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We present a lattice QCD calculation of the B → Dlν semileptonic decay form factors fþðq2Þ and
f0ðq2Þ for the entire physical q2 range. Nonrelativistic QCD bottom quarks and highly improved staggered
quark charm and light quarks are employed together with Nf ¼ 2þ 1MILC gauge configurations. A joint
fit to our lattice and BABAR experimental data allows an extraction of the Cabibbo-Kobayashi-Maskawa
matrix element jVcbj. We also determine the phenomenologically interesting ratio RðDÞ ¼ BðB →
DτντÞ=BðB → DlνlÞ (l ¼ e; μ). We find jVcbjB→D

excl ¼ 0.0402ð17Þð13Þ, where the first error consists of
the lattice simulation errors and the experimental statistical error and the second error is the experimental
systematic error. For the branching fraction ratio we find RðDÞ ¼ 0.300ð8Þ.
DOI: 10.1103/PhysRevD.92.054510 PACS numbers: 12.38.Gc, 13.20.He

I. INTRODUCTION

Studies of the heavy-to-heavy semileptonic decays, B →
Dlν and Bs → Dslν, lead to a wealth of interesting and
important physics. These decays can be used, for example,
to extract the Cabibbo-Kobayashi-Maskawa matrix element
jVcbj, providing an independent check on previous deter-
minations coming from B → D�lν decays. There is cur-
rently a ∼3σ tension between the exclusive jVcbj based on
B → D�lν decays at zero recoil and inclusive jVcbj
determinations [1]. A recent update [2] by the Fermilab
Lattice and MILC collaborations finds jVcbjB→D�

excl ¼
0.03904ð49Þexptð53ÞQCDð19ÞQED, whereas the most accu-
rate analysis of inclusive semileptonic decays [3] gives
jVcbjincl ¼ 0.04221ð78Þ. The current uncertainty in jVcbj
leads to the dominant error in several important standard
model predictions for rare decays, such as Bs → μþμ−,
K → πνν̄, as well as for the charge parity violation
parameter ϵK. Reducing this uncertainty will have an
impact on precision flavor physics.
In order to get more insight into the tension between

inclusive and exclusive jVcbj it is crucial to determine
jVcbjexcl. using channels other than B → D�lν and also by
considering the entire physical q2 range, rather than just the
zero recoil point. There has been considerable progress on
this front. A very recent paper by the Fermilab Lattice and
MILC collaborations, using heavy clover bottom and
charm quarks, finds jVcbjB→D

excl ¼ ð39.6� 1.7QCDþexp �
0.2QEDÞ × 10−3 from B → Dlν lattice form factors and
BABAR data [4]. And in the present article we give new
results on B → Dlν form factors based on the nonrelativ-
istic QCD (NRQCD) action for bottom and the highly
improved staggered quark (HISQ) action for charm quarks.

We also combine our lattice form factor results with
BABAR data to extract

jVcbjB→D
excl ¼ 0.0402ð17Þð13Þ; ð1Þ

where the first error comes from the lattice simulation
errors and the statistical error from experiment, and the
second error is the systematic error from experiment.
Interesting physics may also reside in the ratio RðDÞ ¼

BðB → DτντÞ=BðB → DlνlÞ (l ¼ μ or e). BABAR has
reported [5] an excess in this ratio over standard model
expectations. The τ lepton is considerably heavier than the
electron or the muon, which means that the branching
fraction into τ; ντ is sensitive to both the vector form factor
fþðq2Þ and the scalar form factor f0ðq2Þ, while the latter
does not contribute for decays into μ; νμ or e; νe. This could
allow scalar contributions from new physics to enter just in
the numerator of RðDÞ and thereby explain the apparent
excess. In order to confirm or reject the RðDÞ anomaly as a
true new physics effect, it is important to scrutinize the
current standard model prediction for RðDÞ. Reference [6]
gave the first unquenched lattice result for RðDÞ. Using the
new form factors presented in this article we find

RðDÞ ¼ 0.300ð8Þ; ð2Þ

the most accurate standard model prediction to date.
The rest of this article is organized as follows. Section II

gives details of the lattice setup for this project, introduces
the relevant bottom-charm currents and defines the vector
and scalar form factors fþðq2Þ and f0ðq2Þ. Section III
introduces the two- and three-point correlators that we
simulate and describes our correlator fits and extraction of
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form factors. In Sec. IV we explain how our results for
lattice form factors are extrapolated to the physical, i.e.
chiral/continuum, limit. In Sec. V we discuss our form
factor results in the physical limit and their errors coming
from different sources. We also extract the “slope param-
eter” ρ2 for fþðq2Þ. In Sec. VI we combine our standard
model theory results with experimental measurements of
the B → Dlν branching fraction to extract a new value for
jVcbj. Section VII is devoted to the ratio RðDÞ. We
conclude and summarize in Sec. VIII. In Appendix A
we provide the relevant information needed to reconstruct
our form factors, including correlations. Appendix B dis-
cusses further details and checks on the chiral/continuum/
kinematic extrapolations. And in Appendix C we list the
priors and prior widths used in these extrapolations.

II. LATTICE SETUP AND NRQCD/HEAVY-HISQ
CURRENTS

Table I lists the three coarse (a ≈ 0.12 fm) and two fine
(a ≈ 0.09 fm) MILC Nf ¼ 2þ 1 ensembles [7] used in
this study, together with some further simulation details.
These MILC configurations employ the asqtad action to
incorporate up, down and strange sea quarks. Compared to
our recent B → Klþl− [8,9] and Bs → Klν [10] projects we
have increased statistics by about a factor of two or more.
For the valence bottom quarks we use the NRQCD action
described, for instance, in [11]. The valence light and
charm quarks are represented by the HISQ action [12]. In
Table II we show the values for valence quark masses. The
NRQCD bottom quark mass aMb was tuned in Ref. [13] to
reproduce the spin averaged ϒ mass, whereas the HISQ
bare mass amc was tuned to the ηc mass (suitably modified
to accommodate the lack of annihilation and electromag-
netic contributions in our simulations) in [14]. The valence
HISQ light quark mass aml was chosen to be close to the
light asqtad quark mass in the sea.
To study the process B → Dlν, one needs to evaluate the

matrix element of the bottom-charm charged electroweak
current between the B and the D states, hDjðV − AÞμjBi.
Only the vector current Vμ contributes to the pseudoscalar-
to-pseudoscalar amplitude and the matrix element can be
written in terms of two form factors fþðq2Þ and f0ðq2Þ.
These depend only on the square of the momentum trans-
ferred between the B and the D mesons, qμ ¼ pμ

B − pμ
D,

hDðpDÞjVμjBðpBÞi

¼ fþðq2Þ
�
pμ
B þ pμ

D −
M2

B −M2
D

q2
qμ
�

þ f0ðq2Þ
M2

B −M2
D

q2
qμ: ð3Þ

Intermediate stages of the analysis are simplified by working
with the form factors f∥ and f⊥, defined by

hDðpDÞjVμjBðpBÞi ¼
ffiffiffiffiffiffiffiffiffiffi
2MB

p
½vμf∥ þ pμ

⊥f⊥�; ð4Þ

with

vμ ¼ pμ
B

MB
; pμ

⊥ ¼ pμ
D − ðpD · vÞvμ: ð5Þ

In theB rest frame (in this article we only consider Bmesons
decaying at rest) the temporal and spatial parts of (4) become

hDjV0jBi ¼
ffiffiffiffiffiffiffiffiffiffi
2MB

p
f∥; ð6Þ

hDjVkjBi ¼
ffiffiffiffiffiffiffiffiffiffi
2MB

p
pk
Df⊥: ð7Þ

Hence, one sees that one can separately determine f∥ or f⊥
simply by looking at either the temporal or spatial compo-
nent of Vμ. The conventional form factors fþðq2Þ and
f0ðq2Þ can then be obtained from

fþ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2MB

p f∥ þ
1ffiffiffiffiffiffiffiffiffiffi
2MB

p ðMB − EDÞf⊥; ð8Þ

f0 ¼
ffiffiffiffiffiffiffiffiffiffi
2MB

p
ðM2

B −M2
DÞ

½ðMB − EDÞf∥ þ ðE2
D −M2

DÞf⊥�; ð9Þ

where ED is the daughter D meson energy in the B
rest frame. We generate data for four different D
meson momenta, 2π

aL ð0; 0; 0Þ, 2π
aL ð1; 0; 0Þ, 2π

aL ð1; 1; 0Þ,
and 2π

aL ð1; 1; 1Þ.
Our goal is to evaluate the hadronic matrix elements

hDjV0jBi and hDjVkjBi via lattice simulations. There are
three steps in the calculation. First, one must relate the

TABLE I. Simulation details on three “coarse” and two “fine”
Nf ¼ 2þ 1 MILC ensembles.

Set r1=a ml=ms (sea) Nconf Ntsrc L3 × Nt

C1 2.647 0.005=0.050 2096 4 243 × 64
C2 2.618 0.010=0.050 2256 2 203 × 64
C3 2.644 0.020=0.050 1200 2 203 × 64

F1 3.699 0.0062=0.031 1896 4 283 × 96
F2 3.712 0.0124=0.031 1200 4 283 × 96

TABLE II. Valence quark masses aMb for NRQCD bottom
quarks and aml and amc for HISQ light and charm quarks. The

last column gives Zð0Þ
2 ðamcÞ, the tree-level wave function

renormalization constant for massive (charm) HISQ quarks [15].

Set aMb aml amc Zð0Þ
2 ðamcÞ

C1 2.650 0.0070 0.6207 1.00495618
C2 2.688 0.0123 0.6300 1.00524023
C3 2.650 0.0246 0.6235 1.00504054

F1 1.832 0.00674 0.4130 1.00103879
F2 1.826 0.01350 0.4120 1.00102902
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continuum electroweak currents, V0 and Vk, to lattice
operators written in terms of the bottom and charm quark
fields in our lattice actions. In the second step the matrix
elements of these lattice current operators must be evalu-
ated numerically and the relevant amplitudes, i.e. the matrix
elements between the ground state Bmeson and the ground
state D meson with appropriate momenta, must be
extracted. This will give us, via Eqs. (6)–(7), the form
factors f∥ and f⊥ as functions of the light quark mass and
the D momentum. Finally, in step 3 these numerical results
must be extrapolated to the physical, chiral/continuum,
limit. In the next two sections we describe steps 2 and 3 in
turn. Here we consider step 1 and conclude the section with
a brief overview of the bottom-charm currents used in our
simulations and of how these effective theory currents are
matched to those in continuum QCD.
Given our NRQCD action for bottom quarks and HISQ

action for charm, we have, through next-to-leading order
(NLO) in 1=M and lowest order in αs, the two currents

Jð0Þμ ¼ ψ̄cγμΨb; ð10Þ

Jð1Þμ ¼ −1
2Mb

ψ̄cγμγ ·∇Ψb: ð11Þ

Here ψc is the HISQ charm quark field (in its four
component “naive fermion” form) and Ψb the heavy quark
field with the upper two components given by the two-
component NRQCD fields and the lower two components
set equal to zero. We have matched these effective theory
currents to Vμ in full QCD at one-loop order through

Oðαs; ΛQCD

M ; αs
aMÞ. Details of the matching of NRQCD/HISQ

currents are given in Ref. [15]. The matching is similar to
that employed in recent heavy-to-light semileptonic decays
(i.e. B → Klþl− and Bs → Klν). However, there is a
difference between matching of NRQCD/massless-HISQ
and NRQCD/massive-HISQ currents. Massive-HISQ fer-

mions have a nontrivial wave function renormalization Zð0Þ
2

even at tree level. To ensure that matching coefficients scale
as f1þOðαsÞ þ � � � :g, we factor out this tree-level rescal-
ing at the outset. This means the currents in (10)–(11) get
multiplied by ðZð0Þ

2 Þ−1=2. After this rescaling, which one
sees from Table II is a very small effect, one has

hVμiQCD ¼ ð1þ αsρμÞhJð0Þμ i þ hJð1Þ;subμ i; ð12Þ

with

Jð1Þ;subμ ¼ Jð1Þμ − αsζμJ
ð0Þ
μ : ð13Þ

Here ρμ and ζμ are the one-loop matching coefficients
tabulated for μ ¼ 0 and μ ¼ k in [15] for several aMb and
amc values.

III. CORRELATORS AND FITTING STRATEGIES

In order to extract hDjJμjBi [here we use “Jμ” to denote
either the full expression for the current on the rhs of (12) or

just the lowest order term Jð0Þμ ], we need to calculate the B
and D meson two-point correlators and the Jμ three-point
correlator. We use smeared heavy-light bilinears with
Coulomb gauge fixed lattices to represent the B meson.
For instance, we create a meson at time t0 via

Φα†
B ð~x;t0Þ≡a3

X
~x0
Ψ̄bð~x0;t0Þϕαð~x0−~xÞγ5ψ lð~x;t0Þ: ð14Þ

For the smearing functions, ϕαð~x0 − ~xÞ, we use a δ-function
local smearing (α ¼ 1) or Gaussian smearings
∝ e−j~x0−~xj2=ð2r20Þ, normalized to one (α ¼ 2). We then cal-
culate a 2 × 2 matrix of zero momentum B meson corre-
lators with all combinations of source and sink smearings,

Cβ;α
B ðt; t0Þ ¼

1

L3

X
~x;~y

hΦβ
Bð~y; tÞΦα†

B ð~x; t0Þi: ð15Þ

We use Gaussian widths in lattice units of size r0=a ¼ 5 on
coarse ensembles and r0=a ¼ 7 on the fine ensembles. For
the D meson built from HISQ charm and light quarks we
use an interpolating operator,

Φ†
Dð~x; t0Þ ¼ a3ψ̄cð~x; t0Þγ5ψ lð~x; t0Þ; ð16Þ

and construct two-point correlation function with
momentum ~p,

CDðt; t0; ~pÞ ¼
1

L3
N taste

X
~x;~y

ei~p·ð~x−~yÞhΦDð~y; tÞΦ†
Dð~x; t0Þi:

ð17Þ

The normalization factor N taste ¼ 1=16 for four-
component naive HISQ quarks, and N taste ¼ 1=4 when
employing the one-component version of HISQ. As
explained in Ref. [16] there are no “taste” related rescaling
factors when a nondoubled NRQCD heavy quark propa-
gator is part of the loop, such as inCβ;α

B ðt; t0Þ above or in the
three-point correlator given below.
The three-point correlator of Jμ can be written as

Cα
Jðt;t0;T; ~pÞ¼

1

L3

X
~x;~y;~z

ei~p·ð~z−~xÞ

×hΦDð~x;t0þTÞJμð~z;tÞΦα†
B ð~y;t0Þi: ð18Þ

The setup for the three-point correlator in (18) is shown in
Fig. 1. The B meson is created at time slice t0. A current
insertion at time slice t, t0 ≤ t ≤ t0 þ T, converts the b
quark into a c quark. The resulting D meson is annihilated
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at time slice t0 þ T. We have accumulated simulation data
for four values of T: 12, 13, 14, and 15 on coarse and 21,
22, 23, and 24 on fine lattices. The source time t0 is picked
randomly for each gauge configuration in order to reduce
autocorrelations. Using translational invariance, all data are
shifted to t0 ¼ 0 before taking averages and/or doing fits.
The spatial sums at the source,

P
~x, in Eqs. (15) and

(17)–(18) are implemented using Uð1Þ random wall
sources ξðx0Þ and ξðxÞ (see Ref. [14] for discussions of
random wall sources in two- and three-point correlators).
We fit Cβ;α

B ðtÞ to the form

Cβ;α
B ðtÞ ¼

XNB−1

k¼0

bβkb
α�
k e−E

B;sim
k ·t

þ
XN0
B−1

k¼0

b0βk b
0α�
k ð−1Þte−E0B;sim

k ·t ð19Þ

and CDðt; ~pÞ to

CDðt; ~pÞ ¼
XND−1

k¼0

jdkj2ðe−ED
k ·t þ e−E

D
k ·ðNt−tÞÞ

þ
XN0
D−1

k¼0

jd0kj2ð−1Þtðe−E
0D
k ·t þ e−E

0D
k ·ðNt−tÞÞ: ð20Þ

The energy EB;sim
k differs from the full energy, EB

k , because
the NRQCD action has the b-quark rest mass removed. For
the ground state, the two are related by

EB
0 ≡MB ¼ 1

2
ðM̄exp

bb̄
− Esim

bb̄
Þ þ EB;sim

0 ; ð21Þ

where M̄exp
bb̄

is the spin averaged ϒ mass used to tune the
b-quark mass and suitably adjusted as explained in Sec. II.
The values of Esim

bb̄
can be found in Table I of [10].

By comparing (15) with (19) and (17) with (20), and
taking the correct relativistic normalizations for the energy
eigenstates jEB

k i and jED
k i into account, the following

relations emerge:

bα�k ¼ hEB
k jΦα†

B j0iffiffiffiffiffiffiffiffiffiffiffiffiffi
2a3EB

k

q ; ð22Þ

and

dk ¼
h0jΦDjED

k iffiffiffiffiffiffiffiffiffiffiffiffiffi
2a3ED

k

q : ð23Þ

For the three-point correlator Cα
Jðt; T; ~pÞ we use the

following fit ansatz:

Cα
Jðt; T; ~pÞ ¼

XNB−1

j¼0

XND−1

k¼0

Aα
jke

−ED
j ·te−E

B;sim
k ·ðT−tÞ

þ
XND−1

j¼0

XN0
B−1

k¼0

Bα
jke

−ED
j ·te−E

0B;sim
k ·ðT−tÞð−1ÞðT−tÞ

þ
XN0
D−1

j¼0

XNB−1

k¼0

Cα
jke

−E0D
j ·te−E

B;sim
k ·ðT−tÞð−1Þt

þ
XN0
B−1

j¼0

XN0
D−1

k¼0

Dα
jke

−E0D
j ·te−E

0B;sim
k ·ðT−tÞð−1ÞT:

ð24Þ

The amplitudes Aα
jk etc. depend on the current Jμ and on the

D meson momentum ~p. Again by comparing (18) and (24)
and using (22)–(23), one finds

Aα
jk ¼ dj

hED
j jJμjEB

k iffiffiffiffiffiffiffiffiffiffiffiffiffi
2a3ED

j

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
2a3EB

k

q bα�k : ð25Þ

For j ¼ k ¼ 0, Aα
00 in (25) gives us the sought after

hadronic matrix elements hDjJμjBi,

hDjJμjBi ¼
Aα
00

d0bα�0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2a3ED

0

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a3MB

q
: ð26Þ

Our fitting strategies based on Bayesian methods have
been developed and refined in a number of calculations
[17,18]. We follow closely the approach used in our recent
Bs → Klν studies [10]. Figures 2 and 3 show fit results for
the ground state D meson energies aED and for aEB;sim

0 ,
respectively, versus the number of exponentials in the fit
Nexp (we set Nexp ¼ ND;B ¼ N0

D;B). Fits stabilize after
Nexp ¼ 4. In Fig. 4 we check the ratio ðM2 þ p2Þ=E2

for the D meson on one coarse (C1) and one fine (F1)
ensemble. The shaded area is bounded by 1� c αsðapÞ2,
where the free parameter c has been set to 0.1. One sees that
the relativistic dispersion relation holds within errors to
better than 0.5%.

FIG. 1. Setup for three-point correlators.
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For fixed D momentum, the combination on the rhs of
Eq. (24) is obtained from a simultaneous fit to a 2 × 2
matrix of B correlators, one D correlator and numerous
three-point correlators. The number of three-point corre-
lators in the fits varies from six to sixteen as we use either
three or four values of T, two smearings α, and either one
current at zero momentum (J0) or two currents at nonzero
momenta (J0 and Ji). We call this type of fit an “individual
fit.” Figure 5 shows results for Aα

00 for J0ð~p ¼ ð0; 0; 0ÞÞ
versus the number of exponentials. And Fig. 6 shows how
results depend on choices for different T combinations.
Individual fits give stable and consistent results under such
variations.
We fit data after the current matching described in

Sec. II. Specifically, we obtain simulation data for Jð0Þμ

0 1 2 3 4 5 6 7 8 9 10
N

exp

0.8

0.85

0.9

0.95

a 
E

D
p = (0,0,0)
p = (1,0,0)
p = (1,1,0)
p = (1,1,1)

FIG. 2 (color online). aED versusNexp for several momenta and
for ensemble F1.

0 1 2 3 4 5 6 7 8 9 10
N
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0.385
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E

0B
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FIG. 3 (color online). aEB;sim
0 versus Nexp for ensemble F1.
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FIG. 4 (color online). Dispersion relations on ensembles C1
and F1. The shaded region is bounded by 1� c αsðapÞ2
with c ¼ 0.1.
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FIG. 5 (color online). A00 for J0ð~p ¼ ð0; 0; 0ÞÞ versusND;B and
N0

D;B for F1. The two plots on the right are at fixed
ND;B ¼ 4 or N0

D;B ¼ 4.
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FIG. 6 (color online). A00 for J0ð~p ¼ ð0; 0; 0ÞÞ versus different
T combinations for F1. We take the result with
T ¼ ð21; 22; 23; 24Þ.
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and Jð1Þμ of Eqs. (8)–(9), reconstruct the full expression on
the rhs of Eq. (10), and fit the resulting data. Alternatively,

we can perform separate fits to Jð0Þμ and Jð1Þμ and then
combine the results according to Eq. (10). We have
compared the two approaches and find good agreement,
as shown in Fig. 7.
In order to get correlations of form factors at different

q2s, one needs to do a simultaneous fit with all different D
momenta. Each individual fit alone involves 10 to 20
correlators (depending on the combination of T values) and
a simultaneous fit requires a four times larger set of
correlators. We find that the simultaneous fits lead to
unreliable results, indicating that they are too complicated
given the accuracy of our data. Our fitting routines,

however, allow for an alternate way to keep track of
correlations between form factors at different q2s. One
can do a sequence of individual fits, one after the other, all
within a single script and always employing the full
covariance matrix for all the data (all D meson momenta).
We call such fits “master fits.” These master fits are easier
than straight simultaneous fits, but still highly nontrivial
and time consuming. It was possible to get good master fits
consistent with individual fit results; however, these were
less stable with respect to changes in Nexp and T combi-
nations. Hence for our final fit results we use central values
and errors from individual fits, and use the good master fits
just to extract the necessary correlations. Figure 8 shows an
example of correlations obtained from a master fit to all the
data from ensemble F1. Table III summarizes form factor
results for each ensemble and D momentum, and Table IV
shows the fit results of B and D meson ground state
energies.
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FIG. 7 (color online). Comparison between form factor fit
results when current matching corrections are undertaken before
or after the fits (for ensemble F1).

FIG. 8 (color online). Correlations between different momenta
from the master fit for ensemble F1.

TABLE III. Fit results for f0ð~pÞ and fþð~pÞ.
Set f0ð0; 0; 0Þ f0ð1; 0; 0Þ f0ð1; 1; 0Þ f0ð1; 1; 1Þ
C1 0.8810(56) 0.8743(43) 0.8608(38) 0.8534(42)
C2 0.8809(31) 0.8716(54) 0.8617(44) 0.8503(50)
C3 0.8872(23) 0.8685(32) 0.8592(29) 0.8473(38)

F1 0.9034(31) 0.8771(42) 0.8643(41) 0.8479(56)
F2 0.9051(23) 0.8895(36) 0.8702(29) 0.8504(34)

Set fþð1; 0; 0Þ fþð1; 1; 0Þ fþð1; 1; 1Þ
C1 1.135(12) 1.1125(57) 1.0837(61)
C2 1.110(12) 1.0809(70) 1.0479(64)
C3 1.1282(71) 1.0937(40) 1.0569(50)

F1 1.1344(91) 1.0931(59) 1.0480(74)
F2 1.1461(72) 1.0963(39) 1.0577(45)

TABLE IV. Fit results for aED with each momentum and
aEB;sim

0 .

Set aEDð0; 0; 0Þ aEDð1; 0; 0Þ aEDð1; 1; 0Þ aEDð1; 1; 1Þ
C1 1.1388(15) 1.1681(19) 1.1979(17) 1.2267(16)
C2 1.1577(14) 1.1959(29) 1.2365(28) 1.2758(34)
C3 1.16355(69) 1.2046(11) 1.2442(12) 1.2824(18)

F1 0.81409(42) 0.84349(77) 0.87262(83) 0.9003(13)
F2 0.81999(37) 0.85051(69) 0.87905(66) 0.90682(86)

Set aEB;sim
0

C1 0.4964(13)
C2 0.5089(14)
C3 0.51376(95)

F1 0.38190(89)
F2 0.38726(73)
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IV. CHIRAL, CONTINUUM AND KINEMATIC
EXTRAPOLATION

In this section we describe how we extrapolate the form
factors of Table III to the continuum and chiral limits, and
how one can get information on the form factors for the
entire physical kinematic range. In the continuum physical
theory, form factors are functions of a single kinematic
variable which can be taken to be q2, ED, ðw − 1Þ≡
ðq2max − q2Þ=ð2MBMDÞ or the z-variable defined in terms
of q2 as

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p : ð27Þ

Here tþ ¼ ðMB þMDÞ2 and t0 is a free parameter which
we set to t0 ¼ q2max ¼ ðMB −MDÞ2 ∼ 11.66 GeV2. A
popular expansion in terms of z is the Bourrely-Caprini-
Lellouch (BCL) parametrization [19], which is given as

fþðq2Þ ¼
1

Pþ

XK−1
k¼0

aðþÞ
k

�
zðq2Þk − ð−1Þk−K k

K
zðq2ÞK

�

ð28Þ

and

f0ðq2Þ ¼
1

P0

XK−1
k¼0

að0Þk zðq2Þk: ð29Þ

Here Pþ;0 are the Blaschke factors that take into account the
effects of expected poles above the physical region but
below the two body threshold tþ, i.e. in the region
ðMB −MDÞ2 < q2 < ðMB þMDÞ2,

Pþ;0ðq2Þ ¼
�
1 −

q2

M2
þ;0

�
: ð30Þ

For fþ we take the B�
c vector meson mass which has been

calculated in Ref. [20], Mþ ¼ MB�
c
¼ 6.330ð9Þ GeV. For

the scalar form factor f0, there is little information
theoretically or experimentally on a 0þ bottom-charm
meson. We take M0 to be slightly heavier than Mþ with
large errors. We find that our fit results are very insensitive
to our choice of M0. Even omitting the Blaschke factor
completely for f0ðq2Þ leads to results consistent with
keeping it in (see test number 16 below). The poles in
the B → Dlν form factors are located far above the physical
q2 region, for example q2max ¼ ðMB −MDÞ2 ∼ 11.6 GeV2

while M2
B�
c
∼ 40 GeV2. This implies that the form factors

have very small curvatures, and in fact it is very difficult to
quantify the curvature for f0 from our lattice data.
Once the contributions from simple poles have been

isolated, the power series in (28)–(29) correspond to

smooth functions of z. One reason for preferring a power
series in z, as opposed to one in q2 or ED, or even ðw − 1Þ is
that jzj remains very small throughout the physical kin-
ematic region. For B → D semileptonic decays and our
choice for t0, one has 0.0 ≤ z < 0.064. This means that one
can go to arbitrary high powers in zk if necessary (in
practice, with our current simulation data, going up to z3

will suffice).
The form factors of Table III are not yet in the physical

limit. Nevertheless, for fixed lattice spacing and pion mass,
one can again write form factors in terms of a Blaschke
factor mutliplying a power series in z. The advantages of
the z expansion relative to an expansion in, for instance,
powers of ED still hold away from the physical limit. What
is different, however, is that expansion coefficients must
now depend on the lattice spacing “a” and on “mπ” (or the
light quark mass),

að0;þÞ
k → ~að0;þÞ

k ×Dð0;þÞ
k ðml;msea

l ; aÞ; ð31Þ

with

að0;þÞ
k ¼ ~að0;þÞ

k ×Dð0;þÞ
k ðmlðphysÞ; msea

l ðphysÞ; a ¼ 0Þ:
ð32Þ

This is the modified z expansion first introduced in
Ref. [14,21] for D meson semileptonic decays, and which
has subsequently also been employed successfully in B and
Bs meson heavy-to-light decays [8–10]. The Dk in (31)
contains all lattice artifacts and chiral logs. Specifically,
we have

Dk ¼ 1þ ck1xπ þ ck2

�
1

2
δxπ þ δxK

�
þ ck3xπ logðxπÞ

þ dk1ðamcÞ2 þ dk2ðamcÞ4
þ ek1ðaED=πÞ2 þ ek2ðaED=πÞ4; ð33Þ

where

xπ;K;η ¼
M2

π;K;η

ð4πfπÞ2
; ð34Þ

δxπ;K ¼ ðMasqtad
π;K Þ2 − ðMHISQ

π;K Þ2
ð4πfπÞ2

: ð35Þ

The ckj , with j ¼ 1; 2; 3, and dki and e
k
i , with i ¼ 1; 2, are fit

parameters (we have omitted the fþ;0 label for simplicity)
in addition to the ~a0;þk . In Appendix B we discuss what
happens when the simple chiral log term in (33) is replaced
by expressions from hard pion chiral perturbation theory
(HPChPT) [22] (see also test number 10 below). We list the
priors and prior widths used in the chiral/continuum/
kinematic extrapolation in Appendix C.
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We find it useful to make one more modification of the
z-parametrization of lattice form factors. In order to
accommodate the uncertainty coming from the truncation
of the current matchings at Oðαs;ΛQCD=M; αs=ðaMÞÞ, we
introduce new fit parameters, m∥ and m⊥, with central
value zero and width δm∥;⊥,

f∥; f⊥ → ð1þm∥Þf∥; ð1þm⊥Þf⊥: ð36Þ

The prior widths δm∥ and δm⊥ correspond to our best
estimates for higher order matching errors for V0 and Vk
respectively. With the modification of (36), our extrapola-
tion results coming from the modified z-expansion fit will
then include the matching truncation errors automatically.
To get an estimate of higher order matching uncertainties
and fix δm∥;⊥, we have looked at the size of the known first
order matching corrections. In other words we have gone
through the correlator fits of the previous section once
using the fully corrected expression on the rhs of (12) and

then a second time using just the lowest order hJð0Þμ i. We
find that the first order matching contributions have only a
∼2% effect on fine and a ∼4% effect on coarse lattices,
significantly smaller than a naive 1 ×OðαÞ ≈ 25%–30%
estimate. In this work we take the higher order uncertainties
to be the same as the average of the full first order
corrections on fine and coarse lattices, that is, we set the
prior central values and widths of the fit parametersm∥;⊥ to
be 0.0� 0.03. We have checked that using 0.0� 0.02 or
0.0� 0.04 everywhere, or 0.0� 0.02 for fine and 0.0�
0.04 for coarse lattices has minimal effect (see tests number
13, 14, and 15 below). After the modified z-expansion fits
and extrapolation to the physical limit, these matching
uncertainties for f∥ and f⊥ will translate into matching
errors for fþ and f0 with correlations between the two form
factors taken into account.
In Fig. 9 we show our fit results for fþ and f0 plotted

versus z. We plot both the simulation data and the
extrapolated physical band. These are results of what we
call our “standard extrapolation” which uses the fit ansatz
discussed above and a z expansion that includes terms
through Oðz3Þ. We have carried out further tests of the
standard extrapolation by modifying the fit ansatz in the
following ways:
(1) stop at Oðz2Þ in the z expansion;
(2) stop at Oðz4Þ in the z expansion;
(3) add light quark mass dependence to dk1 [see Eq. (30)

of [10]];
(4) add bottom quark mass dependence to dk1 [see

Eq. (30) of [10]];
(5) omit ðamcÞ4 term;
(6) add ðamcÞ6 term;
(7) omit ðaED=πÞ4 term;
(8) add ðaED=πÞ6 term;
(9) omit x logðxÞ term;
(10) use chiral logs from HPChPT (see Appendix B);
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FIG. 9 (color online). The standard fit results with the con-
tinuum extrapolated bands. The short horizontal bars on the upper
plot show the fit results at nonzero lattice spacings.
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FIG. 10 (color online). Test results for fþð0Þ and fþðq2maxÞ
under modifications of the standard extrapolation fit ansatz. The
shaded horizontal bands are the standard extrapolation results.
The x axis labels the modifications 1–16 listed in the text.
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(11) add x2π term;
(12) omit all xi and x logðxÞ terms;
(13) use 2% uncertainty for higher order matching

contributions;
(14) use 4% uncertainty for higher order matching

contributions;
(15) use 2% uncertainty on fine and 4% uncertainty

on coarse lattices for higher order matching
contributions;

(16) remove Blaschke factor from f0 and fþ.
In Fig. 10 we show how results for fþðq2 ¼ 0Þ ¼ f0ð0Þ

and fþðq2maxÞ are affected by these modifications. One sees
that our extrapolations are very stable.

V. FORM FACTOR RESULTS

Our final results for the form factors in the physical limit
versus q2 are shown in Fig. 11. Error plots for fþðq2Þ and
f0ðq2Þ are given in Fig. 12. We isolate the errors coming
from different sources and also give the total error as a
function of q2. The individual errors in Fig. 12 correspond
to the following:

(i) statistical
The statistical error includes the three- and two-

point correlator fit errors and the scale errors (r1 and
r1=a). These are lattice simulation errors, and we
have lattice data in the large q2 region, from about
9.5 to 12 GeV2. Figure 12 shows the propagation of
such errors to the continuum limit and after extrapo-
lation to the full q2 range.

(ii) chiral extrapolation
These are the valence and sea quark mass

extrapolation errors including effects of chiral logs.
They come from the fit parameters ck1, c

k
2 and ck3

in Eq. (33).

(iii) discretization
Discretization errors come from the ðamcÞn and

ðaEDÞn terms and they constitute the dominant
errors in our calculation.

(iv) kinematic
These come from the z-expansion coefficients

~að0;þÞ
k and the pole locations. As one would expect,

the error increases as q2 decreases.
(v) matching

Matching errors come from the m⊥;∥ fit param-
eters as explained in the previous section.

Physical meson mass input errors (0.01%) and finite size
errors (0.1%) are not included in the plots, since they are
too small to have any effect.
The slope of fþðq2Þ as one comes down from the zero

recoil point at q2 ¼ q2max is a quantity that is often quoted
when comparing different measurements of this form
factor. In terms of the variable w ¼ ðM2

B þM2
D − q2Þ=

ð2MBMDÞ the slope parameter ρ2 is given by
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FIG. 11 (color online). Continuum and chiral extrapolated f0
(lower band) and fþ (upper band).
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FIG. 12 (color online). Relative error components of f0 (lower
plot) and fþ (upper plot) for physical q2 region.
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GðwÞ ¼ Gð1Þf1 − ρ2ðw − 1Þ þOððw − 1Þ2Þg; ð37Þ
where

Gðw ¼ wðq2ÞÞ ¼ 2
ffiffiffi
κ

p
1þ κ

fþðq2Þ ð38Þ

for

κ ¼ MD

MB
: ð39Þ

A popular way to extract ρ2 is to use the Caprini-
Lellouch-Neubert parametrization [23]

GðwÞ ¼ Gð1Þf1 − 8ρ2zþ ð51ρ2 − 10Þz2
−ð252ρ2 − 84Þz3g; ð40Þ

with

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p
−

ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffi
wþ 1

p þ ffiffiffi
2

p : ð41Þ

This z is the same as the z-variable introduced in the
previous section, Eq. (27), with the same t0 ¼ q2max. Using
Eq. (40), we extract

ρ2 ¼ 1.119ð71Þ; Gð1Þ ¼ 1.035ð40Þ: ð42Þ
Another useful reference point is the value of
fþð0Þ ¼ f0ð0Þ. We find

fþð0Þ ¼ 0.664ð34Þ: ð43Þ
In Appendix A we provide the z-expansion coefficients
including errors and correlations for the form factors
of Fig. 11.

VI. EXTRACTION OF jVcbj
The differential branching fraction for B → Dlν decays

is given by

dΓ
dq2

¼ ηEW
G2

FjVcbj2
48π3M2

B

�
1 −

m2
l

q2

�
2

j~pj

×

��
1 −

m2
l

2q2

�
2

M2
Bj~pj2f2þðq2Þ

þ 3m2
l

8q2
ðM2

B þM2
DÞ2f20ðq2Þ

�
; ð44Þ

where ml is the mass of the lepton, and ηEW is the
electroweak correction. The main goal of the present work
is to combine experimental measurement of this differential
branching fraction with form factors of the previous
section to extract jVcbj. The partial branching fraction

[the left-hand side of Eq. (44)] has been measured by
BABAR [24]. On the right-hand side, we have form factors
from this lattice calculation, and all other factors are known
except the target quantity jVcbj.
In order to include the higher order electroweak effects,

we apply the Sirlin factor [25], ηs ¼ 1.00662. Furthermore,
there are final state electromagnetic interactions for the
neutral channel, B̄0 → Dþlν, which we estimate to be a less
than 0.5% effect using the signal yield ratio of the charged
and neutral decay channels. Combining the two effects, we
get ηEW ¼ 1.011ð5Þ.
We perform another modified z-expansion fit explained

in Sec. IV together with the BABAR experiment data with
jVcbj as a fit parameter. We have a good fit with
χ2=dof ¼ 0.88, and this is shown in Fig. 13. We get
jVcbj from this fit,

jVcbj ¼ 0.0402ð17Þð13Þ; ð45Þ
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FIG. 13 (color online). Form factors using both lattice and
BABAR [24] inputs, together with the experimental data points.

TABLE V. Error budget table for jVcbj. The first three rows are
from experiments, and the rest are from lattice simulations.

Type Partial errors [%]

Experimental statistics 1.55
Experimental systematic 3.3
Meson masses 0.01

Lattice statistics 1.22
Chiral extrapolation 1.14
Discretization 2.59
Kinematic 0.96
Matching 2.11
Electroweak 0.48
Finite size effect 0.1

Total 5.34
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where the first error is from the fit including all lattice errors
and experimental statistical errors, and the second error is
the experimental systematic error. We quote the experi-
mental systematic errors as 3.3% of our fit result based on
BABAR’s estimate of their systematic errors in [24]. This is
equivalent to imposing 3.3% systematic errors on each
experimental measurement bin with 100% correlations.
A detailed error budget is shown in Table V. The

dominant errors are experimental systematic, lattice dis-
cretization, and operator matching errors. Thus, improve-
ments in both experiments and lattice calculations are
required to obtain better precision on jVcbj from our
method.
jVcbj has been reported from multiple lattice and non-

lattice calculations. We compare the different determina-
tions in Fig. 14. Our result agrees with other exclusive
calculations, particularly with the most accurate result from
B → D�lν, but it is also compatible within errors with the
inclusive determination. Since the discretization error is
one of the dominant errors in our calculation, lattice errors
can be reduced in the future by working on more ensembles
with finer lattice spacings.

VII. THE R(D) RATIO

The experimental data used in the previous section to
extract jVcbj were for semileptonic decays with light
leptons in the final state. BABAR has also studied decays
involving the much heavier τ lepton, B → Dτντ, and
measured the ratio,

RðDÞ ¼ BðB → DτντÞ
BðB → DlνÞ ; ð46Þ

where l is either an electron or a muon. They find

RðDÞjexp ¼ 0.440ð58Þð42Þ; ð47Þ

where the first error is the statistical and the second is the
systematic error [26].
Here we present a standard model prediction for RðDÞ

based on our new form factors. Figure 15 compares
differential branching fractions of Eq. (44) for B → Dτντ
and B → Dlν. Although only fþðq2Þ contributes to the lν
case, both fþðq2Þ and f0ðq2Þ are involved in the τντ
branching fraction. Integrating over q2 we obtain

RðDÞjSM ¼ 0.300ð8Þ: ð48Þ

Table VI shows a detailed error budget for RðDÞ. Figure 16
gives a comparison plot for different determinations of
RðDÞ. All standard model based calculations are in good
agreement with each other. The difference between our
result and experiment is at the 2σ level. We note that we do
not use any experimental results to extract RðDÞ. Our result
gives the most accurate pure standard model prediction to
date for RðDÞ.
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FIG. 14 (color online). jVcbj comparisons between inclusive
and exclusive determinations.
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FIG. 15 (color online). The differential branching fractions for
B → Dlν and B → Dτν.

TABLE VI. Error budget table for RðDÞ.
Type Partial errors [%]

Lattice statistics 1.24
Chiral extrapolation 0.28
Discretization 1.08
Kinematic 1.61
Matching 1.03
Finite size effect 0.1

Total 2.54
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VIII. SUMMARY AND FUTURE PROSPECTS

In this paper we have presented a new lattice QCD
calculation of the B → Dlν semileptonic decay form
factors fþðq2Þ and f0ðq2Þ. These were combined with
experimental measurements of differential branching frac-
tions to extract a value for jVcbjexcl. Our result, given in
Eq. (1) [and repeated in (45)] is consistent with other recent
lattice determinations using different lattice actions, and
provides a cross check of earlier calculations. We summa-
rize these results in Fig. 14.
The dominant error in our calculation is the discretiza-

tion error, followed by higher order current matching
uncertainties. The former error can be reduced by adding
simulation data from further ensembles with finer lattice
spacings. We are also exploring ways to improve our
matching errors by combining simulations with NRQCD
bottom quarks with those employing heavier than charm
HISQ quarks. This approach to nonperturbative matchings
of NRQCD/HISQ currents is described briefly in the
appendix to Ref. [10]. There we presented ratios of Bs →
Klν and Bs → ηslν form factors and explained how such
ratios combined with a purely HISQ calculation in the
future of Bs → ηslν form factors would lead to a non-
perturbative determination of the NRQCD/HISQ bottom-
up current Z-factors. Similarly, nonperturbative Z-factors
for bottom-charm currents used in the present calculation
could be obtained by calculating Bs → Dslν forms factors
once with NRQCD bottom quarks and then again with
heavy-HISQ bottom quarks and then taking ratios. We have
already completed, and are in the process of writing up,
calculations of Bs → Dslν form factors with NRQCD
bottom quarks. Simulations with heavy-HISQ bottom
quarks are also underway. Hence we expect to be able
to significantly reduce theory errors in jVcbj determinations

from B → Dlν decays in the near future. In the meantime
we hope that experimental measurements will also improve
considerably. Only then will one be able to shed light on the
exclusive versus inclusive tensions for jVcbj via studies of
B → Dlν decays.
In this article we also determined the ratio RðDÞ. Our

result is given in Eq. (2) [and again in (48)]. We summarize
comparisons between standard model predictions and
experiment in Fig. 16. It will be interesting to see whether
the current ∼2σ tension will develop into a true discrepancy
between experiment and the standard model or disappear.
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APPENDIX A: RECONSTRUCTING
FORM FACTORS

We provide our z-expansion coefficients with correla-
tions, so that readers can reconstruct our form factors for
their analysis. The form factors are expressed by the BCL
parametrization as

fþðq2Þ ¼
1

Pþ

X2
k¼0

aðþÞ
k

�
zðq2Þk − ð−1Þk−K k

K
zðq2ÞK

�
;

ðA1Þ
and

f0ðq2Þ ¼
1

P0

X2
k¼0

að0Þk zðq2Þk; ðA2Þ

where

zðq2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − q2

p
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

tþ − t0
p ; ðA3Þ

tþ ¼ðMB þMDÞ2; ðA4Þ

t0 ¼ q2max ¼ ðMB −MDÞ2; ðA5Þ

Pþ;0ðq2Þ ¼
�
1 −

q2

M2
þ;0

�
: ðA6Þ

For the locations of the poles, one can use
Mþ ¼ 6.330ð9Þ GeV for fþ, and M0 ¼ 6.420ð9Þ GeV
for f0 to reproduce our form factors exactly. The

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

R(D)

This work
Fermilab/MILC 2015
Fermilab/MILC 2012
HQET 2010
HQET 2008
BABAR 2012

FIG. 16 (color online). Comparisons between different deter-
minations of RðDÞ. The references for the other determinations
are BABAR 2012 [26], HQET 2008 [27], HQET 2010 [28],
Fermilab/MILC 2012 [6], and Fermilab/MILC 2015 [4].
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coefficients, aðþ;0Þ
k , and the correlations are presented in

Table VII.

APPENDIX B: CHIRAL/CONTINUUM
EXTRAPOLATIONS USING INPUT FROM

HPChPT

In the standard extrapolation of Sec. IV we used a
generic ck3xπ logðxπÞ term to parametrize chiral logarithmic
contributions and allowed ck3 to float. An alternate way to
introduce chiral logarithms into our chiral/continuum
extrapolations is to use expressions fixed by HPChPT [22],

½logs�fþ ¼ −
κ þ 1ffiffiffi

κ
p g2

ð4πfπÞ2
ðrðwÞ − 1Þ

×

�
3

2
ĀðxπÞ þ ĀðxKÞ þ

1

6
ĀðxηÞ

�
; ðB1Þ

½logs�f0 ¼ −
ffiffiffi
κ

p
1þ κ

g2

ð4πfπÞ2
ðwþ 1ÞðrðwÞ − 1Þ

×

�
3

2
ĀðxπÞ þ ĀðxKÞ þ

1

6
ĀðxηÞ

�
; ðB2Þ

where

ĀðxÞ ¼ x logðxÞ; ðB3Þ

w ¼ M2
B þM2

D − q2

2MBMD
; ðB4Þ

rðwÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p logðwþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 − 1

p
Þ; ðB5Þ

κ ¼ MD=MB: ðB6Þ
We find very consistent results for the extrapolated physical
form factors using either generic ck3 terms or (B1)–(B2).
This is already evident in Fig. 10 test number 10 for fþð0Þ
and fþðq2maxÞ. In Fig. 17 we compare the two approaches
over the entire q2 range.

APPENDIX C: PRIORS AND PRIOR WIDTHS
FOR THE CHIRAL/CONTINUUM/KINEMATIC

EXTRAPOLATION

In earlier works [14,21], we split the priors for the
modified z-expansion method into two groups: Group I and
group II. The group I parameters are typical fit parameters,
such as quark mass dependence or z-expansion parameters.
In this work, the group I parameters consist of

ck1; c
k
2; c

k
3; d

k
1; d

k
2; e

k
1; e

k
2; ak; ðC1Þ

where k ¼ 0; 1, and 2, and there are two sets of parameters
for each f0 and fþ form factor. These parameters are
defined in Eqs. (28)–(29) and (33), and the priors and fit
results are shown in Table VIII.
We choose priors as follows. For the valence quark mass

terms, ck1, we use 0.0(1.0), since the mass terms are
normalized by the scale, 4πfπ . However, it is well known
that the sea quark mass effects are smaller than those of the
valence quark effects, so we take 0.0(3) for the sea quark
mass terms, ck2. HPChPT suggests a prior for the generic
chiral log term, xπ logðxπÞ, as 0.0(1). This prior essentially
covers variations of the terms on the entire kinematic range.
For more conservative error estimations, we take 0.0(2) as
our prior for the generic chiral log term. We note that the
prior settings with 0.0(1) and 0.0(2) give almost identical
results. In the HISQ action, leading heavy quark discreti-
zation errors are Oðαsv2=c2am2

cÞ and Oðv2=c2am4
cÞ.

TABLE VII. z-expansion coefficients and their covariance.

Coefficient Value

að0Þ0
0.647(29)

að0Þ1
0.27(30)

að0Þ2
−0.09ð2.94Þ

aðþÞ
0

0.836(33)

aðþÞ
1

−2.66ð52Þ
aðþÞ
2

−0.07ð2.96Þ

að0Þ0 að0Þ1 að0Þ2 aðþÞ
0 aðþÞ

1 aðþÞ
2

að0Þ0
8.442e-4 −1.141e-3 −5.072e-3 4.799e-4 3.801e-3 5.518e-3

að0Þ1
9.255e-2 −1.087e-1 5.390e-4 5.835e-2 1.852e-2

að0Þ2
8.652 6.813e-3 2.504e-1 2.402e-1

aðþÞ
0

1.062e-3 −7.548e-3 −7.354e-3

aðþÞ
1

2.747e-01 −3.561e-1

aðþÞ
2

8.740
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FIG. 17 (color online). Comparison between using a generic
xπ logðxπÞ term (filled blocks) and chiral logarithms from
HPChPT (open blocks).
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We conservatively do not take the v2=c2 terms in our power
counting, so that we take 0.0(3) for dk1 and e

k
1 priors, and 0.0

(1.0) for dk2 and ek2 priors. For the priors for z-expansion

coefficients, aðþ;0Þ
k , we searched for broad enough priors

that gave stable fit results, and we take 0.0(3.0) in
this work.
The group II parameters are

�
r1
a

�
i
; aMi

B; aE
i
Dð~pÞ; aMi

π; ðaMasqtad
K Þi; ðaMasqtad

π Þi;

M0;Mþ; r1;M
phys
π ;Mphys

K ;Mphys
B ;Mphys

D ; ðC2Þ

where i is the index for the five ensembles (i ¼ 1, 2, 3, 4,
and 5). The group II parameters are either from experi-
ments, from other lattice simulations, or from the correlator
fits, and are used for input parameters. The prior settings
and fit results for group II are shown in Table IX.

TABLE VIII. Priors and fit results of the group I parameters for
the modified z-expansion fit.

Group I Prior [f0] Fit result [f0] Prior [fþ] Fit result [fþ]

c01 0.0 (1.0) −0.09 ð18Þ 0.0 (1.0) 0.34 (20)

c11 0.0 (1.0) −0.13 ð99Þ 0.0 (1.0) −0.67 ð87Þ
c21 0.0 (1.0) 0.0 (1.0) 0.0 (1.0) 0.0 (1.0)

c02 0.00 (30) 0.03 (28) 0.00 (30) −0.10 ð28Þ
c12 0.00 (30) 0.00 (30) 0.00 (30) −0.01 ð30Þ
c22 0.00 (30) 0.00 (30) 0.00 (30) 0.00 (30)

c03 0.00 (20) −0.10 ð15Þ 0.00 (20) 0.22 (16)

c13 0.00 (20) 0.006 (200) 0.00 (20) 0.03 (20)

c23 0.00 (20) −0.00 (20) 0.00 (20) 0.00 (20)

d01 0.00 (30) −0.16 ð24Þ 0.00 (30) 0.11 (24)

d11 0.00 (30) 0.02 (30) 0.00 (30) −0.005 ð292Þ
d21 0.00 (30) −0.00 ð30Þ 0.00 (30) 0.00 (30)

d02 0.0 (1.0) −0.17 ð44Þ 0.0 (1.0) −0.29 ð40Þ
d12 0.0 (1.0) 0.2 (1.0) 0.0 (1.0) 0.008 (923)

d22 0.0 (1.0) −0.0 (1.0) 0.0 (1.0) 0.0 (1.0)

e01 0.00 (30) 0.21 (25) 0.00 (30) 0.06 (25)

e11 0.00 (30) 0.008 (300) 0.00 (30) −0.005 ð298Þ
e21 0.00 (30) 0.00 (30) 0.00 (30) 0.00 (30)

e02 0.0 (1.0) 1.44 (66) 0.0 (1.0) 0.03 (82)

e12 0.0 (1.0) 0.02 (1.00) 0.0 (1.0) 0.0 (1.0)

e22 0.0 (1.0) 0.0 (1.0) 0.0 (1.0) 0.0 (1.0)

a0 0.0 (3.0) 0.644 (30) 0.0 (3.0) 0.842 (35)

a1 0.0 (3.0) 0.27 (31) 0.0 (3.0) −2.69 ð54Þ
a2 0.0 (3.0) −0.09 ð2.94Þ 0.0 (3.0) −0.07 ð2.96Þ

TABLE IX. Priors and fit results of the Group II parameters for
the modified z-expansion fit. Parameters with five rows are lattice
quantities for the five ensembles, C1, C2, C3, F1, and F2.

Group II Prior Fit result

r1=a 2.6470 (30) 2.6473 (30)
2.6180 (30) 2.6174 (30)
2.6440 (30) 2.6442 (30)
3.6990 (30) 3.6991 (30)
3.7120 (40) 3.7120 (39)

aMB 3.18915 (65) 3.18905 (65)
3.23184 (88) 3.23197 (87)
3.21191 (77) 3.21177 (77)
2.28109 (52) 2.28092 (50)
2.28101 (44) 2.28105 (44)

aED 1.1389 (10) 1.13894 (82)
~p ¼ ð0; 0; 0Þ 1.15993 (82) 1.16011 (80)

1.16339 (54) 1.16333 (54)
0.81452 (35) 0.81444 (35)
0.81993 (27) 0.81997 (27)

aED 1.1688 (11) 1.16827 (88)
~p ¼ ð1; 0; 0Þ 1.19901 (99) 1.19918 (94)

1.20395 (77) 1.20445 (69)
0.84360 (58) 0.84374 (52)
0.85071 (40) 0.85055 (39)

aED 1.19884 (84) 1.19847 (80)
~p ¼ ð1; 1; 0Þ 1.24003 (87) 1.23982 (83)

1.24485 (78) 1.24477 (71)
0.87300 (62) 0.87299 (57)
0.87885 (36) 0.87890 (35)

aED 1.22775 (96) 1.22746 (94)
~p ¼ ð1; 1; 1Þ 1.27839 (93) 1.27825 (91)

1.28321 (94) 1.28319 (89)
0.90004 (78) 0.90027 (70)
0.90627 (49) 0.90630 (46)

aMπ 0.15990 (20) 0.15990 (20)
0.21110 (20) 0.21110 (20)
0.29310 (20) 0.29310 (20)
0.13460 (10) 0.13460 (10)
0.18730 (10) 0.18730 (10)

aMasqtad
K 0.36530 (29) 0.36530 (29)

0.38331 (24) 0.38331 (24)
0.40984 (21) 0.40984 (21)
0.25318 (19) 0.25318 (19)
0.27217 (21) 0.27217 (21)

aMasqtad
π 0.15971 (20) 0.15971 (20)

0.22447 (17) 0.22447 (17)
0.31125 (16) 0.31125 (16)
0.14789 (18) 0.14789 (18)
0.20635 (18) 0.20635 (18)

M0 6.53 (1.00) 6.42(43)
Mþ 6.3300 (90) 6.3300(90)
r1 0.3133 (23) 0.3132 (23)

Mphys
π 0.1373 (23) 0.1373 (23)

Mphys
K 0.4957 (20) 0.4957 (20)

Mphys
B 5.27942 (17) 5.27942 (17)

Mphys
D 1.86690 (40) 1.86690 (40)
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