to further assess the contribution of
AMPAR desensitization to the refractory period, we pressure-
ejected AMPA onto Dbx1 neuron dendrites in five-pulse trains
and then measured transient postsynaptic depolarizations (Fig.
4B, left). Whether we compared the first with the second pulse
(Fig. 4B, black symbols) or the first with the fifth pulse (presum-
ably steady state, Fig. 4B, gray symbols), there was no systematic
change in the amplitude of the postsynaptic response to AMPA at
any pulse interval (n 	 5 Dbx1 neurons, Friedman test,
all p � 0.05). These data suggest that AMPAR desensitization
probably does not account for the refractory period.

We investigated presynaptic factors that could contribute to the
refractory period. The most common form of short-term synaptic
depression involves progressive depletion of the readily releasable
pool of synaptic vesicles during bouts of intense neural activity. Be-
cause vesicle recycling machinery is Ca2� sensitive, elevations in

presynaptic Ca2� accelerate the refilling of depleted terminals
(Dittman and Regehr, 1998; Stevens and Wesseling, 1998; Yang and
Xu-Friedman, 2008; Lipstein et al., 2013). Therefore, by manipulat-
ing extracellular Ca2�, we aimed to influence the amount of presyn-
aptic Ca2� that accumulates during an inspiratory burst and thus
the rate of replenishment of expended synaptic vesicles. In 0.75 mM

Ca2�, the refractory period measured 2.88 � 1.18 s; in 1.50 mM

Ca2�, it measured 2.22 � 0.94 s; and in 2.25 mM Ca2�, it measured
1.66 � 0.81 s (Fig. 4Ca). The duration of the refractory period is
inversely proportional to the level of extracellular Ca2� (Fig. 4Cb,
n 	 5, Friedman �2 	 6.4, p 	 0.04). In contrast, these same changes
in extracellular Ca2� caused no significant change in the respiratory
cycle period (Fig. 4Cc, n 	 5, Friedman �2 	 0.7, p 	 0.7) and did
not affect the amplitude (n 	 5 Dbx1 neurons, Friedman �2 	 2.8,
p 	 0.25) or area (n 	 5 Dbx1 neurons, Friedman �2 	 1.6, p 	
0.45) of endogenous inspiratory bursts (Fig. 4Cd). Ca2� manipula-
tions did not affect the input resistance of Dbx1 preBötC neurons
(Fig. 4Ce, n 	 4, Friedman �2 	 0.5, p 	 0.78). These data indicate
that extracellular Ca2� manipulations influence the duration of the
refractory period, but do not affect excitability or basic intrinsic
properties of Dbx1 preBötC neurons, suggesting that the refractory
period and its modulation by extracellular Ca2� cannot be attrib-
uted to postsynaptic factors.

Discussion
Breathing movements emanate from neural activity in a central
pattern generator circuit for which core interneurons are known.
Dbx1-derived preBötC neurons are bilaterally interconnected
glutamatergic interneurons that express membrane properties
consistent with rhythmogenic function. Dbx1 knock-out mice
form no preBötC and suffer fatal asphyxia at birth (Bouvier et al.,
2010; Gray et al., 2010). Therefore, elucidating the cellular and
synaptic basis for rhythmogenesis in Dbx1 preBötC neurons is
crucial for understanding the neural origins of the full breathing
motor pattern.

We hypothesized that synaptic depression influences the
phase transition from inspiratory to postinspiratory (i.e., early
expiratory) activity in Dbx1 preBötC interneurons. To quantify
short-term depression, we stimulated midline-crossing axons
and observed a progressive diminution of evoked EPSP ampli-
tude and increasing probability of synaptic failure (reaching 50%
by the end of the bout). Because the decay time constant of
evoked EPSPs was �100 ms, stimulation rates could not exceed 5
Hz without causing temporal summation and obscuring the
analysis. Nonetheless, these data establish that excitatory syn-
apses among Dbx1 preBötC neurons experience short-term de-
pression when activated repetitively. We can infer that, in the
context of rhythmogenesis, when Dbx1 preBötC neurons
discharge 5–20 intraburst spikes at 15–50 Hz and thus more
intensely activate excitatory transmission among the intercon-
nected Dbx1 population, synaptic depression could decrease the
magnitude of synaptic potentials by 50 –70% and increase the
probability of synaptic failure to 10 –50%. Therefore, we surmise
that synaptic depression could curtail recurrent excitation and
thus contribute to inspiratory burst termination. However, this
remains to be demonstrated.

Activity-dependent synaptic depression could contribute to
terminating, not only bursts, but also “burstlets” in the preBötC,
which are periodic inspiratory events of lower intensity that do
not result in motor output, but have been proposed as a basic
substrate of rhythmogenesis (Kam et al., 2013). preBötC neurons
generate �6 spikes per burstlet at an average rate of 15 Hz (range

Figure 4. sEPSPs, dendritic AMPA pulses, and extracellular Ca 2� modulation of the refrac-
tory period. A, sEPSPs before (magenta) and after (cyan) an endogenous inspiratory burst and
the cumulative probability histogram for sEPSP amplitude. Calibrations apply to A. B, Postsyn-
aptic responses to repetitive dendritic AMPA pulses separated by 4, 3, 2, 1, or 0.5 s (left). The
amplitude of the second (black) or fifth (gray) postsynaptic response, normalized to the first
response, is plotted for each time interval (right). Bars show means. Voltage calibration applies
to B; time calibration can be inferred by AMPA pulse interval timing. C, Minimum refractory
period after an endogenous inspiratory burst (e.g., Fig. 3B) plotted for different [Ca 2�]o (Ca).
Voltage and time calibrations apply to Ca. Refractory period (Cb), respiratory cycle period (Cc),
endogenous inspiratory burst amplitude and area (Cd), and input resistance (Ce) are plotted for
each [Ca 2�]o. Symbols show individual experiments; solid lines represent sample means.
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5–28 Hz, see Fig. 6 in Kam et al., 2013) and our results (Fig. 2)
show that, at a minimum, synaptic potentials could decline by
40% and failure probability could rise to 10% within the con-
straints of these intraburstlet spiking parameters.

The mechanisms responsible for inspiratory burst termina-
tion and postinspiratory activity are vigorously debated. The
group-pacemaker hypothesis posits that convolved synaptic and
intrinsic properties of preBötC neurons mediate inspiratory–
expiratory phase transition (Rekling et al., 1996; Rekling and
Feldman, 1998). In a mathematical model of the group pace-
maker, presynaptic depression can intervene during the inspiratory
burst to curb recurrent excitation, which facilitates inspiratory burst
termination and promotes the inspiratory– expiratory phase tran-
sition (Rubin et al., 2009). Simultaneously, activity-dependent
outward currents, namely Na/K ATPase electrogenic pump cur-
rent (Ipump), Na�-dependent K� current (INa-K), and ATP-
dependent K� current (IK-ATP), play a complementary role in
burst termination and phase transition. These outward currents
in preBötC neurons have been identified experimentally (Del
Negro et al., 2009; Krey et al., 2010), but the potential role for
short-term synaptic depression remained an untested prediction
of the group-pacemaker model. Ipump, INa-K, and IK-ATP relax
within 15–300 ms after burst termination, which is too short a
time to explain the refractory period in vitro that measured 2 s in
response to hChR2activation but measured �1 s when a bolus of
AMPA was administered unilaterally to the preBötC after in-
spiratory burst termination (Del Negro et al., 2009). This shorter
refractory period is most likely attributable to the stronger stim-
ulus. AMPA application depolarized preBötC neurons by 40 mV
and then slowly decayed for 1 min, whereas hChR2 depolarized
Dbx1 preBötC neurons 
10 mV for exactly 100 ms. In both
cases, the refractory period outlasts postsynaptic contributions of
Ipump, INa-K, and IK-ATP. Therefore, we propose that activity-
dependent outward currents and synaptic depression act in con-
cert to influence inspiratory– expiratory phase transition,
terminating the inspiratory burst and then causing a transient
phase of postinspiratory quiescence in the network.

Could this mechanism identified in models and in vitro apply
in vivo? We observed an �2 s refractory period after inspiratory
bursts, which comprises 25–33% of the respiratory cycle period
in vitro. By optogenetically stimulating the preBötC in adult rats
in vivo, Alsahafi et al. (2015) recently documented a refractory
period of 200 – 400 ms after inspiration, which comprises �25–
60% of the breathing cycle period. The refractory period mea-
sured in vitro constitutes the same proportion of the cycle period
as the refractory period measured in vivo, suggesting that the
refractory period is a real phenomenon and not an artifact of the
in vitro preparation. Therefore, the biophysical mechanisms that
we identify in vitro could govern the inspiratory– expiratory
phase transition in vivo as well.

The most common form of short-term synaptic depression
involves presynaptic vesicle depletion during high-frequency ac-
tivity. Manipulations of Ca 2�, which affect release and recovery
processes (Neher and Sakaba, 2008), modulated the refractory
period during the postinspiratory phase but did not affect respi-
ratory cycle period, inspiratory burst magnitude, or input resis-
tance of Dbx1 preBötC neurons (Fig. 4). The readily releasable
vesicle pool recovery time varies from hundreds of milliseconds
to seconds depending on the experimental model (Stevens and
Tsujimoto, 1995; Hosoi et al., 2007; Cohen and Segal, 2011). The
refractory period in vitro and the refractory period Alsahafi et al.
(2015) measured in vivo are within this range, suggesting that

vesicle depletion is a viable explanation for the lack of synaptic
efficacy after inspiratory bursts in vitro or inspiration in vivo.

AMPAR desensitization is unlikely to contribute on the time
scale associated with the refractory period based on measure-
ments of sEPSPs before and immediately after inspiratory bursts,
as well as the lack of modulation of postsynaptic responses to
repetitive AMPA pulses. However, it remains possible that we
measured sEPSPs from a source extrinsic to the preBötC; for
example, from an upstream tonic source of excitation to the pre-
BötC with postsynaptic AMPARs that do not exhibit the same
biophysical properties as AMPARs involved in recurrent excita-
tion. Further, receptors may desensitize during bursts (and thus
assist in burst termination) but then recover faster than could be
measured using pressure-ejection techniques in which the decay
kinetics of postsynaptic response precluded pulse rates in excess
of 2 Hz. It is also possible that some portion of AMPARs targeted
by local AMPA application are not inspiratory modulated, so we
cannot rule out postsynaptic effects entirely.

Conceptual models of respiratory rhythm often feature oblig-
atory roles for postsynaptic inhibition in inspiratory– expiratory
phase transition. The present results indicate that excitatory syn-
aptic dynamics of core rhythmogenic Dbx1 interneurons could
influence inspiratory burst termination and the quiescent postin-
spiratory phase of the respiratory cycle, which should be added to
existing frameworks for analysis and models of breathing’s neural
bases.
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