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JOINT EFFECTS OF LARVAL DISPERSAL, POPULATION
REGULATION, MARINE RESERVE DESIGN, AND EXPLOITATION

ON PRODUCTION AND RECRUITMENT IN THE
CARIBBEAN SPINY LOBSTER

William T. Stockhausen, Romuald N. Lipcius and Barbara M. Hickey

ABSTRACT
A spatially explicit population-dynamics model for the Caribbean spiny lobster

(Panulirus argus) in Exuma Sound, Bahamas, was used to investigate the joint effects of
marine reserve design and larval dispersal via hydrodynamic currents on an exploited
benthic invertebrate. The effects of three hydrodynamic scenarios (one diffusion-only
and two advection-diffusion cases), one exploitation level, and 28 reserve configurations
(7 sizes ¥ 4 locations) on catch and larval production were simulated. The diffusion-only
scenario represented the condition in which settlement did not vary substantially over
broad spatial scales; in contrast, the advection-diffusion scenarios represented realistic
hydrodynamic patterns and introduced broad spatial variation. Both advection-diffusion
scenarios were based on empirical measurements of near-surface flow in Exuma Sound.
Catches were sensitive to interactions between reserve configuration and pattern of lar-
val dispersal. A given reserve configuration led to enhancement or decline in catch, de-
pending on the hydrodynamic scenario, reserve size, and reserve location. Larval pro-
duction increased linearly with reserve size, when size was expressed as the population
fraction initially protected by the reserve, but when reserve size was expressed as the
fraction of coastline protected, larval production decreased for some reserve configura-
tions under the two advection-diffusion hydrodynamic scenarios. Use of a simple re-
serve-design rule (e.g., protect 20% of a coast) would, in the latter cases, lead to a false
sense of security, thereby endangering—not protecting—exploited stocks. The optimal
design of marine reserves therefore requires attention to the joint effects of larval dis-
persal, reserve location, and reserve size on fishery yield and recruitment.

Most benthic invertebrates and reef-associated fish undergo a dispersive, planktonic
larval stage before settlement and metamorphosis into the juvenile and adult stages
(Thorson, 1950; Mileikovsky, 1971; Roughgarden et al., 1988; Leis, 1991). In some spe-
cies, settlement may be decoupled from adult abundance at local spatial scales if hydro-
dynamic conditions or larval behavior do not promote local retention (Fogarty, 1998;
Lipcius et al., 1997). Similarly, spatial and temporal variability in postsettlement mortal-
ity or secondary dispersal by juveniles and adults may decouple spatial patterns of adult
abundance from those of settlement (Jones, 1991). Spatial patterns of settlement and
adult abundance may therefore be functionally related in a complex fashion.

The manner in which biotic or environmental factors control spatial patterns of abun-
dance at different life-history stages may have profound implications for the management
of exploited benthic marine species, particularly if patterns of exploitation are themselves
spatially structured. The use of marine reserves (no-take areas or harvest refugia, sensu
Dugan and Davis, 1993), an increasingly popular strategy for fisheries management, im-
poses explicit constraints on spatial patterns of exploitation, but the effects of interactions
between natural factors controlling abundance and spatially segregated exploitation are
not well understood.
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Marine reserves can be viable tools for sustainable fisheries management (Roberts and
Polunin, 1991; Dugan and Davis, 1993) that potentially enhance fisheries through two
mechanisms: local migration (surplus adults emigrate from reserves to adjacent areas
and become vulnerable to the fishery) and enhanced recruitment (larval or postlarval
supply, settlement, and recruitment to the fishery are increased at regional scales by sur-
plus reproductive output from reserves). These mechanisms involve dramatically differ-
ent spatial scales (local and regional) and processes (e.g., density-dependent migration
and density-independent dispersal). The effectiveness of reserves for fisheries enhance-
ment will therefore depend on the interaction between reserve design (i.e., size, shape,
and location) and the relative importance of local and regional processes in controlling
spatial patterns of population abundance.

Numerous field studies of reserve function have demonstrated enhanced fisheries pro-
duction of temperate and tropical reef fish (e.g., Alcala and Russ, 1990; Russ and Alcala,
1996) and invertebrates (e.g., Davis and Dodrill, 1980, 1989; Gitschlag, 1986; Yamasaki
and Kuwahara, 1990) through local emigration. In contrast, field demonstration of en-
hancement of recruitment by reserves remains elusive because of the difficulties in ex-
perimenting with the processes that control temporal and spatial variability in larval sup-
ply and recruitment success (Doherty, 1991; Doherty and Fowler, 1994; Man et al., 1995).
Much of the effort dealing with the effects of reserves on recruitment and fisheries pro-
duction therefore involves modeling efforts (Polacheck, 1990; Die and Watson, 1992;
DeMartini, 1993; Quinn et al., 1993; Attwood and Bennett, 1995; Man et al., 1995; Hol-
land and Brazee, 1996; Sladek Nowlis and Roberts, 1997, 1999; Lauck et al., 1998;
Hastings and Botsford, 1999; see also Guénette et al., 1998).

Previous modeling studies evaluating the effectiveness of marine reserves in enhancing
fishery yield and recruitment reached mixed conclusions. In two-habitat (reserve and
exploited) patch cohort models with reduced mortality within the reserve, increasing re-
serve size increased spawning-stock biomass per recruit (SSB/R), whereas yield per re-
cruit (Y/R) was generally reduced in temperate (Polacheck, 1990) and coral-reef
(DeMartini, 1993) fish. Increasing transfer rates of postsettlement individuals between
reserve and fished areas, as well as increasing fishing pressure outside the reserve, di-
minished the effects of increased reserve size, but the positive effect on SSB/R from
increased reserve size generally outweighed the negative effect on Y/R when transfer
rates were independent of density (Polacheck, 1990; DeMartini, 1993). Conversely, den-
sity-dependent transfer rates negated enhancement of SSB/R; reserves were unlikely to
augment SSB/R in heavily exploited species without complementary regulation of effort
and size composition in exploited areas (DeMartini, 1993).

Die and Watson (1992) used a two-patch model to address the utility of inshore marine
reserves for enhancing the Australian penaeid shrimp fishery. Recruitment to the popula-
tion occurred only in the closed area; migration from closed to open areas made animals
vulnerable to capture by the fishery. Averaged over ranges of fishing and natural mortal-
ity rates, mean changes in Y/R for the three migration rates considered were negative at
all reserve sizes. Y/R declined fastest with reserve size for the slowest migration rate.
Conversely, mean value per recruit (V/R) initially increased with reserve size for all three
migration rates; ultimately, it decreased with reserve size for the lower two migration
rates. In all cases, the mean number of eggs per recruit increased with reserve size.

In a two-patch logistic model, population collapse of the red sea urchin,
Strongylocentrotus franciscanus, was prevented by a marine reserve, even at high levels
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of exploitation when the species was also subject to Allee effects in reproduction or re-
cruitment (Quinn et al., 1993). A more detailed age-structured, spatially explicit model
incorporating larval dispersal through simple diffusion produced similar results. Multiple
small reserves spaced closer than the average distance of larval dispersal were more ef-
fective than larger, but fewer and more distantly spaced, reserves in sustaining the ex-
ploited population (Quinn et al., 1993).

Using a spatially explicit, age-structured model, Attwood and Bennett (1995) varied
recruitment and dispersal according to the life-history characteristics of three sympatric
surf-zone fish species favored by shore anglers in South Africa. Recruitment was as-
sumed to be independent of local abundance for one species (white steenbras, Lithognathus
lithognathus), whereas recruitment-spawner biomass functions were used to compute lo-
cal settlement rates for the other two (galjoen, Dichistius capensis, and blacktail, Diplodus
sargus capensis). Tag returns indicated little or no postsettlement movement for blacktail,
so dispersal was assumed to be via passive larval drift. Transfer rates for larval blacktail
between adjacent model cells were assumed to be by simple diffusion. Postsettlement
transfer rates between model cells for white steenbras and galjoen were estimated from
tag return data. The impact of reserve size and spacing on Y/R or yield (Y) was evaluated
differently for different species. Because recruitment was assumed constant for white
steenbras, model results for this species were evaluated in terms of Y/R and SSB/R, whereas
results for galjoen and blacktail were evaluated in terms of Y alone. For white steenbras,
SSB/R increased with reserve size, whereas Y/R decreased (Attwood and Bennett, 1995).
For a given reserve size, SSB/R decreased as reserve spacing increased, whereas Y/R
increased. For galjoen, Y increased dramatically as reserve size increased (Attwood and
Bennett, 1995). For blacktail, closely spaced reserves optimized yield (Attwood and
Bennett, 1995). No results regarding spawning stock were reported for galjoen or black-
tail.

In a metapopulation model for tropical reef fish, the ratio of extinction rate to coloniza-
tion rate in exploited patches was the key parameter determining optimal reserve size,
defined as the fraction of habitat patches protected (Man et al., 1995). When fishing
pressure was low or colonization rate high, maximum sustained yield (MSY) was ob-
tained without reserves; as fishing pressure increased or colonization rate decreased, the
optimal fraction of patches set aside as reserves increased asymptotically to 0.5. For a
given ratio, MSY was obtained when half of all patches (reserve + exploited) were occu-
pied at equilibrium.

Using a two-patch model, Holland and Brazee (1996) examined the utility of marine
reserves for fisheries management of the Gulf of Mexico red snapper from an economic
perspective. Their model incorporated a stock-recruit relationship and the concept of the
present value of harvest (PVH), which uses discounted values of future harvests over a
given time horizon, to determine optimal reserve size. Increasing discount rates resulted
in smaller optimal reserves sizes. With a 60-yr PVH time horizon, no combination of
reserve size and fishing effort performed better than the MSY fishing effort (0.75) with
no reserve. When fishing effort was slightly larger than MSY (0.75–1.0), optimal reserve
sizes were negligibly small, but when effort was much larger than MSY (1.5–2.0), opti-
mal reserve sizes ranged from 15 to 20% and resulted in PVHs 4–8% higher than those in
the absence of a reserve.

In a two-patch model incorporating stochastic exploitation rates, the probability that
stock abundance remained >60% of carrying capacity after 20 yrs of exploitation at a
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given mean rate was a function of the reserve area (relative to total area) and the coeffi-
cient of variation (cv) in the harvest rate (Lauck et al., 1998). For moderate cv’s, the
chance of success declined rapidly as reserve size decreased below 70%. For higher cv’s,
the probability of success was <1 even when harvested areas were very small. Reserves
allowed higher mean harvest rates, with consequent higher catches, while still protecting
the stock.

Sladek Nowlis and Roberts (1997, 1999) used two-patch models for several exploited
coral-reef species to examine short- and long-term effects of reserve establishment on
fishery yields. Reserves were only effective in increasing fishery yields when fisheries
were overexploited in the absence of a reserve. For a fixed reserve size, greatly overex-
ploited fisheries recovered faster than more lightly exploited ones from initial losses as-
sociated with reserve establishment (Sladek Nowlis and Roberts, 1997). For a fixed fish-
ing intensity, larger reserves resulted in higher catches after 30 yrs (Sladek Nowlis and
Roberts, 1997). Optimal reserve size (the size that produced the highest long-term yield
for a given fishing intensity) increased with fishing intensity, and yields associated with
optimal reserves were similarly high over a range of fishing intensities for most of the
species considered (Sladek Nowlis and Roberts, 1999).

Finally, Hastings and Botsford (1999) demonstrated that a system of optimally sized
marine reserves in a two-patch model could achieve maximum yields identical to that
possible under allocation of a fixed fraction of a stock to a fishery—a more traditional
management approach.

The principal mechanism determining spatial structure in these models is the spatial
pattern of exploitation. A major assumption in many of these models (Polacheck, 1990;
DeMartini, 1993; Attwood and Bennett, 1995; Man et al., 1995; Sladek Nowlis and Rob-
erts 1997, 1999; Hastings and Botsford, 1999) is that larvae are so well mixed over the
area the population occupies that relative recruitment to reserve and exploited areas is
identical to the proportion of each relative to the total area. As a consequence, reserve
function is evaluated in terms of reserve size and, possibly, spacing. However, hydrody-
namic current patterns may play an important role in how a marine reserve functions
(Carr and Reed, 1993). Through advective transport of larvae, hydrodynamic currents
can impose spatial structure on settlement at regional scales for benthic species (Tremblay
et al., 1994; Lipcius et al., 1997). Hydrodynamic conditions may thus modify patterns of
connectivity among widely separated subpopulations. Consequently, the interaction be-
tween hydrodynamic currents (Lipcius et al., 1997; Fogarty, 1998) and the location of
spawning stock may determine the optimal design of reserves for widely dispersing ma-
rine species (Carr and Reed, 1993; Roberts, 1997).

Reserve location may therefore be as important as size in determining reserve perfor-
mance. Because previous empirical and theoretical studies have not addressed this issue,
our primary objective is to model the joint effects of hydrodynamic current pattern (with
concomitant larval dispersal) and marine reserve configuration (location and size) on
reserve function for an exploited benthic invertebrate with a widely dispersing larval
phase. Specifically, we wish to determine (1) whether reserves of similar size but differ-
ent locations function equivalently for a given pattern of larval dispersal, (2) whether
reserves of similar size and location function equivalently under different patterns of
larval dispersal, and (3) whether ‘optimal’ reserve size and location are similar under
different patterns of larval dispersal. The model we use integrates the effects of reserve
size and location, larval transport via oceanic currents, postsettlement dispersal and mor-
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tality, and adult spawning on the population dynamics of an exploited benthic inverte-
brate with a complex life history. Model parameters are based on the life history of the
Caribbean spiny lobster, Panulirus argus, in Exuma Sound, Bahamas. The use of marine
reserves to enhance spiny lobster fisheries is a topic of interest (see, e.g., Davis and Dodrill,
1980; Childress, 1997; Acosta, 1999), so our choice of model system is applicable as a
heuristic examination for both spiny lobster and other exploited species with complex life
histories.

METHODS

In this study, we focus on interactions between patterns of larval dispersal (and subsequent juve-
nile recruitment) and reserve configuration (i.e., size and location). As part of recent (Lipcius et al.,
1997) and continuing work with Caribbean spiny lobster, P. argus, in Exuma Sound, Bahamas, we
have developed a preliminary population-dynamics model for this system that encompasses demo-
graphic processes during all life-history stages and ‘closes the larval loop’, coupling postsettlement
benthic population dynamics, adult spawning, and planktonic larval dispersal (Gaines and Lafferty,
1995; Eckman, 1996). The model is preliminary, however; we use it here as a heuristic tool to
explore the impact of hypothetical reserves on a hypothetical population described by the model.
Our model extends the two-dimensional spatially structured, coupled planktonic/benthic popula-
tion model of Possingham and Roughgarden (1990) to include multiple pelagic and benthic life-
history stages, curvilinear coastal geometry and complex current patterns, and postsettlement dis-
persal. For this study, we also incorporated spatial variation in fishing mortality to accommodate
reserve–exploited area distinctions. We used the model to simulate the population dynamics of
spiny lobster in Exuma Sound, with concomitant fishery yields, for a combination of different
hydrodynamic current patterns, exploitation rates, and marine-reserve configurations.

LIFE HISTORY OF PANULIRUS ARGUS.—The Caribbean spiny lobster is a macrobenthic invertebrate
with widely dispersing larvae and supports commercially valuable fisheries in Florida and the Car-
ibbean (Bohnsack et al., 1994). Like other spiny lobster species, P. argus exhibits five distinct life-
history stages: egg, phyllosoma larva, puerulus postlarva, benthic juvenile, and adult (Phillips et
al., 1980; Lipcius and Cobb, 1994; Lipcius and Eggleston, in press). The larval and postlarval
stages constitute the pelagic phase of the spiny lobster life history. Phyllosome larvae are released
from eggs hatched on the seaward fringes of coral reefs. Subsequently, the larvae lead an oceanic
planktonic existence during which they progress through approximately 11 larval stages, while
growing from less than 1 mm to 12 mm carapace length (CL; Lewis, 1951; Lyons, 1980). After 4–
9 mo in the plankton, surviving larvae undergo radical metamorphosis to the transparent, nonfeeding
puerulus postlarval stage, which is about 6 mm CL (Lewis, 1951; Lewis et al., 1952). Postlarvae are
vigorous swimmers and actively migrate into coastal waters, where they subsequently invade shal-
low inshore areas during nighttime flood tides associated with the new moon (Little, 1977; Calinski
and Lyons, 1983; Herrnkind and Butler, 1986; Eggleston et al., 1998). The pueruli settle to the
benthos in structurally complex habitats such as clumps of red macroalgae (Laurencia spp.) or
among mangrove roots (Marx and Herrnkind, 1985; Butler and Herrnkind, 1992). Within several
days of settlement, surviving postlarvae acquire pigmentation and metamorphose into the first
juvenile benthic instar.

On the basis of ontogenetic habitat shifts during the benthic juvenile stage, investigators agree in
dividing this stage into three substages: algal phase, postalgal phase, and subadult (Marx and
Herrnkind, 1985; Herrnkind and Lipcius, 1989). Algal-phase juveniles use the structurally com-
plex settlement habitat for both shelter and foraging (Marx and Herrnkind, 1985). They undergo a
solitary existence, increasing in size through a series of molts from 6 to 25 mm CL over a period of
several months. After reaching 15 mm CL, algal-phase lobsters begin to use crevices, tube sponges,
and octocorals for shelter (Marx and Herrnkind, 1985; Smith and Herrnkind, 1992; Forcucci et al.,
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1994; Butler and Herrnkind, 1997). Postalgal-phase juveniles (15–45 mm CL) are fairly site-at-
tached, staying within several meters of their daytime shelter (Herrnkind and Butler, 1986). At
night they emerge from these daytime shelters to forage for small molluscs and crustaceans in
neighboring habitats (Andree, 1981; Herrnkind et al., 1994). The gregarious behavior typical of
older juveniles and adults is first exhibited during this stage (Berrill, 1975).

Subadults (>45 mm CL) are nomadic and forage widely in hard-bottom habitats and sea-grass/
algal meadows (Herrnkind, 1980, 1983). As they approach sexual maturity (~76 mm CL), larger
juveniles migrate seaward toward offshore reefs (Herrnkind and Lipcius, 1989).

Adults (>75–80 mm CL) are gregarious as well, dwelling in dens of 20 or more lobsters (Herrnkind
and Lipcius, 1989). Adult sex ratios are size dependent; males tend to be larger than females, re-
flecting greater female reproductive investment and differences in molting patterns (Lipcius and
Herrnkind, 1987; Herrnkind and Lipcius, 1989). In Exuma Sound, peak reproductive activity oc-
curs in spring (Herrnkind and Lipcius, 1989).

SITE.—Exuma Sound is a deep (>1000 m), semienclosed basin in the central Bahamas, sur-
rounded by the Exuma Cays and the Great Bahama Bank to the north and west, by Eleuthera and
Cat Island to the east, and by Long Island to the south (Fig. 1). Approximately 200 km northwest to
southeast and 75 km at its widest, the sound has two connections to the Atlantic Ocean: a deep
(2000 m depth) gap 50 km wide between Long and Cat islands and a shallow sill (15–30 m depth)
27 km wide between Eleuthera and Cat Island. Except for these openings, Exuma Sound is bor-
dered by either low islands or shallow carbonate bank. Exuma Sound provides habitats for spiny
lobster on all sides, making the system particularly well suited for analyses of the relationships
between meteorology, oceanography, recruitment, and population dynamics.

Circulation in Exuma Sound appears to be dominated by large-scale, vigorous gyres extending
to depths as great as 200 m (Fig. 2; Hickey, 1995). Water exchange with the open ocean occurs
regularly, and exchange with the shallow banks also occurs through dense, high-salinity intrusions.
Wind forcing plays an important role in the circulation by influencing the current structure in the

Figure 1. Exuma Sound, Bahamas.
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upper 15 m of the water column. Mesoscale features with associated fronts are superimposed on a
general northwestward drift and cause convergence and preferred pathways through the sound (Colin,
1995; Hickey, 1995). Although the gyres appear to be semipermanent features in the sound, they
may oscillate seasonally (Fig. 2); substantial variability in near-surface currents exists at 10–30-d
time scales (Hickey, 1995).

MODEL DESCRIPTION.—The full spiny lobster population dynamics model is composed of three
coupled submodels: the pelagic model, the benthic model, and the reproduction model. The spatial

Figure 2. Near-surface geostrophic current patterns (relative to 500 db) derived from CTD data
collected during cruises in Exuma Sound (Hickey, 1995): (A) November 1993, (B) June 1994.
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domain for the model consists of a two-dimensional (horizontal), oceanic region with its one-di-
mensional boundary, the latter encompassing both shallow coastal regions, where settlement can
occur, and deep-water regions, where it cannot (Fig. 3).

The pelagic model tracks changes in age-specific, spatially structured density of larvae, L
0
, and

postlarvae, L
1
, within the oceanic region due to (1) hatching of larvae following adult reproduction

along the coast, (2) aging, (3) mortality, (4) horizontal dispersal via two-dimensional advective
currents and turbulent diffusion, (5) metamorphosis from larval stage to postlarval stage, and (6)
settlement in shallow coastal regions on the spatial boundary. We regard the pelagic densities as
continuous functions of space (x, y), time (t), and age within stage (a), so we developed a set of
coupled reaction-advection-diffusion partial differential equations (PDEs) with associated bound-
ary conditions to describe the temporal and spatial dynamics of the planktonic stages (see Appen-
dix for details). Seasonal spawning and subsequent larval production within the shallow coastal

Figure 3. Conceptualized geometry for the complex life-history model.

Figure 4. Probability of survival vs age for larvae and postlarvae using the baseline parameters for
the pelagic submodel (Table 1).
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regions on the spatial boundary determine the local influx of age-0 planktonic larvae into the oce-
anic region; larvae are subsequently transported from their hatching grounds by spatially variable
advective currents and dispersed through turbulent diffusion. For this study, larvae were subjected
to a constant mortality rate, independent of density, location, age, and time of year (Table 1). Meta-
morphosis from the larval to the postlarval stage occurs as an instantaneous process at an age of
120 d. This value represents the lower end of probable larval duration (4–6 mo in Exuma Sound, up
to 9 mo at extremes of the geographic range; Lipcius and Eggleston, in press), but the combination
of mortality rate and stage duration means that less than 0.01% of larvae hatched survive until
metamorphosis to postlarvae (Fig. 4).

Postlarvae are strong swimmers and actively migrate to settlement areas (Little, 1977; Calinski
and Lyons, 1983; Herrnkind and Butler, 1986). In shallow areas, postlarvae attach to structures or
bury themselves in sand (Calinski and Lyons, 1983), a behavior that may enhance onshore transport
near the coast if synchronized with adverse tidal flows. We therefore added an active, deterministic
component to postlarval dispersal in addition to advection by mean currents and dispersal through
turbulent diffusion. We also assumed that postlarvae orient toward the nearest coastline (by means
of some unspecified environmental cue, possibly chemical) so that the local direction of active
migration was toward the nearest coastal region, while the effective speed of migration was higher
near the coast than further offshore. The local age-integrated flux of postlarvae across the coastal
boundary determines local settlement rates. Prior to settlement, postlarvae are subjected to a con-
stant mortality rate (Table 1) such that approximately 10% survive after 30 d in the pelagic zone
(Fig. 4). Postlarvae are a nonfeeding stage with an estimated duration of a few weeks (Booth and
Phillips, 1994; Butler and Herrnkind, 1997); postlarvae that had not settled within 60 d of larval
metamorphosis were therefore regarded as dead.

The benthic model tracks changes in the size-specific, spatially structured density along the
coast for algal phase (s

1
), postalgal phase (s

2
), subadult (s

3
), and adult (male, s

4
; female, s

5
) life-

history stages due to (1) settlement, (2) mortality, (3) growth within a life-history stage, (4) transi-
tion between successive life-history stages, and (5) alongshore dispersal. Like pelagic densities, the
stage-specific benthic densities are continuous functions—but of size (z), rather than age; of space
(q, position along the one-dimensional spatial boundary which includes shallow, coastal and un-
suitable, deep-water benthic habitats); and of time (t). Again, we used a set of coupled PDEs with
associated boundary conditions to describe the population dynamics of the benthic life-history
stages (see Appendix for details). Local settlement provides the population ‘source’ term for the
benthic model. ‘Settled’ postlarvae metamorphose into algal-phase benthic juveniles in the 6–7-
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mm CL size range, typical of first benthic instars in Exuma Sound (Eggleston et al., 1998). We
decomposed total mortality rates into a sum of ‘natural’ and fishing mortalities. For this study,
natural mortality rates were functions of local stage-specific densities but did not otherwise depend
on size, location, or time. Availability of appropriately sized shelter appears to be a key factor in
regulating local abundance of benthic life-history stages (Butler and Herrnkind, 1997; Lipcius and
Eggleston, in press) and probably results in density-vague (Strong, 1984) mortality rates. We used
piece-wise linear functions to describe density-dependent mortality rates—constant at low densi-
ties but increasing at high densities—for all benthic life-history stages (Table 2). When density is
low, approximately 4% of settlers survive 2 yrs (Fig. 5). Local fishing mortality rates were stage-
specific, size-structured, seasonal, and spatially explicit (see below). Although individual spiny
lobsters increase in size through discrete molting events, we described growth as a continuous
process because molting is not synchronous and the model deals with distributions rather than
individuals (Botsford, 1985). We used a simple Gompertz-type growth function (see Appendix)
with density-independent parameters to describe growth rates within a stage. Selected parameter
values (Table 2) result in reasonable postsettlement growth histories (Fig. 5). Size ranges for subse-
quent life-history stages overlap, and transition from one benthic stage to the next sometimes oc-
curs without growth; transition rates from the earlier stage increase with size within this range of
overlap. After reaching maturity, males exhibit higher size-specific growth rates than females, re-
flecting the greater metabolic investment in reproduction by females (Lipcius, 1985), so the model
includes both male and female adult stages. For this study, however, males and females are treated
identically. Although subadult spiny lobsters in other areas of the Caribbean engage in (sometimes
spectacular) seasonal migrations (Kanciruk and Herrnkind, 1978; Herrnkind, 1980, 1983), such
activity has not been observed in Exuma Sound, where alongshore movements are nomadic
(Herrnkind and Lipcius, 1989). We therefore described postsettlement dispersal along the coast as
a density-dependent diffusion process; we did not include deterministic movement (i.e., an advec-
tive component) such as seasonal migrations.

The reproduction model tracks temporal and spatial variation in spawning and subsequent larval
production along the coast, incorporating spawning seasons, size-specific fecundity, and size-spe-
cific adult female density (see Appendix for details). Larval production (i.e., spawning and hatch-
ing) begins in the late winter, peaks in the spring, and ends in the summer. We used a truncated
normal distribution to approximate seasonal spawning rates (Table 3, Fig. 6A). We assumed fe-
males mature at 75 mm CL (Herrnkind and Lipcius, 1989; Lipcius et al., 1997). Because Lipcius et
al. (1997) found no difference in spatial variation in fecundity in Exuma Sound, we described
individual fecundity as an exponential function of adult size, but independent of local density,
spatial location, and season (Fig. 6B). Parameters were based on a previous analysis of the fecun-

Figure 5. Probability of survival and size vs age for benthic life-history stages using the baseline
parameters for the benthic submodel (Table 2). Density dependence is ignored.
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dity data used by Lipcius et al. (1997, see Table 3). The instantaneous rate of local larval production
is the size-integrated product of size-specific fecundity and local adult density, weighted by the
seasonally varying spawning rate. Coming full circle and “closing the larval loop” (Eckman, 1996),
the local rate of larval production in coastal regions along the spatial boundary determines the flux
of age-0 planktonic larvae into the oceanic region in the pelagic model.

Given the complexity of the model, it is not feasible to obtain analytical solutions to problems we
wish to address, so we developed a numerical representation of the model based on standard tech-
niques for integrating spatially structured, coupled PDEs. We also constructed a grid representation
of Exuma Sound using 2.5- ¥ 2.5-km2 cells from a digitized map of Exuma Sound (Fig. 7). The grid
consists of 1872 interior cells and 254 boundary sections. Of the 254 boundary sections, 21 con-
tiguous sections constitute a deep-water boundary (52.5 km) representing the primary connection
between Exuma Sound and the Atlantic at the southeast corner of the sound; the remaining sections
constitute coastline available for settlement (582.5 km). Because there is no evidence for larval
transport across the shallow sill between Cat Island and Eleuthera (Colin, 1995), we modeled this
region as coastal habitat across which larvae do not disperse. We used a 1-d time step to integrate
the model numerically for up to 50 model yrs.

Figure 6. (A) Temporal spawning patterns and (B) size-specific fecundity using the baseline
parameters for the adult spawning submodel (Table 3).
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MODEL CASES.—To examine several different patterns of connectivity (via larval dispersal) in the
study, we defined three hydrodynamic scenarios, consisting of two advection-diffusion cases (AD1
and AD2) and one diffusion-only case (D1), to incorporate the potential for differing patterns of
spatial structure through larval dispersal. The diffusion-only scenario represented the condition in
which settlement did not vary substantially over broad spatial scales, in contrast to the advection-
diffusion scenarios, which represented realistic hydrodynamic transport conditions and broad spa-
tial variation in the field. The advective currents for AD1 and AD2 were based on near-surface (5 m

Figure 7. Computational model grid for Exuma Sound.
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Figure 8. Marine reserve configurations used in simulations: (A) SE location, (B) NE location, (C)
NW location, (D) SW location. Reserve sizes are given as percentage of the coastline. (Note: smaller
sizes are shown offset from the coast; not all sizes used are illustrated).
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depth) geostrophic currents in Exuma Sound derived from physical oceanographic data collected
during November 1993 and June 1994 (Fig. 2), respectively. For both cases, the current pattern was
fixed temporally. For D1, the advective currents were set to zero. Eddy-diffusion coefficients were
identical for all three scenarios.

Model scenarios with no exploitation were created for each hydrodynamic current pattern; sub-
sequently, the model was numerically integrated similarly for each case. Parameters reflecting
mortality, growth, dispersal, and reproduction were identical for all three scenarios. Initial abun-
dance patterns for each life-history stage were set to zero. Each model was started when larvae were
‘injected’ into the pelagic submodel at constant rates along the model boundary during the first
three spawning seasons. After year 3, injection was discontinued, and the population continued to
grow under its own dynamics, typically reaching a steady state after 25 model yrs. The numerical
model was integrated for 50 model yrs. The complete model state was saved at the beginning of
model year 30 and used to initialize subsequent model runs for scenarios including exploitation.
Abundance patterns for each postsettlement stage, larval production, and postlarval settlement were
saved at quarterly intervals during the final 10 model yrs.

We created a ‘heavily exploited’ case corresponding to each unexploited case using a nominal
fishery mortality rate (F) of 1.0 yr-1. We adjusted the instantaneous rate of fishing mortality for a
fishing season that ran from Julian day 181 to Julian day 365. Effort was uniformly distributed
along the coast, and only adults larger than 75 mm CL were vulnerable to the fishery. For each case,
the model state from the corresponding unexploited case at the beginning of model year 30 was
used to initialize the simulation run. The model was subsequently integrated numerically for 20 yrs.
The complete model state was saved at the beginning of model year 40 and used to initialize subse-
quent model runs for marine reserve scenarios. Spatially explicit, instantaneous catch rates, c(q,t),
were calculated from the spatially explicit, stage-classified, size-specific densities s

i
(z,q,t) and as-

sociated fishing-mortality rates. The spatial distribution of annual catch, C(q), was computed by
integration of c(q,t) in time over each year. Total annual catch, C, was then computed by integration
of C(q) over the one-dimensional boundary.

Finally, we created 28 marine-reserve configurations (Fig. 8) using a multifactorial combination
of four locations and seven sizes. The four reserve locations were chosen to be evenly distributed
around the sound (roughly in its SE, NE, NW, and SW quadrants). We considered seven reserve
sizes covering 5–40% of available coastal habitat. At the 40% size, adjacent reserves at different
locations partially overlapped. Fishing effort displaced by the reserve was assumed to be evenly
redistributed over the remaining coastal boundary region. We modified fishing-mortality rates to
reflect the displaced effort by assuming that local rates of fishing mortality were proportional to
local rates of effort (see, e.g., Polacheck, 1990). Thus, the nominal rate of fishing mortality in the
exploited region, F

mr
, after creation of a marine reserve with length L

mr
, was

F
F

L

L

mr
mr

=

-
Ê

Ë
Á

ˆ

¯
˜1                                                                                                                                 Eq. 1

where F is the rate with no reserve (1.0 yr-1 here) and L is the total length of habitable coastline. For
each case, the model state from the corresponding exploited case at the beginning of model year 40
was used to initialize the model run. The model was subsequently numerically integrated for 10 yrs.
As with all model runs, abundance patterns for each postsettlement stage, larval production, and
postlarval settlement were saved at quarterly intervals. As with the exploited cases, total catch was
recorded annually.

For each hydrodynamic scenario, we thus generated a no-exploitation/no-reserve case, an ex-
ploitation/no-reserve case, and 28 exploitation-with-reserve cases. Starting from identical condi-
tions (model year 30), the no-exploitation/no-reserve case reflects the state of the population under
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pristine conditions, the exploitation/no-reserve case reflects the state of the population and fishery
after 20 yrs of heavy exploitation, and the exploitation-with-reserve cases reflect the state of the
population and fishery after 10 yrs of heavy exploitation followed by 10 yrs of continued heavy
exploitation but with a refuge area. We evaluate reserve function by comparing annual larval pro-
duction and catch rates for the final year of each simulation.

RESULTS

NO EXPLOITATION, NO RESERVE.—Despite our use of identical parameter values for natu-
ral mortality, growth, dispersal, and reproduction, each hydrodynamic scenario imposed
a dramatically different spatial pattern of settlement and larval production along the coast-
line (Fig. 9). When larvae were dispersed through turbulent diffusion alone (D1), settle-
ment along the coastline was approximately constant for spatial scales greater than 10 km
(Fig. 9A). When advection by hydrodynamic currents was included (AD1 and AD2),
settlement was spatially segregated and variable: AD1 exhibited three to five principal
peaks in settlement ~50–150 km apart (Fig. 9B), and AD2 showed a single peak ~50 km
from the mouth of Exuma Sound (Fig. 9C). The spatial pattern of larval production re-
flected, to a large degree, the spatial pattern of settlement for each hydrodynamic sce-
nario (Fig. 9), but density-dependent mortality in the early benthic stages and dispersal in
the later stages modified the pattern of larval production from that of settlement, smear-
ing out the pattern at settlement and reducing variability. For the advective current sce-
narios in which settlement was focused, postsettlement dispersal allowed larval produc-
tion to occur over a somewhat larger expanse of the coastline than that at which settle-
ment occurred (Fig. 9B,C).

Annual rates of total larval production (LP
T
) and settlement (S

T
) varied by an order of

magnitude among the three hydrodynamic scenarios (Table 4). Total settlement was high-
est for D1, lowest for AD2, and intermediate for AD1; the ordering was identical for
larval production. The ratio LP

T
/S

T
, however, differed among the hydrodynamic scenarios

(Table 4), reflecting higher postsettlement mortality due to density dependence in the
hydrodynamic cases where advection focused settlement patterns in particular regions
(i.e., Fig. 9C for AD2).

EXPLOITATION, NO RESERVES.—The relative effect of exploitation on larval production
and settlement depended on hydrodynamic scenario. The high exploitation rate (F = 1.0
yr-1) considered in this study led to dramatically lower total settlement and larval produc-
tion than in the unexploited cases, for all three hydrodynamic scenarios (Table 5). The
largest differences occurred for D1 (~3 orders of magnitude), the smallest for AD2 (~2
orders of magnitude). Exploitation increased total mortality rates, but relative changes in
larval production and settlement were smaller under the advection-diffusion scenarios
than under the diffusion-only scenario because relative increases in mortality rates were
smaller under the advection-diffusion scenarios, reflecting higher local density-depen-
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Figure 9. Spatial distribution in model year 50 of annual settlement (grey fill) and larval production
(solid line) for the no-exploitation, no-reserve case under each hydrodynamic scenario: (A) D1, (B)
AD1, (C) AD2.
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dent mortality, as a result of advection-focused settlement patterns, in the corresponding
unexploited cases.

In addition, the spatial patterns of larval production and settlement were substantially
altered under two hydrodynamic scenarios (D1, AD1; Fig. 10A,B) but not under the third
(AD2; Fig. 10C). For all hydrodynamic scenarios, the spatial concordance among settle-
ment, adult density, and larval production increased over the unexploited cases. Under
diffusion alone (D1), the constriction and termination of the sound at its northwestern
end (Fig. 1), coupled with vastly reduced larval production, actually increased relative
local retention and led to higher settlement and subsequent adult abundance there than in
other coastal regions. Under AD1, survival rates were spatially structured in the unexploited
case because of density-dependent mortality during the early benthic stages—survival
rates were lowest where settlement was highest, higher where settlement was low—but

Figure 10. Spatial distribution in model year 50 of annual settlement (grey fill) and larval production
(solid line) for the exploitation-only, no-reserve case under each hydrodynamic scenario: (A) D1,
(B) AD1, (C) AD2.
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high exploitation rates resulted in reduced settlement rates overall. Consequently, the
effect of spatially heterogeneous, density-dependent mortality was reduced, and the pat-
tern of local abundance more closely reflected that of settlement. For all three scenarios,
high exploitation rates reduced postsettlement dispersal, potentially altering connectivity
among regions within the sound.

EXPLOITATION WITH RESERVES.—When reserve size was expressed in terms of the frac-
tion of the coastline covered by the reserve (the protected area coverage, PAC), the re-
sponse of larval production to reserve configuration was not a function of reserve size
alone but was also sensitive to reserve location and hydrodynamic scenario (Fig. 11). In
D1, larval production increased rapidly with reserve size at all locations (Fig. 11A). In

Figure 11. Effect of reserve configuration (size expressed as PAC, see text) and hydrodynamic
conditions on larval production for the exploitation-with-reserve cases. The change in larval
production was calculated as (LP

MR
/LP

E
-1) ¥ 100(%), where LP

MR
 represents the total larval

production in model year 50 for the exploitation-with-reserve case and LP
E
 represents the total

larval production in model year 50 for the corresponding exploitation, no-reserve case. Model
results are plotted as functions of reserve size (PAC) for each reserve location: SE (�), NE (D), NW
(—), and SW (‡). Results for each hydrodynamic scenario are graphed separately: (A) D1, (B) AD1,
(C) AD2.
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contrast, larval production under AD1 was reduced from that of the no-reserve case for
several reserve locations when reserve size was small. When reserves were larger than
20%, however, larval production increased rapidly with size for all locations, as under D1
(Fig. 11B). In addition, variation in response among reserve locations at the same reserve
size was greater for AD1 than for D1. In AD2, larval production responded positively to
reserve size at only one location (SE), where larval production increased rapidly with
reserve size, reaching an asymptote at a reserve size near 10% (Fig. 11C). For the other
three reserve locations, larval production decreased with reserve size under AD2.

The dependence of the larval-production response on reserve location for a given hy-
drodynamic scenario disappears if reserve size is expressed in terms of the exploited
population coverage (EPC) rather than PAC. We define EPC as the fraction of the ex-
ploited population (prior to reserve creation) that settled in the reserve area and would be
protected under a given reserve configuration. Thus, EPC incorporates actual settlement
rates in a reserve location, whereas PAC does not. Because the exploited populations,
particularly under AD1 and AD2, exhibit substantial spatial heterogeneity (Fig. 10B,C),
PAC and EPC are not equivalent. For all three hydrodynamic scenarios, EPC provides a
simpler description than PAC for the response of larval production to reserve creation
when EPC is larger than 1–2% (Fig. 12). When EPC is smaller than 1%, larval production
is reduced from that in the case with no reserve. In contrast, when EPC is greater than 2%,
larval production increases linearly with EPC for each hydrodynamic scenario. The effect
of reserve location, independent of EPC, on larval production is relatively small, but
using EPC does not remove the effect of hydrodynamic scenario. The slopes for linear
regressions of larval production against EPC are substantially different for the three sce-
narios: the slope for D1 is more than twice that for AD1 (Fig. 12).

Figure 12. Effect of reserve configuration (size expressed as EPC, see text) and hydrodynamic
conditions on larval production for the exploitation-with-reserve cases. The change in total larval
production was calculated as for Figure 11. Model results are plotted as functions of reserve size
(EPC) and shaded differently for each hydrodynamic scenario (D1, no shading; AD1, grey shading;
AD2, black). A linear fit to the results is also shown for each hydrodynamic scenario. Reserve
location is indicated by different symbols: SE (�), NE (D), NW (—), and SW (‡).



977STOCKHAUSEN ET AL.: FACTORS SHAPING RESERVE DESIGN

Total annual catch varied dramatically with reserve size (PAC), location, and hydrody-
namic scenario (Fig. 13), indicative of a strong three-way interaction among these fac-
tors. Optimal combinations of reserve site and size increased catch rates by 75–200%,
whereas some suboptimal combinations decreased catch in some cases. For each hydro-
dynamic scenario, at least one combination of reserve size and location increased catch,
but the optimal reserve size and location differed for each hydrodynamic scenario. Fur-
thermore, any apparent functional dependence (e.g., parabolic, Fig. 13) of catch on re-
serve size varied with reserve location both within and between hydrodynamic scenarios.

Figure 13. Effect of reserve configuration on catch (size expressed as PAC, see text) for the
exploitation-with-reserve cases. The change in catch was calculated as (C

MR
/C

E
-1) ¥ 100(%), where

C
MR

 represents the total catch in model year 50 for the exploitation-with-reserve case and C
E
 represents

the total catch in model year 50 for the corresponding exploitation, no-reserve case. Model results
are plotted as functions of reserve size (PAC) for each reserve location: SE (�), NE (D), NW (—),
and SW (‡). Results are graphed separately for each hydrodynamic scenario: (A) D1, (B) AD1, (C)
AD2.
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Expressing catch in terms of EPC did not remove the effect of reserve location (Fig.
14). At small EPC (<1%), catch was lower than that in the case with no reserve. For the
two advection-diffusion scenarios, catch rate exhibited a somewhat parabolic dependence
on EPC for each reserve location—first increasing to a maximum positive value then
decreasing and turning negative—as EPC increased (Fig. 14B,C), but the shape of the
parabola (e.g., location of the maximum) varied with reserve location. In the diffusion-
only scenario, using EPC did not reduce the complexity of the response for catch (Fig.
14A); catch remained a function of reserve size, location, and hydrodynamic scenario
even when reserve size was expressed as EPC.

Figure 14. Effect of reserve configuration on catch (size expressed as EPC, see text) for the
exploitation-with-reserve cases. The change in total catch was calculated as for Figure 13. Model
results are plotted as functions of reserve size (EPC) for each reserve location: SE (�), NE (D),
NW (—), and SW (‡). Results are graphed separately for each hydrodynamic scenario: (A) D1, (B)
AD1, (C) AD2.
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DISCUSSION

Our model results indicate that marine reserves can be effective tools for management
of heavily exploited, benthic marine species like the Caribbean spiny lobster, though their
efficacy is determined by spatial aspects of population dynamics. Many configurations
of reserve size and location yielded both higher catch and higher larval production than
cases with no reserve, illustrating that enhancement of yield and the spawning stock can
be achieved simultaneously. In contrast, certain reserve configurations caused simulta-
neously decreased catches and decreased larval production. For each of the three hydro-
dynamic scenarios considered, one ‘optimal’ reserve configuration simultaneously maxi-
mized catch and increased larval production, but both the size and location of optimal
reserves were unique to each hydrodynamic scenario. In our model, each hydrodynamic
scenario altered the pattern of connectivity among coastal sites via larval dispersal and
postlarval settlement. Our results therefore further suggest that reserve effects are not
functions of size alone but also depend on reserve location and the pattern of connectivity
among sites. Although not surprising (Carr and Reed, 1993), this aspect of determining
‘optimal’ marine reserves has not been addressed.

Catch rates (i.e., yield), in particular, responded to reserve size, location, and hydrody-
namic scenario in a complex fashion, indicating that the interaction between reserve fea-
tures and pattern of connectivity is critical. In addition, although larval production re-
sponded linearly to the relative fraction of the exploited population protected by a reserve
(i.e., EPC) regardless of reserve location, the slope of this relationship differed substan-
tially among hydrodynamic scenarios. Our model results suggest that, (1) under a par-
ticular hydrodynamic condition, reserves of similar size (measured as EPC but not as
PAC) but at different locations function similarly to increase larval production but do not
increase catch rates equivalently; (2) under different hydrodynamic conditions, identical
reserve configurations do not function equivalently; and (3) both size and location of
‘optimal’ reserves differ with hydrodynamic conditions.

Previous theoretical studies of marine reserves (Polacheck, 1990; DeMartini, 1993;
Quinn et al., 1993; Attwood and Bennett, 1995; Man et al., 1995) used models based on
simple connections among sites. Consequently, reserve performance was characterized
by reserve size alone (Polacheck, 1990; DeMartini, 1993; Man et al., 1995) or by reserve
size and spacing (Quinn et al., 1993; Attwood and Bennett, 1995). In contrast, our results
indicate that the interaction between reserve location and hydrodynamic current pattern,
or other factors affecting connectivity among sites, can be complex. It is therefore un-
likely that successful designs from one area will ‘translate’ directly into successful de-
signs for another. Furthermore, no simple ‘rule’ of reserve design (e.g., 20% of a region)
can be generalized across all marine species and ecosystems. For example, significant
increases in larval production occurred at reserve sizes of 10–40 % in most cases consid-
ered here, depending on hydrodynamic scenario. In a few cases, however, reserves de-
creased larval production at all reserve sizes. Use of a 20% rule would, in some cases,
lead to a false sense of security, thereby endangering—not protecting—exploited stocks.

Predicting the consequences of the interaction between reserve configuration and con-
nectivity pattern is critical to the design of optimally functioning reserves, but prediction
requires detailed information not only on life-history characteristics and abundance pat-
terns for the target species but also on hydrodynamic current patterns. For a small number
of well-studied species, the requisite information may be available, and spatially explicit
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models of the type used here, which integrate life-history characteristics, hydrodynamic
patterns for larval dispersal, and spatial patterns of exploitation, may be useful in com-
paring alternative reserve designs. For most species, however, funding levels and time
constraints are unlikely to allow fishery managers to incorporate the required level of
detail about connectivity. In addition, the stochastic nature of hydrodynamic patterns and
other environmental effects, population processes like recruitment success and interspe-
cific interactions, and the human component of fisheries dictate taking a bet-hedging
approach (Lauck et al., 1998) that spreads the risk associated with incomplete informa-
tion (Lauck et al., 1998; Sladek Nowlis and Roberts, 1999).

We therefore recommend, to paraphrase Dante, abandoning all hope of designing opti-
mal marine reserves—at least in the deterministic sense. An alternative approach to ‘op-
timal’ reserve design is to create relatively dense networks of small reserves (Roberts,
1997, 1998) at randomly selected locations such that a substantial fraction of the popula-
tion (e.g., EPC > 5%) is protected. Multiple small reserves may function more effectively
than a single large reserve in a deterministic fashion, particularly for species with seden-
tary adults and planktonic larvae (Quinn et al., 1993; Attwood and Bennett, 1995), and
this strategy also allows one to ‘spread the risks’ associated with a single reserve. Be-
cause edge effects mean that smaller reserves can permit high transfer rates between
reserve and exploited areas, and concomitant loss of spawning stock as motile individuals
disperse beyond reserve boundaries, the trade-off between reserve size and postsettlement
dispersal rates will be an important issue. Finally, the use of traditional conservation tac-
tics (e.g., effort reduction to reduce exploitation rates) may be effective as a supplement
or substitute for marine reserves where the efficacy of reserves remains questionable
(Lipcius and Crowder, unpubl.).
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APPENDIX: MODEL DETAILS

PELAGIC MODEL.—The number of individuals in stage i at time t in the age interval
[a,a+da] in a small rectangle with area dxdy centered at [x,y] is L

i
(x,y,t,a)dxdyda.

The equation describing the dynamics of larvae (i = 0) or postlarvae (i = 1) within the
oceanic region is
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where m
i
 is the local rate of mortality and J

i
x, J

i
y are the x, y components of larval/postlar-

val flux. The first term on the right represents the local change in density due to aging, the
second the loss due to mortality, and the term in braces the net change in local density due
to emigration/immigration via active migration, hydrodynamic currents, and turbulent
diffusion.

Mortality rates for Caribbean spiny lobster phyllosomata and postlarvae have not been
measured, although they are presumably high (Booth and Phillips, 1994). For this study, we
set the m

i
 to constants—independent of location, time, and age within each stage (Table 1).

The flux components J
i
x, J

i
y are related to density by

J x y t a u K L

J x y t a v K L

i
x

i
x

i

i
y

i
y

i
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, , ,
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Ì
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˝
˛
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∂

∂

Ï
Ì
Ô

ÓÔ

¸
˝
Ô

Ǫ̂

                                                                                                        Eq. 3

where u
i
, v

i
 are the x, y components of advective velocity and K is the coefficient of eddy

diffusion. Spiny lobster phyllosomata have little capacity for horizontal movement (Booth

http://www.ingentaconnect.com/content/external-references?article=0967-0645()41L.7[aid=7656312]
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and Phillips, 1994), so larval dispersal is probably primarily passive (although phyllosomata
are capable of vertical movement and may be able to use the differences in current struc-
ture at different depths to influence dispersal patterns; Phillips, 1981; Yeung and McGowan,
1991). For this study, we assumed larvae to be passively dispersed; thus, u

0
 and v

0
 are

equal to the local hydrodynamic current components u and v. Because postlarvae, in con-
trast, actively migrate to settlement areas (Calinski and Lyons, 1983; Booth and Phillips,
1994), we expressed the deterministic part of postlarval dispersal as the sum of hydrody-
namic current velocity and an active dispersal velocity, u

1
 = u + u

pl
 and v

1
 = v + v

pl
, where

u
pl
, v

pl
 represent the local components of active migration. We assumed that postlarvae

sense and orient to the closest suitable settlement habitat and that the effective migration
rate (i.e., that over a tidal cycle) was higher near the coast, where postlarvae can sink and
attach to the bottom during adverse currents (Calinski and Lyons, 1983), than further
offshore (Table 1).

The pelagic model is completed by two sets of mathematical boundary conditions. The
first set is at age 0 for each pelagic stage. Larvae are produced only along the coastal
portion of the spatial boundary, so L

0
(x,y,t,a = 0) = 0 for all x,y not on the boundary. The

local rate of production on the boundary is determined in the reproduction model (see
below). If we let R(x,y,t) represent the local rate of larval production (per unit distance
along the coastline) at x,y on the spatial boundary and let hx,hy represent the direction
cosines of a vector pointing directly offshore at the same location, the components of the
local flux of age-0 larvae into the offshore region are given by

J x y t a R x y t x y

J x y t a R x y t x y

x x

y y

0

0

0

0

, , , , , ,

, , , , , ,

=( ) = ( ) ( )
=( ) = ( ) ( )

h

h
                                                                                           Eq. 4

Metamorphosis to the postlarval stage may be environmentally cued in late-stage
phyllosomata by contact with the seafloor or lower-salinity water over the continental
shelf (Booth and Phillips, 1994). However, because it results in a major simplification to
the model structure, we assume that the duration of the larval stage is fixed (a

pl
, Table 1)

and that metamorphosis to the postlarval stage occurs wherever a
pl
 is reached. As a result,

the age-0 boundary condition for the postlarval stage is simply that the local density of
age-0 postlarvae equals the local density of age a

pl
 larvae.

The second set of mathematical boundary conditions concerns behavior at the spatial
boundary. Because we do not consider immigration from beyond the modeled geographic
region, the flux of a > 0 larvae, and all postlarvae, across the spatial boundary can only be
directed ‘outside’ the oceanic region, i.e., onto the coast or beyond the deep-water bound-
aries. Further, actual transport across the boundary may be less than the potential maxi-
mum flux because of the stage-specific ‘leakiness’, w

i
(x,y), of the boundary. For this

study, we assumed that larvae were not swept into coastal areas (w
0
 = 0 along the coastal

portion of the boundary) and that transport across deep-water boundaries occurred at
50% of the maximum possible rate (w

0
 = 0.5).  Conversely, postlarvae were not lost at

deep-water boundaries (w
1
 = 0) but invaded coastal habitats at the maximum possible rate

(w
1
 = 1).

Larval and postlarval fluxes across the spatial boundary result in corresponding de-
creases in density within the pelagic model, but the age-integrated postlarval flux across
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coastal portions of the boundary determines the local rate of settlement, S
pl
. Consequently,

postlarvae that cross the coastal boundary represent a loss within the pelagic model but a
gain within the benthic model.

BENTHIC MODEL.—We characterize within-stage density by size rather than age because
demographic rates for spiny lobster are more typically characterized by size than age
(Cobb and Caddy, 1989). For small increments dz in size and distance dq along the coast,
s

i
(z,q,t)dqdz is the number of benthic individuals in stage i in the size range [z,z+dz]

occupying the coastline from [q,q + dq] at time t.
The dynamics of N postsettlement life-history stages along the coast are described by

the following set of N coupled partial differential equations:

∂

∂
= - + - -

∂

∂
{ } -

∂

∂
+

= =

Â Â
s

s s s g s J Si

t
i i ij j

j

N

ji i
j

N

z
i i i im t t

q
1 1

           i = 1 … N                  Eq. 5

where m
i
 is the instantaneous rate of mortality, t

ij
 is the rate at which individuals progress

from stage j to i, g
i
 is the instantaneous rate of growth, J

i
 is the flux of individuals dispers-

ing along the coastline, and S
i
 is a source term representing influx from outside the model

(e.g., settlement). The functions m
i
, t

ij
, g

i
, and J

i
 are stage-specific and may also be func-

tions of z, q, and t. The terms on the right-hand side of Eq. 5 represent (1) losses due to
mortality, (2) gains from individuals progressing from the jth to the ith stage, (3) losses
from individuals progressing from the ith to the jth stage, (4) losses and gains due to
growth of individuals within a stage, (5) losses and gains due to movement of individuals
along the coast, and (6) gains from settlement.

Boundary conditions for Eq. 5 take different forms depending on whether the bound-
ary is in space (q) or in size (z). We do not consider dispersal through deep-water sections
of the one-dimensional boundary, so the dispersal flux J

i
 is required to be zero at intersec-

tions of coastal and deep-water portions of the boundary. Similarly, we set zero flux con-
ditions on growth at the minimum and maximum sizes within each life-history stage

g z t s z t g z t s z ti i z i i zi i
, , , , , , , ,min maxq q q q( ) ( ){ } = ( ) ( ){ } = 0                                                      Eq. 6

because the transition from one stage to the next occurs over a range of sizes. Individuals
reaching the maximum size in each life-history stage cease growth until they undergo
transition to the next life-history stage.

To incorporate density-dependent processes into the model formulation in a consistent
fashion, we use a nondimensional normalized life-history-stage density z

i
(q,t), expressed

as

z q

q

q
i

ij j
j

i

t

c dz s z t

t
,

, ,

,
( ) =

( ){ }
( )

ÚÂ  

Y
                                                                                                     Eq. 7
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where the c
ij
 are coefficients which characterize the additional effect of life-history stage

j on i and y
i
(q,t) is an auxiliary measure of habitat quality or suitability, the stage-classi-

fied index of habitat suitability. Essentially, y
i
(q,t) represents a measure of the carrying

capacity of the local environment for animals in stage i and is an input to the model. In
developing Eq. 7, we assume that density-dependent effects are independent of the size
structure within each stage and depend only on local stage densities.

For the Caribbean spiny lobster, the benthic model encompasses five postsettlement
life-history divisions: algal-phase juvenile, postalgal-phase juvenile, subadult juvenile,
adult male, and adult female. Each constitutes a life-history stage within the context of
the benthic model. We divided the adult stage into sex-specific components because both
adult growth rates (see, e.g., Herrnkind and Lipcius, 1989) and exploitation patterns may
be sex-specific, but we chose to use identical life-history parameters for the two sexes in
this study.

Within the context of the model, size refers to carapace length (CL). Modeled life-
history stages range in size from 6 to 150 mm carapace length (CL, Table 2), although a
small fraction of lobsters reach greater size in Exuma Sound (Herrnkind and Lipcius,
1989; Lipcius and Stockhausen, unpubl.).

Different postsettlement life-history stages use different benthic habitats (Herrnkind
and Lipcius, 1989; Butler and Herrnkind, 1997), so except for the adult stages, we as-
sumed that density effects within each model stage were independent of the local density
of the other stages (in Eq. 7, c

ij
 = 0 if i π j; c

ij
 = 1 otherwise). For the two adult stages, we

assumed the effective density was the sum of the two densities (in Eq. 7, c
ij
 = 1 if i = 4,5

and j = 4,5; c
ij
 = 0 otherwise).

For this study, we also chose to ignore explicit spatial and temporal variability in demo-
graphic rates (other than fishing mortality) and in habitat suitability. Demographic rates
could vary in space and time because of local changes in density but were otherwise
homogeneous in space and time. In addition, we used a set of constants for the habitat
index, y

i
(q,t). The selected values (Table 2) reflect an apparent limitation of settlement

habitat in portions of Exuma Sound (Lipcius et al., 1997) as well as an assumed decrease
in habitat availability with size.

We decomposed the total rate of mortality, m
i
(z,q,t), into additive components associ-

ated with fishing (m
i
f(z,q,t), ‘fishing mortality’) and other sources (m

i
n(z,q,t), ‘natural

mortality’). We expressed the instantaneous rate of fishing mortality as

m q
j q

i
f F

otherwise
t t z zz t i

end
i
f

, , ,( ) =
Ï
Ì
Ó

( ) ≥ ≥ ≥
0     t start

                                                                                          Eq. 8

where the parameter F
i
 specifies the nominal level of fishing mortality, z

i
f is the minimum

size vulnerable to the fishery, and tstart and tend specify the beginning and ending of the
fishing season, respectively. The function j(q) controls the spatial pattern of effort and
determines the configuration of different reserve scenarios. In this formulation, the spa-
tial allocation of fishing effort is independent of patterns of abundance.

Several studies have determined relative mortality of Caribbean spiny lobster in experi-
mental treatments in the field (e.g., Eggleston et al., 1990, 1992; Butler and Herrnkind,
1997), but few studies have estimated absolute rates (e.g., Munro, 1974) and none has
done so within Exuma Sound. In Exuma Sound, lack of appropriately scaled shelter may
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be an important factor in density-dependent mortality rates (Lipcius et al., 1997), but
density dependence is likely only at high densities, after most available shelters are occu-
pied. We therefore modeled the instantaneous rate of natural mortality using the piece-
wise linear expression

m q m z
z z

z
i
n

i
n

i c c c

cz t z
i i i i

i, , ,( ) = ( ) =
Ï
Ì
Ó + -[ ]( ) ≥

<

1 2 3

1

1
    

c
c

i3

i3
                                                                       Eq. 9

where the c
ij
 are stage-specific model parameters (Table 2) and z

i
(q,t) is the normalized

stage-specific local density. Local rates of natural mortality are density independent when
density is low (z

i
 < c

i3
) but increase linearly with density when density is high. Because

absolute rates have not been measured, we chose parameter values (Table 2) that gave
reasonable survival probabilities (Fig. 5; see Butler and Herrnkind, 1997).

We selected a simple, but otherwise arbitrary, functional form for the rate of transition
between life-history stages, t

i,j
(z,q,t). The rate at which individuals change from stage j to

stage i is

t q ti j i j

c e

z t z

ij

cij z zi
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min( ) = ( ) =
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Ô
Ô

Ó

Ô
Ô
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Ì
Ô
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˝
Ô

Ǫ̂
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Ê
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Á

ˆ
¯
˜

1

2
1

0
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                                      z<z

i
min

i
min

                                                                    Eq.10

where the c
ijk

 are stage-specific model coefficients and z
i
min is the minimum size at which

transitions to later stages occur. In this formulation, the rate of transition is density inde-
pendent.  The coefficients c

ij1
 represent the asymptotic transition rate from stage j to stage

i. The coefficient c
ij2

 governs the rate of increase of t
i,j
(z,q,t) with individual size. The

parameter values we selected (Table 2) yield reasonable intervals for transition from one
stage to the next.

The Gompertz-type function used to express growth rates within a stage was

g z
zi i
i=

È

Î
Í

˘

˚
˙a

b
 ln                                                                                                                                 Eq. 11

Here, a
i
 controls initial rate of growth and b

i
 controls the asymptotic size. We chose to

ignore density-dependent effects. Stage-specific growth parameters were selected (Table
2) so that mean stage durations were consistent with Butler and Herrnkind (1997). The
resulting growth curve (Fig. 5) is reasonably consistent with results from other studies,
particularly given the variability in reported growth rates among previous studies (Davis
and Dodrill, 1980, 1989; Hunt and Lyons, 1986; Forcucci et al., 1994). As previously
noted, growth-rate parameters for adult males and females are identical (Table 2).

Of the postsettlement stages, only subadults and adults disperse over significant dis-
tances (Herrnkind, 1980, 1983; Herrnkind and Butler, 1986). We described alongshore
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flux, J
i
(z,q,t), as a one-dimensional diffusion process with a density-dependent diffusion

coefficient:

J z t J s
x

si i i i i i i, , ,q z k z( ) = ( ) = -
∂

∂
( ){ }                                                                      Eq. 12

where s
i
 is the stage-classified, size-dependent local density, z

i
(q,t) is the normalized

stage density, and k
i
 is a stage-specific, density-dependent diffusion coefficient defined

as

k z
z

z
i i il i

i

i i

c c
c

( ) = +
+

È

Î
Í

˘

˚
˙1 2

3
                                                                                                         Eq. 13

In the latter equation, the c
ij
 are stage-specific model parameters. The functional form

chosen for J
i
 in Eq. 12 is appropriate when the direction of movement of individuals is

locally unbiased, whereas the rate depends only on conditions at the point of departure
(Okubo, 1980). The functional form for the diffusion coefficient k

i
 allows postsettlement

dispersal to be a combination of density-independent and density-dependent effects. We
selected parameter values that reflect the generally more sedentary nature of adult spiny
lobster than of subadults.

Finally, the benthic model source term, S
i
(z,q,t)dzdq, represents the influx of individu-

als at time t from beyond the model domain into the size increment [z, z+dz] within the
coastal region [q, q+dq]. For this study, we did not consider immigration from outside
Exuma Sound.  Thus, the only influx is from settlement of postlarvae (and subsequent
metamorphosis into algal phase juveniles), S

pl
. Although postlarvae in Exuma Sound range

from 4 to 7 mm CL (Lipcius and Stockhausen, unpublished), we chose, for simplicity, to
model all postlarvae as metamorphosing into algal-phase juveniles in the size interval 6–
7 mm CL. The source term is therefore

S z ti
S t zpl, ,

, ,q
q( ) =

Ï
Ì
Ó

( ) £ <
0

6 7 1    otherwise
  i=

                                                                                                  Eq. 14

where i = 1 refers to the algal-phase juvenile stage.
REPRODUCTION MODEL.—The rate at which larvae are produced locally, R(q,t), is ex-

pressed as:

R t dz r t m z z s z ti
i

i i iq q, , ,( ) = ( ) ( ) ( ) ( )ÚÂ  F
                                                                                Eq. 15

where r
i
 is the temporal spawning pattern for stage i individuals, m

i
 is the fraction of stage

i individuals that are mature at size z, and F
i
 is individual fecundity. Local production of

larvae provides the larval-stage age-0 boundary condition (Eq. 4) for the pelagic model
and completes the full life-history model.
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In Exuma Sound, peak reproductive activity occurs in spring. The incidence of females
occupying offshore reefs that carry fertilized egg masses reaches 80% in June, then de-
clines quickly toward autumn (Herrnkind and Lipcius, 1989). For simplicity, we chose to
ignore a possible secondary spawning peak in the fall (Herrnkind and Lipcius, 1989) and
expressed the temporal variation in spawning, r

i
, as spatially homogeneous using a trun-

cated normal distribution function:
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                                                                            Eq. 16

The c
j
 in Equation 16 influence the overall level of spawning activity, the time of peak

spawning, and the variability about the peak. The parameters tstart and tend indicate the
beginning and ending dates of the spawning season, respectively. The parameter values
selected reflect 100% spawning of all mature females during the season and peak spawn-
ing in the spring (Fig. 6A, Table 3). For this study, we chose to end the spawning season
just before the beginning of the fishing season.

The smallest reported egg-bearing female in Exuma Sound was 85 mm CL (Herrnkind
and Lipcius, 1989). Percent female maturity increases to 100% by 100 mm CL. For sim-
plicity, we chose to express the maturity function, m

i
, as a knife-edge function of size:

m zi otherwise
z z i( ) = { ≥ =

0
1 5      min ,

                                                                                                                  Eq. 17

where zmin reflects the minimum size at maturity (Table 3).
Individual fecundity (i.e., number of eggs in an egg mass) of spiny lobster has been

well described by both size-dependent power laws (Mota Alves and Bezerra, 1968; Lipcius
et al., 1997) and exponential functions (Lipcius and Stockhausen, unpublished). In Exuma
Sound, individual fecundity does not vary spatially (Lipcius et al., 1997). We expressed
fecundity, F

i
 , as an exponential function of size.
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                                                                                    Eq. 18

We reanalyzed fecundity data from Exuma Sound (Lipcius et al., 1997) using an expo-
nential model to determine values for the c

j
 parameters (Fig. 6B, Table 3).
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