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BULLETIN OF MARINE SCIENCE, 57(3): 781-792, 1995

SETTLEMENT INDICES FOR BLUE CRAB
MEGALOPAE IN THE YORK RIVER, VIRGINIA:

TEMPORAL RELATIONSHIPS AND
STATISTICAL EFFICIENCY

Karen S. Metcalf, Jacques van Montfrans,
Romuald N. Lipcius and Robert J. Orth

ABSTRACT
The efficacy of artificial settlement substrates in quantifying relative rates of settlement of

blue crab, Callinectes sapidus, postlarvae (megalopae) was examined. The technique has been
widely used to assess settlement at local (Chesapeake Bay) and broad geographic scales
(Atlantic and Gulf Coasts). This analysis examined differences in settlement between two
configurations of substrates and two depths of deployment, in relation to lunar day, month,
year and hours of flood tide occurring at night. Substrates were deployed daily for four years
(1989-1992) during the settlement season (July-November) in the York River, Virginia. Set-
tlement did not differ between substrate configurations (flat and cylindrical) deployed at the
same location in the water column. Substrates deployed at the bottom of the water column
had higher settlement than substrates at the surface, except during the last lunar month sam-
pled (approximately November), when settlement was higher at the surface. There was a
semilunar periodicity in settlement with high settlement following the new and full moon
phases. Settlement varied annually and with lunar month. Statistical efficiency was achieved
with a minimum of three or four replicate substrates. Cylindrical artificial settlement sub-
strates are efficient, reliable and capable of detecting temporal patterns in settlement.

The importance of recruitment processes in the population dynamics of marine
species with pelagic larval dispersal has been stressed in numerous recent studies
(Cameron, 1986; Gaines and Roughgarden, 1987; Richards and Lindeman, 1987;
Butman, 1987; Doherty and Fowler, 1994). Stochastic, physical processes have a
dominant influence on transporting planktonic stages in these species over variable
distances, but with behavioral modifications enabling non-passive distribution in
some (Boehlert and Mundy, 1988). Eventually, those that survive to advanced
larval stages encounter suitable nursery habitats where they settle, metamorphose
into the adult form and potentially grow to a reproductive age.

Extreme fluctuations or cycles in population abundance over various temporal
scales are often characteristic of fishery species such as the blue crab (Lipcius
and Van Engel, 1990). These fluctuations may have complex ecological, economic
and sociological consequences. Thus, understanding and anticipating such fluc-
tuations remains a fundamental challenge for ecologists, fisheries scientists and
resource managers alike.

The settling stage for some benthic or demersal marine (Connell, 1985; Gaines
and Roughgarden, 1987; Roughgarden et aI., 1985; Doherty and Fowler, 1994)
and specifically, fisheries (Hjort, 1914; Phillips, 1986) species exhibits fidelity in
recruit-stock relationships. For example, recruitment variability for reef-dwelling
damselfish (Pomacentrus muloccensis) for a nine-year period and over spatial
scales up to 70 kilometers accounted for 90% of the variability in year-class
strength and population age structure (Doherty and Fowler, 1994). In addition,
the Western Australian rock lobster (Panulirus cygnus) fishery can be accurately
predicted 5 years in advance by quantifying postlarval and early juvenile stages
settling on artificial substrates (Phillips, 1986; Phillips et aI., 1994). Thus, for
some species, the abundance of settlers directly projects the magnitude and com-
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position of subsequent adult stages, and quantifying settlement provides a viable
means of predicting and managing these stocks.

Quantifying the earliest life-history stage that will result in accurate predictions
can yield the greatest lead time for forecasting year-class strength. Thus, devel-
oping techniques to determine abundance of advanced larvae, postlarvae or early
juveniles at relevant temporal and spatial scales is requisite for such assessments
of fisheries stocks, or for meaningful ecological research on post-settlement pro-
cesses. Crustacean fisheries are amenable to developing indices of population
abundance through quantitative estimates of settling stages (Witham et al., 1968;
Phillips, 1972, 1986; Little and Milano, 1980; Morgan et al., 1982; Beninger et
al., 1986). Quantifying settlement on artificial substrates at relevant temporal
scales has also aided in identifying settlement patterns and examining the regu-
latory processes of settlement and recruitment dynamics in species such as the
blue crab (Lipcius et al., 1990; Olmi et al., 1990; van Montfrans et al., 1990;
Metcalf and Lipcius, 1992; Perry et al., 1995; Rabalais et al., 1995; Mense et al.,
1995; van Montfrans et al., 1995).

The blue crab, an important commercial and ecological species may also be
amenable to forecasts of year-class strength. Ovigerous females along the Western
Atlantic, at the mouths of estuaries, release up to eight million larvae (zoeae) per
individual (Van Engel, 1958; Prager et al., 1990). These larvae are subsequently
transported to offshore coastal water for development through seven or eight
stages (Provenzano et al., 1983; McConaugha et al., 1983; Epifanio et al., 1989).
Next, metamorphosis occurs to the megalopal (postlarval) stage which eventually
reinvades (i.e., recruitment) nursery habitats within an estuary (McConaugha et
al., 1983; Epifanio et al., 1989). In Chesapeake Bay, megalopae settle predomi-
nantly in seagrass (Zostera marina and Ruppia maritima) beds, and also in other
shallow-water areas (i.e., settlement), prior to metamorphosis into the first juvenile
crab instar (Orth and van Montfrans, 1990). Because these reinvading megalopae
represent survivors of a massive larval output (sensu Fritz et al., 1990), it is at
the megalopal stage that understanding the importance of recruitment processes
seems most feasible.

Flat artificial settlement substrates floating vertically at the water surface have
been used since 1985 for quantifying the timing and magnitude of blue crab
megalopal settlement in Chesapeake Bay (van Montfrans et al., 1990). Settlement
on surface substrates was targeted since reinvading megalopae exhibit diel vertical
migration and tidally-timed swimming behavior (Sulkin et al., 1980), which col-
lectively result in a high abundance of megalopae in surface waters during noc-
turnal flood tides (Olmi, 1994; Mense and Wenner, 1989; Little and Epifanio,
1991). Fixed position, flat, near-surface (i.e., at a fixed location 1 m below mean
low water) and bottom (i.e., 1 m above bottom) substrates were deployed in
Charleston Harbor, South Carolina to examine diel settlement patterns of brach-
yurans, particularly the blue crabs (Boylan and Wenner, 1993). To standardize
methodology for comparative purposes, these techniques were modified by adopt-
ing cylindrical substrates to accommodate additional sites with high current flow
regimes throughout the Atlantic and Gulf coasts of North America (Rabalais et
al., 1995; van Montfrans et al., 1995). Balanced internal weighting and flotation
within cylindrical substrates assured a vertical orientation in the water column,
irrespective of normal tidal flow direction or magnitude.

To date, quantitative differences in blue crab megalopal settlement as a function
of substrate configuration (i.e., flat and cylindrical) and location of deployment
(i.e., surface vs bottom) have not been determined. We believed it necessary to
examine these relationships due to the widespread use of surface cylindrical sub-
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Figure I. Schematic of artificial settlement substrates. a. Flat substrate, b. Cylindrical substrate sup-
port blown up, e. "Hog's Hair" sleeve and rubber bands, d. Cylindrical substrate as deployed in the
water column.

strates to quantify blue crab settlement. In addition, the statistical efficiency of
these substrates has not been assessed. Thus, we compared settlement on the flat
and cylindrical substrates deployed at the surface and cylindrical substrates de-
ployed near the bottom of the water column at various temporal scales. We ex-
amined daily settlement of blue crab megalopae over the recruitment season (July-
November) for 4 years as a function of substrate configuration (flat or cylindrical),
number of substrates, location in the water column (surface or bottom), lunar day,
month, year, and the hours of flood tide occurring during darkness. We also de-
termined, for each substrate configuration, the number of replicate substrates nec-
essary to minimize the variances in megalopal settlement.

METHODS

We utilized three substrate configuration/depth combinations: flat surface substrates, N = 6; cylin-
drical surface substrates, N = 4 (in 1992, 6 surface cylindrical substrates were sampled) and, cylin-
drical bottom substrates, N = 4. Artificial settlement substrates were constructed of "Hog's Hair" air-
conditioning filter material. Flat surface substrates (Fig. la) were constructed from single sheets of
Hog's Hair (47 cm X 39 cm, total surface area = 0.38 m2), held flat with a thin wood brace at the
top and a weight (1 kg) at the bottom, and suspended vertically from floats within 10 cm of the water
surface, perpendicular to the prevailing current (van Montfrans et al., 1990). Cylindrical surface and
bottom substrates (Fig. Ib-d) were constructed of a PVC pipe cylinder (16.3 cm outside diameter,
37.5 cm length) surrounded by a Hog's Hair sleeve (total surface area = 0.26 m2). Thus, flat substrates
had 1.5 times more exposed surface area than cylindrical substrates. Each cylinder maintained a
vertical position in the water column with a lower internal weight (1.5 kg) and upper internal float
(Fig. Ib). Both configurations of surface substrates sampled the same portion of the water column at
the water surface, whereas bottom substrates were suspended 10 cm above the sediment. All substrates
were deployed from fixed locations along the length of a pier in the York River, a tributary of lower
Chesapeake Bay, Virginia (37°14'N, 76°30'W), where water depth approximated 1.5 m at mean low
water.

Substrates were deployed and retrieved between 0700 and 0900 h each morning. Flat substrates
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were sampled with a long-handle dipnet (mesh size = 0.5 X 0.8 mrn). Cylindrical substrates were
lifted from the water column into a 19-1iterbucket. Clean, air-dried substrates were then re-deployed.
Substrates were rinsed with freshwater and associated fauna collected on a 0.5 mm sieve following
standard procedures (van Montfrans et aI., 1990). Surface and bottom cylindrical substrates were
sampled from July through November, 1989-1992. Flat surface substrates were sampled from July
through November, 1989-1991.

Statistical Analyses.-We determined the relationship between sample size and settlement variance
(i.e., statistical precision of using four replicates of each substrate type to sample settlement), by
calculating the standard deviations of the first two substrates of any type for each day and comparing
these (using the correlation coefficient) to the standard deviation of the first three substrates. Then,
the first three substrates were compared to the first four (up to four or six cylindrical or 6 flat sub-
strates). Each data set (by year. depth of deployment and configuration of substrate) was randomly
shuffled. These procedures were repeated 200 times to achieve a simulated sampling distribution.
Statistical efficiency was attained when the standard deviation no longer decreased significantly upon
increase of the sample size (i.e.• addition of a substrate) and the correlation coefficient approached
1.0.

Settlement data were standardized by substrate surface area, and general linear models (GLM) were
used to examine the statistical significance of year, lunar month. substrate configuration, depth of
deployment. lunar day and hours of flood tide occurring at night. 1\vo orthogonal analyses were
conducted. The first encompassed the 3 years (1989-1991) when both substrate configurations were
sampled at both depths, and examined differences by substrate configuration and depth of deployment.
The second analysis encompassed 4 years (1989-1992) when both surface and bottom cylindrical
substrates were sampled and compared. Data records were truncated (116 days per year) to include
comparable lunar months for analysis. The lunar month encompassing I January of any given year
was designated lunar month I; thus, lunar month 8 was initiated by the new moon in late July or
early August for the purpose of our analyses. Multiple comparisons were made using Ryan's Q-Test
(Einot and Gabriel, 1975). Lunar day (e.g., a semilunar cycle) was represented as a sinusoidal covar-
iate, with a period of 14.75 days. The fit of this term to the settlement record was examined at various
lags, with +4 days yielding the best fit. Hence, subsequent analyses used a lag of +4 days for the
sinusoidal term. The duration (h) of flood tide occurring during darkness each night was also tested
as a covariate (using both linear and quadratic terms) against the residuals of the multifactor analysis
to determine the extent to which this covariate contributed to the variance. This measure was used
because it reflected the amount of time megalopae were in the water column during their ingress into
settlement habitats (Olmi. 1994).

RESULTS

The precision analyses indicated that four and sometimes three replicates min-
imized effort while reducing sample variance (Fig. 2). The correlation between
the variances of consecutive sets of replicates approached 1.0 at three or four
replicates (i.e .• the correlation was greater than or equal to 0.90).

Overall, settlement of blue crab megalopae varied significantly with year, lunar
month and depth of deployment, and with the covariate for lunar day. Results of
these analyses will follow in factor order: significance of year, lunar month, lunar
day, hours of nocturnal flood tide, and substrate location and configuration.

There was significant interannual variation in settlement for both data sets (4
years of surface and bottom substrates and 3 years of both substrate configurations
and depths). Differences in annual mean settlement of megalopae did not vary by
substrate configuration, but did vary by lunar month, probably due to seasonally
varying pulses of settlement (Table 1). Data were therefore collapsed across
months to eliminate the effect of these episodic peaks in order to summarize
interannual differences in settlement (Fig. 3). The 1989-1992 data with cylindrical
substrates at surface and bottom (GLM, F = 104.93, df = 3, P = 0.0001) revealed
the same pattern with respect to year as those for 1989-1991 with both substrate
configurations and depths (GLM, F = 305.87, df = 2, P = 0.0001). Settlement
was significantly lower in 1989 (mean = 0.95 individuals per substrate unit sur-
face area) than other years; significantly higher in 1990 (mean = 4.63 individuals
per substrate unit surface area) than in other years; and did not differ significantly
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Figure 2. Mean correlation coefficients (±SE) from comparisons of standard deviations of number
of megalopae per substrate for each number of replicates (N = I, 2 ... 5 versus N + I replicates.
Comparisons were made for 200 randomizations of the data sets (e.g., contrast 2 vs. 3 compares the
standard deviations of 2 replicates vs. 3 replicates). Configurations with 4 replicates are combined
across years in a single plot.

between 1991 (mean = 2.18 individuals per substrate unit surface area) and 1992
(mean = 2.39 individuals per substrate unit surface area) (Fig. 3).

Lunar month was a significant factor for all combinations of year and substrate
type (Table 2). The magnitude of settlement varied between lunar months, but
within years, the patterns were generally similar. Months with the highest settle-
ment for any given year were high for all substrate types.
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Table 1. Results of general linear models procedure for factor year (lunar month 8 "" August, 9 ""
September, 10 "" October, 11 "" November; df = 2 or 3). Results of Ryan's Q multiple comparisons
are shown; lines under more than I year are not significantly different.

Lunar
month Surface fta' Surface cylindrical Bottom cylindrical

8 F = 146.07 P = 0.0001 F = 72.09 P = 0.0001 F = 51.02 P = 0.0001
90 91 89 90 92 91 89 90 92 91 89--- ---- -

9 F = 7.42 P = 0.0007 F = 9.63 P = 0.0001 F= 19.18 P = 0.0001
90 89 91 92 90 89 91 92 89 90 91--- - ----

10 F = 84.12 P = 0.0001 F = 56.80 P = 0.0001 F = 98.53 P = 0.0001
90 91 89 90 91 89 92 90 91 89 92--- ---- -- -

11 F = 38.31 P = 0.0001 F = 55.44 P = 0.0001 F = 38.16 P = 0.0001
90 91 89 90 91 89 92 90 91 89 92--- ---- ----

The sinusoidal term reflecting semi-lunar periodicity in settlement was signif-
icant for 1989-1992 data with surface and bottom cylindrical substrates (GLM,
F = 16.50, df = 1, P = 0.0001) and for data with both substrate configurations
and depths during 1989-1991 (GLM, F = 12.29, df = 1, P = 0.0005) (Fig. 4).
Settlement peaked during periods following the new and full moon (approximately
3-5 days). The covariates for hours of nocturnal flood tide (linear and quadratic
terms) were both significant (except for the quadratic term in the analysis of both

8 8

Surface flat Surface cylindrical

6 6-ca_CD 4C ••• 4CDca
E CD

2CD U 2_ ca
=1:
CD j 0U) U) 0 - ---ca·- 1989 1990 1991 1989 1990 1991 1992c.Co j
- ...ca CDC)c. 8
CD Bottom cylindricalE 0
>oC 6
=Cca caCCD 4E-

2

0 - -1989 1990 1991 1992
Year

Figure 3. Mean settlement (# individuals per substrate unit surface area + SE) by year collapsed
across lunar months for each substrate configuration. Results of Ryan's Q-tests are represented by the
horizontal bars; years under the same bar are not significantly different.
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Table 2. Results of general linear models procedure for factor lunar month (8 = August, 9 = Sep-
tember, 10 = October, II = November; df = 3). Results of Ryan's Q multiple comparisons are shown;
lines under more than I month are not significantly different.

Vear Surface flat Surface cylindrical Bottom cylindrical

]989

]990

199]

1992

F = 14.76 P = 0.0001
911108----
F = 28.30 P = 0.000]
810119-- -
F = 58.26 P = 0.0001
10 ]] 8 9

F = 4.95 P = 0.0022
911108

F = 22.65 P = 0.0001
810119----
F = 19.87 P = 0.0001
10 ]] 8 9---
F=114.]8 P=O.OOO]
891011

F = 51.39 P = 0.000]
9 10 8 II----
F = 29.62 P = 0.000]
8 109 ]]
----
F = 69.36 P = 0.000]
]0 II 89----
F = 85.22 P = 0.000]
8 9 10 II

substrate configurations and depths during 1989-1991, Table 3). The residuals of
the GLM analysis. without the tidal covariate (hours of flood during darkness).
regressed on the linear and quadratic covariates indicated that the contribution of
the tidal terms to the overall model was small (,-2 < 0.01 for both data sets).

Settlement varied significantly with substrate depth of deployment for most
lunar months during all years (Fig. 5). Settlement was significantly higher or not
different on bottom than surface substrates during lunar month 8 (generally Au-
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Figure 4. Mean settlement of blue crab megalopae (# individuals per substrate unit surface area +
SO) by lunar day for all substrate configurations. Lunar day] and lunar day ]4 or 15 are the new
and full moon, respectively, a. 1989, b. 1990, c. 1991, d. 1992.
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Table 3. Results of general linear models analysis for the covariate reflecting hours of nocturnal flood
tide (both linear and quadratic terms)

Data set

1989-1992 cylindrical sur-
face and bottom

1989-1991 both substrate
types and depths

Linear term

F = 23.66
df= I
P = 0.001
F = 76.01
df= 1
P = 0.0001

Quadratic term

F=I1.71
df = 1
P = 0.0006
F = 1.99
df = 1
P = 0.1581

gust) (GLM, 1989, F = 0.40, df = 2, P = 0.6730; 1990, F = 3.20, df = 2, P =
0.0418; 1991, F = 0.74, df = 2, P = 0.4784; 1992, F = 0.02, df = 2, P =
0.8939) and during lunar month 9 (GLM, 1989, F = 37.44, df = 2, P = 0.0001;
1990, F = 17.95, df = 2, P = 0.0001; 1991, F = 1.91, df = 2, P = 0.1499;
1992, F = 24.44, df = 2, P = 0.0001). Settlement during lunar month 10 did not
differ significantly between substrate depth or configuration (GLM, 1989, F =
0.67, df = 2, P = 0.5127; 1990, F = 1.59, df = 2, P = 0.2057; 1992, F = 0.10,
df = 2, P = 0.7466), except in 1991, when settlement on bottom substrates was
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Figure 5. Mean settlement (# individuals per substrate unit surface area::!: SE) by substrate config-
uration and depth for each lunar month. Substrate types are abbreviated: SR surface flat substrate, SC,
surface cylindrical substrate, BC, bottom cylindrical substrate. Horizontal lines indicate the results of
Ryan's Q multiple comparison test results. Substrate types under the same bar are not significantly
different.
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Table 4. Correlation coefficient matrix for each combination of year and substrate type. All combi-
nations are correlated significantly (P < 0.05, N = 116).

Surface Cylindrical Flat surface ys.
Year flat vs. Cylindrical surface vs. Bottom Cylindrical bottom

1989 0.817 0.334 0.355
1990 0.756 0.471 0.592
1991 0.876 0.621 0.563
1992 0.647

higher than on surface substrates (GLM, F = 25.29, df = 2, P = 0.0001). Set-
tlement patterns changed with respect to substrate depth during lunar month 11.
Settlement magnitude on the two surface substrate types (i.e., flat vs. cylindrical)
did not differ, but was significantly higher than that on bottom substrates (GLM,
1989, F = 7.62, df = 2, P = 0.0006, 1990, F = 11.01, df = 2, P = 0.0001,
1991, F = 5.97, df = 2, P = 0.0028) except in 1992 (GLM, F = 0.42, df = I,
P = 0.5155) when there was no difference.

Settlement on the flat surface substrates correlated significantly with settlement
on the cylindrical surface substrates at a lag of 0 days (Table 4). Similarly, daily
settlement rates on both flat and cylindrical surface substrates correlated directly
(no time lag) and significantly with settlement on bottom substrates (Table 4).
Settlement on the two surface substrate configurations were highly correlated, with
no correlation coefficient less than 0.75. Settlement on the two surface substrates
also correlated with bottom substrates, but not as strongly. The correlation coef-
ficients between surface and bottom substrates ranged from 0.33 to 0.65.

DISCUSSION

The observed high variability in settlement by blue crab megalopae is char-
acteristic of many fisheries species, and challenges ecologists and managers in
attempts to understand population fluctuations. Techniques that measure annual
variability in settlement or recruitment, such as artificial settlement substrates,
may be useful in examining year class strength by cross-correlations with the
fishable stock. For instance, Lipcius and Van Engel (1990) examined juvenile and
adult indices for the blue crab in the York River, Virginia, and found a significant
cross-correlation between fisheries landings and the indices of abundance. If set-
tlement variability is quantified at appropriate scales, this technique might provide
a reliable measure of blue crab abundance 2 years hence. If this relationship does
not hold, then settlement timing and magnitude can be useful in examining den-
sity-dependent processes that cloud recruit-stock relationships.

Although settlement magnitude of blue crab postlarvae was episodic on a daily
scale, there were detectable temporal patterns on a lunar scale. The timing of
settlement by blue crab megalopae was temporally predictable and covaried sig-
nificantly with semilunar and tidal functions (hours of flood tide occurring at
night). The tidal and semilunar functions were likely related because tidal timing
covaries with lunar phase (i.e., a higher proportion of each flood tide occurs at
night approximately 4 days after the new or full moon and tidal flow increases
during spring tides associated with new and full moon). Thus, both factors may
have influenced settlement similarly.

The semi-lunar factor was reflected in the occurrence of significant settlement
peaks approximately 4 days following the new and full moon. These findings are
similar to earlier studies in the York River which described a semilunar periodicity
in blue crab settlement (van Montfrans et aI., 1990). Stronger new moon peaks
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of settlement during some years of our study than those observed during 3 earlier
years attest further to the annual variability of settlement patterns. Settlement in
the York River had a strong semilunar component with generally higher settlement
associated with periods after the new or full moon. Similarly, settlement of blue
crabs in Charleston Harbor, South Carolina was greatest during the fourth quarter
(Boylan and Wenner, 1993). These locations differ in their distance from the
source of postlarvae. The site sampled at Charleston Harbor is located near the
mouth of the estuary, while the site in the York River is 50 km from the mouth
of Chesapeake Bay. This may have resulted in the delay in settlement at the up-
estuary site. This timing is likely a result of the vertical migration behavior of
megalopae, which are in the water column on nighttime flood tides and the in-
creased transport capability afforded by spring tides. In both locations, however,
the magnitude of settlement during any given lunar period or month varied an-
nually.

Settlement differed depending on lunar month and substrate location. For the
first 3 lunar months (generally lunar months 8-10), settlement was generally high-
er on the bottom substrates. For the last lunar month sampled (II), settlement
was consistently higher on the surface than bottom substrates. A plausible expla-
nation is that megalopae entering the York River during lunar month 11 and
experiencing cooler water temperatures, may be less advanced in the molt cycle
than megalopae which immigrate earlier in the year, and, therefore, less likely to
be near the bottom (Lipcius et al., 1990; Metcalf and Lipcius, 1992).

Settlement timing can have important ecological and management implications
for blue crab populations. Individuals which settle early in the recruitment season
(July-September) experience warm water temperatures and, therefore, may exhibit
faster growth than those settling later in the season (October-November). How-
ever, survival could be higher later in the recruitment season with the exodus of
major fish predators from shallow nursery habitats concurrent with decreasing
temperature. From a fisheries perspective, early settlers will likely enter the fished
segment of the population sooner than those settling later due to increased growth
potential. However, the abundance of these early settlers could be negatively im-
pacted through more intense density-dependent predation than the abundance of
those settling later in the recruitment season, during colder months (Metcalf et
al., unpublished data). Settlement data could be used to examine such important
ecological relationships and their implications for population dynamics and fish-
eries management.

Differences in settlement between months were related to the episodic nature
of blue crab settlement. Within a given year, however, monthly differences in the
magnitude of settlement exhibited similar patterns, regardless of substrate type.
Settlement on flat and cylindrical surface substrates did not differ significantly
when standardized for surface area. Cross-correlation analyses indicated that pat-
terns of settlement were the same for all of the substrate types. Only the magnitude
of settlement differed between substrate configurations and depth, although the
two surface types were more closely correlated than either were with bottom
substrates. The results of the efficiency analysis indicated that four, or sometimes
three, replicate substrates were statistically sufficient to characterize variability in
settlement, emphasizing the simplicity of this technique for quantifying relative
rates of settlement of blue crab postlarvae.

Hence, artificial settlement substrates are a useful tool for quantifying settle-
ment of blue crab postlarvae and subsequently, projecting juvenile abundance and
fishery harvest. This method offers a practical and inexpensive solution to the
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problem of assessing differences in the magnitude of settlement across wide geo-
graphic areas, and potentially for predicting commercial landings.
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