
W&M ScholarWorks W&M ScholarWorks 

VIMS Articles Virginia Institute of Marine Science 

10-1997 

Small-scale settlement patterns of the oyster Crassostrea Small-scale settlement patterns of the oyster Crassostrea 

virginica on a constructed intertidal reef virginica on a constructed intertidal reef 

IK Bartol 
Virginia Institute of Marine Science 

Roger L. Mann 
Virginia Institute of Marine Science 

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles 

 Part of the Marine Biology Commons 

Recommended Citation Recommended Citation 
Bartol, IK and Mann, Roger L., "Small-scale settlement patterns of the oyster Crassostrea virginica on a 
constructed intertidal reef" (1997). VIMS Articles. 1522. 
https://scholarworks.wm.edu/vimsarticles/1522 

This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M 
ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M 
ScholarWorks. For more information, please contact scholarworks@wm.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by College of William & Mary: W&M Publish

https://core.ac.uk/display/235420069?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.wm.edu/
https://scholarworks.wm.edu/vimsarticles
https://scholarworks.wm.edu/vims
https://scholarworks.wm.edu/vimsarticles?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F1522&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1126?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F1522&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/vimsarticles/1522?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F1522&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


BULLETIN OF MARINE SCIENCE, 61(3): 881–897, 1997

881

SMALL-SCALE SETTLEMENT PATTERNS OF THE OYSTER
CRASSOSTREA VIRGINICA ON A CONSTRUCTED

INTERTIDAL REEF

Ian K. Bartol and Roger Mann

ABSTRACT
The construction of three-dimensional, intertidal reefs  resembling those widely present

during colonial times in the Chesapeake Bay, but now absent due to years of overharvest-
ing, may provide a more ecologically advantageous environment for oyster settlement
and subsequent survival than present subtidal, two-dimensional habitats.  We examined
settlement processes on a constructed, 210 x 30 m intertidal reef composed of oyster
shell.  The reef was destructively and non-destructively sampled weekly throughout the
summer and fall at tidal heights ranging from 30 cm above to 90 cm below mean low
water (MLW) and at two substrate levels (reef surface and 10 cm below the reef surface).
Settlement at the surface of the reef community and within the reef interstices down to
depths of 10 cm was statistically similar, and settlement was generally greatest subtidally;
however, there were localized areas within the reef community where conditions were
beneficial for intertidal settlement and where differences in intertidal/subtidal settlement
rates were not detectable.  These results suggest that microscale variations in tidal eleva-
tion and substrate depth strongly affect settlement processes and should not be ignored
when constructing reefs.

When colonists arrived in the Chesapeake Bay region during the 1600s, they encoun-
tered a Bay ecosystem rich in intertidal reef communities.  These unmistakable biological
features, which proliferated in the Chesapeake Bay and tributaries during the last half of
the Holocene interglacial, were important self-renewing food sources for early settlers
and Native Americans alike (Hargis and Haven, 1998).  As the economic value of the
oyster Crassostrea  virginica began to be realized in the mid 1800s, however, commercial
exploitation of the resource began.  Years of subsequent overharvesting has transformed
these once massive, aerially exposed communities to mere subtidal, “footprint” struc-
tures which have significantly less vertical dimensionality and habitat heterogeneity.
Disease, environmental degradation, and poor resource management in the last half cen-
tury have exacerbated this degeneration.

Today Virginia’s oyster population is less than 1% of what it was just 35 yrs ago (Wesson
et al., 1998).  Many of the rejuvenation efforts that were successful in the past and that
involved the spreading of relatively thin veneers of shell over coastal and estuarine bot-
tom for larval attachment no longer facilitate the development of healthy and viable adult
oyster communities.  This may in part be because these efforts revolve around re-creating
habitats produced and shaped by man, rather than focusing on emulating the natural,
three-dimensional, intertidal communities present during colonial times.  Since oysters in
the Chesapeake Bay resided in intertidal communities for centuries and were able to with-
stand significant environmental and biological stresses, there is probably an ecological
and evolutionary advantage to intertidal, aggregational reef existence in the Bay and a
return to it may help rejuvenate ailing oyster stocks.

We know little about the colonization and ecology of C. virginica on intertidal reefs in
the Chesapeake Bay because of their absence for over a century.  Thus, we constructed a
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210 x 30 m intertidal reef to study C. virginica settlement - the irreversible adherence of
larvae to the substrate and the first step in the colonization process.  We paid particular
attention to the spatial effects of elevation relative to mean low water (MLW) because
tidal height is a major factor distinguishing intertidal reef environments from current
subtidal habitats.  We also examined settlement patterns at the surface of the reef shells
and within the interstices of the reef at depths of 10 cm along the tidal gradient to deter-
mine if microscale differences in substrate depth play a critical role in settlement pro-
cesses and should be considered when constructing artificial reefs.

METHODS

STUDY SITE. — This study was conducted in the Piankatank River, a sub-estuary of the Chesa-
peake Bay located in Virginia, at a site which once supported a highly productive intertidal reef
system (Fig. 1).  However, at the time of reef construction, the site contained only a remnant shell
footprint of the pre-existing natural reef.  The Piankatank River is ideal for artificial reef construc-
tion because it harbors a sustainable adult oyster population, has high annual oyster settlement
(Morales-Alamo and Mann, 1997), and there is no commercial oyster fishery and virtually no
industry or agricultural development within the watershed.  Tidal range at this site is small (mean
range = 36 cm), but local meteorological events, wind in particular, often dramatically alter this
range from 0 to 1.25 m.  The site is relatively shallow (1-3 m), and consists of a sand and shell
bottom.  Water temperature at this site varies from 0.5-30° C throughout the year, and salinity
ranges from 8-20‰ annually.

REEF CONSTRUCTION. — The reef was constructed by the Virginia Marine Resource Commission
(VMRC) using a high pressure water cannon and barges carrying aged oyster shells.  The shells
were jettisoned from barges using the cannon’s high velocity water stream and broadcast over a 210
x 30 m area, which were the approximate footprint dimensions of the pre-existing reef system.
After completion, the reef consisted of numerous hummocks varying from 2 to 20 m2 in area ex-
posed at low tide.  Although the constructed reef ranged from 0.5 m above to 3 m below MLW, the

Figure 1.  Map of Piankatank River showing the site of reef construction (D) and location of other
nearby oyster reefs (A, B, C, E, F, G, H, I) .
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vast majority of the hummocks did not protrude higher than 0.35 m above MLW or extend deeper
than 1.0 m below MLW.

SAMPLING PROCEDURE. — The constructed reef was sampled in both 1993 and 1994.  During the
1993 sampling period, two of the 12 principal intertidal hummocks at the site were the focus of
study: one on the reef periphery perpendicular to prevailing currents and unprotected from wave
action and currents, and a second situated near the middle of the reef parallel to prevailing currents
and partially shielded from wave action and currents.  Each mound was sampled using a transect
approach, whereby samples were collected along two transects at tidal heights of 30 cm above
MLW, MLW, 45 cm below MLW, and 90 cm below MLW.

During the 1994 sampling period, after data from the previous year were analyzed and we had a
preliminary understanding of the reef system, a randomized approach was used which was more
geographically expansive and statistically powerful.  In this method a series of reinforced bars were
driven into the reef substrate on eight of the 12 aerially exposed hummocks and connected with
rope to partition the hummocks into 64 x 20 cm plots.  This grid system encompassed reef area
from the base to the crest of each mound.  Four of the 12 hummocks were eliminated because ice
scouring during the ‘93-’94 winter eroded the mound apices, resulting in the loss of substantial
intertidal substrate.  In this randomized approach, tidal heights of 25 cm above MLW, MLW, and 90
cm below MLW were considered.  The high intertidal height was lowered slightly in 1994 to accom-
modate as many intertidal hummocks as possible in the sampling procedure, and one of the subtidal
heights, 45 cm below MLW, was eliminated to incorporate more replication.  Experimental sites
were selected randomly across the eight hummocks.  Furthermore, another factor, substrate level or
depth within the substrate, was considered.  To document the effects of substrate level, samples
were collected both at the reef surface and 10 cm below the reef surface.

During both years of sampling, non-destructive and destructive methods were employed from
June through September to assess settlement and early recruitment within the reef ecosystem.  Non-
destructive sampling involved the weekly placement of oyster shells in open-topped, 64 x 20 cm,
rubber coated, 1-in wire mesh trays secured to the reef surface by reinforced bars.  In 1993, a
surface layer of 20 shells was placed in single level trays.  The trays were situated at all four tidal
height designations along two spatially separate transects at each of two hummocks.  The concave
and convex side of all 20 shells within the individual trays were examined for recently settled oyster
larvae (spat) using a dissecting microscope (x 125), and a spat total per tray was recorded.  In 1994,
3-tiered trays containing 30 shell upper and lower levels, which were spaced 10 cm apart, and a 40
shell intermediate level were used.  Each week four plots were selected randomly at each of the
three tidal heights.  At every plot, a 3-tiered tray was buried into the reef until the upper shell layer
was even with the reef surface.  Both the concave and convex sides of shell found in the upper and
lower tiers were examined for spat using a dissecting scope, and a surface and deep layer spat  total
were recorded at all 12 weekly selected plots.

Destructive sampling involved the weekly placement of 64 x 20 cm quadrats on the reef surface,
the removal of a layer of shell, and the subsequent examination of both shell surfaces for spat.  This
sampling technique provided an index of cumulative spatfall on the actual reef substrate and ac-
counted for any early post-settlement mortality losses.  This method, therefore, provided an esti-
mate of early recruitment - the number of larvae which have survived from settlement to the time of
sampling (1-6 wks later).  In 1993 the quadrats were placed at all four tidal height designations
along two spatially distinct transects on each of the two mounds.  To prevent re-sampling, we col-
lected successive samples over time from plots that were immediately adjacent to previously sampled
areas.  During this period only surface layer samples were excavated and recorded.  Plots used in
1994 destructive sampling were selected randomly across the eight principal intertidal mounds.  As
with the 1994 non-destructive samples, four plots were selected randomly each week at all three
tidal heights.  At each plot, a surface shell layer and a layer 10 cm beneath the reef surface (easily
distinguishable from the surface layer by its brown detrital film) was extracted and examined for
spat.  This allowed for the calculation of both weekly surface and deep spat totals for all 12 plots.
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In addition to non-destructive and destructive samples, shellstring samples were collected weekly
from June through September during both years of sampling.  Shellstrings consist of 12 single
valve oyster shells, each with a hole drilled through the center, threaded onto galvanized wire.  Only
the 10 intermediate shells are considered because the top and bottom shells of the shellstring have
a tendency to collect large numbers of recently settled juveniles (spat), leading to unrepresentative
spat estimates.  The shellstrings were suspended from pilings located at the east (downstream) and
west (upstream) reef extremities at a depth of 90 cm below MLW.  Water depth was approximately
4 m below MLW at the east reef piling and 2 m below MLW at the west reef piling.  Both shell
surfaces were examined and a spat total per shell was calculated so that comparisons could be made
with non-destructive and destructive subtidal samples.

PHYSICAL PARAMETERS. — A number of physical variables were measured during this sampling
session to aid in assessing the above processes. Water temperature, salinity, and Secchi depth read-
ings were recorded each week.  To develop an estimate of current flow at the reef site, we set out
chlorine tablets housed in 20 cm x 20 cm mesh cages and held 10 cm above the reef bed by rein-
forced rods during both neap and spring tides.  Cages were placed at plots sampled in the non-
destructive settlement study.  The chlorine tablets were weighed, deployed in the field for 48 h, and
weighed again.  Mean differences in chlorine tablet mass were compared within each tidal height to
construct, in the case of subtidal plots, a framework of relative flow rates and, in the case of inter-
tidal plots, a combined relative estimate of the magnitude of both wave intensity and flow rates.
Chlorine tablets were used as a surrogate measure for flow because turbulent diffusion, the major
force driving the dissolution rate in the field, in the benthic boundary layer at a given bottom rough-
ness varies in a positive fashion with current speed (Wildish and Kristmanson, 1997).  It was as-
sumed that the flow speed derived from the dissolution rate of chlorine tablets placed 10 cm above
the reef would be proportional to flow conditions at the surface and 10 cm below.

STATISTICAL ANALYSIS. — The argument may be made that 1993 data collected over time were not
independent, since successive samples were taken from either spatially fixed areas or spatially
connected plots. Thus, analysis of variance (ANOVA) with repeated measures on time were per-
formed on both the 1993 non-destructive and destructive data sets.  To satisfy the assumptions of
homogeneity, all settlement data were log (x + 1) transformed.  When no  significant interactions
were detected between time and any other factor, 3-way fixed factor (factors: tidal height, time,
mound) ANOVAs were performed.  Significant main and interactive effects were examined using
Student-Newman-Keuls (SNK) tests.

Linear correlations were performed first on surface and deep samples collected in the 1994
settlement study to assess the degree of dependence between the two substrate levels. Significant
relationships were detected; therefore, paired sample t-tests were used to determine if differences
existed between surface and deep samples.  A mean value for surface and deep data was calculated
when no significant difference between the substrate levels was detected, and further analyses were
performed on these mean values.  ANOVAs were run on 1994 log (x + 1) transformed, non-destruc-
tive and destructive settlement data, and all differences between the means were revealed using
SNK multiple comparison tests.  Furthermore, to determine if a functional dependence existed
between settlement and water movement, linear regressions of log (x + 1) transformed non-destruc-
tive settlement on chlorine tablet dissolution rate were performed for each tidal height.  The as-
sumptions of regressions were met as determined by residual analysis (Zar, 1984).

RESULTS

1993. — Settlement lasted 6 wks in 1993 beginning the week of July 29 and ending the
week of September 9, and settlement intensity was low overall (Fig. 2).  Although traces
of settlement were detected in non-destructive samples throughout the 6-wk settlement
period, spat counts in weeks 5 and 6 were so low (< 0.02 spat per shell) that we eliminated
them in our statistical analysis.  Conversely, in destructive samples, dramatic increases in
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settlement were observed during these periods, and thus these weeks were included in
destructive sample statistical tests.

No significant interactive effects between the within factor, time, and any other factor
were detected when 1993 destructive and non-destructive data were analyzed using re-
peated measures analysis; thus, subsequent 3-way ANOVAs were performed.  These analy-
ses revealed that in non-destructive samples tidal height had a significant impact on settle-
ment (Table 1A), with settlement being greatest at the -90 cm tidal height (Fig. 3).  In
destructive samples, where the entire 6-wk settlement period was considered, time had a
significant impact on settlement (Table 1B).  In general, destructive sample spat counts
increased with time.  This is quite different than settlement patterns observed in non-
destructive samples where settlement magnitudes were not detectably different during
the first 4 wks of the settlement season, but decreased dramatically in weeks 5 and 6 (Fig.
4).  Destructive and non-destructive spat counts were also very different during week 1 of
the settlement period when no  previous settlement events had occurred (non-destructive
=  4.8 ± 0.82 S.E. spat per 20 shells, destructive = 2.1 ± 0.17 S.E. spat per 20 shells).  A
mound x tidal height interaction was present in destructive samples.  High spat counts at
the +30 cm tidal height on hummock A (mound perpendicular to prevailing currents)
prevented the detection of significant differences in settlement by tidal height and pro-
duced this interaction (Fig. 5A).  Conversely, on hummock B (mound parallel to prevail-
ing currents) where +30 cm spat counts were significantly lower than on hummock  A, sig-
nificantly greater settlement occurred at -45 and -90 cm than at +30 cm (Fig 5B).

1994. — The 1994 settlement season lasted only 3 wks beginning the week of 15 July
and ending the week of 28 July.  Spat counts detected on shellstrings throughout the 1994

Figure 2.  Cumulative oyster spat counts per shell detected on shellstrings at the reef site from 1979
- 1996 recorded in the Virginia Institute of Marine Science (VIMS) spatfall reports.  Settlement
data for 1988 was incomplete and thus was not included in the figure.
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sampling session were the lowest recorded in the last 18 yrs, with mean cumulative spat
counts of less than 1 spat per shell over the entire settlement season (Fig. 2). Unfortu-
nately, these low settlement magnitudes together with the short settlement season pre-
cluded a meaningful comparison of intertidal spat counts recorded on hummock A with
intertidal counts on the other hummocks.  Field observations did reveal, however, that
noticeably more intertidal oysters were present on hummock A than at any of the other
seven hummocks present at the site.

Significant correlations (P < 0.001) between surface and deep substrate levels were
detected in both non-destructive and destructive samples, and thus paired t-tests were
used to examine the effects of substrate level.  Based on these tests, no significant differ-
ences in settlement were detected between surface and deep layers at any of the tidal
heights in either the non-destructive or destructive samples (P > 0.05, Table 2).

In the non-destructive study, ANOVAs performed on surface/deep settlement means
revealed that both tidal  height and time influenced settlement (Table 3A).  Settlement
intensity was greatest at the -90 cm tidal height  and during the week of July 21-28 (Figs.
6A, 6B).  Settlement was influenced significantly by time and tidal  height in the destruc-
tive study as well, but a significant time x tidal height interaction confounded the effects
(Table 3B).  This interaction was a result of spat counts  being significantly greater at the
-90 cm tidal height only during the weeks July 21-28 and July 28-August 4.  During the
first week of the settlement season, settlement  magnitudes were so low across all 3 tidal
heights that no significant differences were detectable.

COMPARISON OF SPAT DETECTION METHODS. — There was a clear discrepancy in spat counts
between the 3 sampling methods even though they were all deployed at a depth of 90 cm
below  MLW.  Clearly more spat settled on shellstrings, which were replaced weekly and
suspended in the water column, than on shells placed at weekly intervals in trays fixed to

.atadtnemelttesevitcurtsed3991foAVONA.B1elbaT

ecruoS fd serauqsfomuS erauqsnaeM eulav-F eulav-P
dnuoM 1 340.0 340.0 846.0 8424.0

thgiehladiT 3 702.1 204.0 710.6 5100.0
emiT 5 385.7 715.1 096.22 1000.0

thgiehladitxdnuoM 3 285.0 491.0 309.2 3440.0
emitxdnuoM 5 782.0 750.0 858.0 4615.0

emitxthgiehladiT 51 878.0 950.0 578.0 2495.0
emitxthgiehladitxdnuoM 51 324.0 820.0 224.0 8469.0

laudiseR 84 802.3 760.0

.atadtnemelttesevitcurtsed-non3991foAVONA.A1elbaT

ecruoS fd serauqsfomuS erauqsnaeM eulav-F eulav-P
M dnuo 1 870.0 870.0 950.1 1113.0

thgiehladiT 3 741.2 617.0 296.9 1000.0
emiT 3 375.0 191.0 885.2 1070.0

thgiehladitxdnuoM 3 615.0 271.0 133.2 8290.0
emitxdnuoM 3 721.0 240.0 275.0 7736.0

emitxthgiehladiT 9 918.0 190.0 232.1 8013.0
emitxthgiehladitxdnuoM 9 989.0 011.0 984.1 2491.0

laudiseR 23 263.2 470.0



887BARTOL AND MANN: OYSTER SETTLEMENT ON CONSTRUCTED REEFS

the reef (non-destructive samples) or on shells sampled destructively from the reef (de-
structive samples) (Fig. 7).  Furthermore, non-destructive samples appeared to collect
more spat than destructive samples.

PHYSICAL PARAMETERS. — During both years of sampling, settlement occurred when or
shortly after salinities approached 16‰, water temperatures reached 30° C, and water
clarity rose (Fig. 8).  Flow rate was greatest at the reef crests and lowest at the reef bases,
and there was no linear dependence of settlement on water flow (P > 0.234, r2 < 0.231).
Furthermore, no optimal flow rate for settlement was apparent.

DISCUSSION

The short, unimodal settlement events recorded in this study coupled with low overall
settlement magnitudes are indicative of a rapidly declining broodstock population in the
Chesapeake Bay, which at present is showing little sign of rejuvenation (Morales-Alamo
and Mann, 1997).  Bimodal peaks in settlement were recorded not long ago in the Chesa-
peake Bay, and it was not uncommon to detect settlement from June through October at
the Piankatank reef site (Virginia Institute of Marine Science Annual Oyster Spatfall
Surveys, unpublished data for the period 1970-1997).  In 1986, cumulative spat counts at
the site were 376.5 spat/shell, whereas now they are at 1.6 spat/shell .  Although there are
probably a number of reasons for this devastating decline ranging from disease to poor
water quality, years of overharvesting where ecologically advantageous intertidal reef
communities were degraded to mere subtidal footprints undoubtedly weakened oyster
stocks considerably.  Hargis and Haven (1997) offer the opinion that overharvesting was
the principal instigator of the demise of the Chesapeake oyster.  Although this is debat-

Figure 3.  Mean oyster spat counts per 20 shells recorded in the 1993 non-destructive study.  Error bars
denote +1 SE and lines above the bars represent results from Student-Newman-Keuls (SNK) tests.
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able, there is widespread agreement that oyster reefs are the most optimal ecosystems for
oysters and we need to learn more about oyster ecology on them.

Based on 2 yrs of settlement monitoring on a constructed intertidal oyster reef, it was
clear that tidal elevation had a large impact on settlement and early recruitment.  The
higher rates of subtidal settlement recorded here are consistent with several other studies
conducted in non-reef environments, such as McDougall (1942) where unglazed hearth
tiles were used as substrate, Chestnut  and Fahy (1953) where clam shells suspended in
baskets were utilized, and Roegner and Mann (1990) where hatchery-reared larvae ex-
posed to field conditions in microcosms were considered.  Nichy and Menzel (1967),
who placed oysters on clothmats of mesh within a reef ecosystem, also observed greater
settlement/early recruitment subtidally.

The high rates of subtidal settlement/early recruitment observed throughout most of
this study were likely a result of a number of factors.  Submergence time, for instance,
may have contributed to settlement discrepancies observed at different tidal heights.  Oyster
larvae in the water column were exposed to subtidal substrates substantially longer than
to intertidal substrates, and as a result, had a wider time window in which to set.  Submer-
gence time alone, however, did not account for the observed differences in settlement.
Kenny et al. (1990) found that settlement intensity is not a direct function of submergence
time, especially in the high intertidal zone where settlement is lower than predicted and
the low intertidal zone where settlement is higher than predicted.  Another factor contrib-
uting to elevated subtidal sets may have been vertical segregation of oyster larvae within
the water column.  Oyster late stage pediveliger larvae are more abundant near the benthos
than at the surface or within the midwater region (Carriker, 1951; Kunkle, 1957; Baker,

Figure 4.  Mean weekly spat counts for both destructive and non-destructive samples collected
from July 29 through September 16, 1993.  Error bars denote +1 SE
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1994), and this may have contributed to high subtidal settlement.  Furthermore, because
late stage competent to set oyster larvae are negatively phototactic (Cole and Knight-
Jones, 1939; Ritchie and Menzel, 1969; Shaw et al., 1970) and prefer areas of low wave
energy (Ortega, 1981; Abbe, 1986), they may have actively sought subtidal habitats where
light intensities and wave stress are reduced.

Although settlement was highest in the subtidal zone for most of the study, the lack of
significant settlement  differences between tidal heights at hummock A during the 1993
season suggests that this is not always the case in artificial reef environments.  Hummock
A is the most unique hummock comprising the reef system.  It is more than twice as large
in terms of substrate aerially exposed at low tide as any of the mounds at the site, the first
mound exposed to tidal influx, the only mound oriented completely perpendicular to
prevailing currents, and it experiences the most intense wave action.  These factors, espe-
cially wave action which kept intertidal substrate clean, may have contributed to high
intertidal sets.  In 1994, we had hoped to compare sets on hummock A with sets on the
seven other principal hummocks at the reef site to determine if intertidal settlement inten-
sities were indeed higher at hummock A.  Unfortunately, spat counts were so low and the
settlement season was so abbreviated that no meaningful  comparisons could be made.
The highest abundance of intertidal oysters clearly occurs on hummock A based on field
observations, though, and this certainly suggests that conditions at hummock A are highly
conducive for intertidal settlement.  Conversely, results from this study and field observa-
tions indicate that subtidal settlement is no higher at hummock A than at any of the hum-
mocks.

Results of several other studies suggest that settlement/early recruitment is not always
maximized subtidally, as was the case at hummock A.  Hidu and Haskin (1971) found that
although settlement was greatest subtidally 1/2 mi offshore at a transitional slope region
where tidal flats merge with deep water, settlement was greatest intertidally in shallow
water near the shore.  They attributed the high intertidal sets inshore to rapid rises in water
temperature as seawater passed over heated intertidal substrates and to the presence of
dense  intertidal adult populations which released chemical cues.  McNulty (1953), using
bags of shell left in the field for 2 wks, found higher settlement/early recruitment in the

Figure 5.  Mean spat counts recorded on (A) hummock A and  (B) hummock B during the 1993
settlement season.  Error bars denote +1 SE and lines above the bars represent results of SNK tests.
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intertidal zone than in the subtidal zone, and Kenny et al. (1990), using asbestos plates
sampled every 2 wks in the summer and 4 wks in the winter, found settlement to be
similar from 70 cm above mean low water in the intertidal zone to 30 cm below mean low
water in the subtidal zone.  Kenny et al. concluded that subsequent post-settlement mor-
tality was responsible for the confinement of oyster reefs to the intertidal zone in south-
eastern coastal areas of the United States.

The lack of detectable differences in settlement/early recruitment (1-3 wks) between
surface and deep substrates at any of the tidal heights considered was admittedly unex-
pected.  Our first reaction was that the low settlement rates recorded in this study dra-
matically lowered the power of the statistical tests.  Although this may be true, a graphi-
cal re-examination of the data by layer revealed no trend in greater settlement for either
substrate depth at any of the tidal heights considered.  Thus, we concluded that larval
oyster settlement was not impeded by shell down to depths of 10 cm on artificial reefs
composed of oyster shell.  The fact that adult oysters are found in greater numbers at the
surface of established reefs (Bahr and Lanier, 1981) suggests that settlement patterns
and adult ranges may deviate from one another.  Such discrepancies in the ranges of
recently settled larvae and adults are not uncommon in oysters (see Roegner, 1989; Kenny
et al.,  1990).

Although there are no studies on the settlement of sessile organisms as a function of
substrate depth, there is evidence to suggest that settling larvae actively seek out prefer-
able habitats.  Upon setting, barnacles and sponges select small sediment depressions,
pits, and crevices where shear is low (Crisp, 1967; Wethey, 1984, 1986; Bergron and
Bourget, 1986; Keen, 1987; Chabot and Bourget, 1988).  Oysters demonstrate a similar
preference for crevice microhabitats (Michener and Kenny, 1991), as well as for darkened
conditions when setting (Cole and Knight-Jones, 1939; Ritchie and Menzel, 1969; Shaw
et al., 1970), areas of reduced wave action (Ortega, 1981; Abbe, 1986), environments
where flow is low (Bushek, 1988), and substrates which are not heavily fouled (Abbe,
1986; Morales-Alamo and Mann, 1990).  Some oyster larvae may have actively sought
out substrate deep within the reef interstices because the reef interstices provide a plethora
of microhabitats and offer sheltered, shaded conditions, reduced flows, and less fouled
substrates.  Settlement inducing compounds released by adult oysters (Bayne, 1969; Hidu
et al., 1978; Tamburri et al., 1992; Zimmer-Faust and Tamburri, 1994) and in biofilms on
oyster shell surfaces (Bonar et al., 1986; Fitt et al., 1989, 1990; Tamburri et al., 1992)
were likely more concentrated within the fabric of the reef than at surface, and this too
may have contributed to subsurface settlement.  Furthermore, despite the ability of oyster
larvae to regulate their position in the vertical dimension (generally by accelerating sink-
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ing rates) (Tamburri et al., 1992), oyster larvae simply may have become entrained in
underlying reef layers.  Low flows, wave action, and an intricate maze of substrate may
have been sufficient to prevent weak swimming larvae from navigating vertically to the
reef surface.  Although it is not clear from this study which active or passive transport
mechanism(s) are responsible for subsurface settlement, it is clear that larvae are capable
of settling within the fabric of the reef and are not impeded by shell down to depths of 10
cm.  This is quite remarkable considering there may be 20 or more shell layers within the
10 cm space.

The fact that settlement estimates from shellstrings, a frequently used method of esti-
mating oyster abundance, were greater than both destructive and non-destructive samples
suggests that suspended shellstrings overestimate settlement on sloping reef bottoms.
Baker (1994) also found shellstrings to be unreliable predictors of settlement magnitudes
on adjacent substrates.  Even though shellstrings fail to provide an accurate assessment of
oyster settlement  on actual reef topography, they are efficient and reliable predictors of
the presence of late-stage pediveligers at a given site.  This was evident by the fact that the
onset of settlement was detected simultaneously on all three substrate mediums during
both years of sampling.  Furthermore, when compared with shellstrings suspended at
other sites, they may be useful tools for determining relative settlement intensities.

A direct comparison could not be made between destructive and non-destructive meth-
ods to predict early post-settlement mortality rates, as was originally intended.  This is
because settlement rates on the two mediums during week 1 of the settlement season,
when no previous settlement had occurred, were dissimilar.  This discrepancy was prob-
ably a product of two factors:  substrate differences and difficulties in spat detection.  The
higher degree of fouling and colonization on reef shells compared with that found on
shells placed in trays on a weekly basis may have contributed to lower destructive sample
settlement rates.  This is because bryozoans, colonial ascidians, algal growth, and high
sedimentation, organisms and conditions all present at the reef site, considerably reduce
settlement of oysters (Abbe, 1986; Ortega and Sutherland, 1992; Osman et al., 1989).
Difficulties in identifying spat on heavily fouled reef shells was probably another factor
contributing to lower destructive spat counts.  During the early weeks of settlement, spat
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were small and difficult to detect on the heavily fouled reef shells, but when spat became
larger (weeks 5 and 6 of the 1993 study), they were more visible and thus spat counts were
higher.  This was readily apparent when settlement intensities on destructively sampled
shells increased substantially during weeks 5 and 6 while only negligible amounts of spat
were detected on non-destructively sampled shells and shellstrings.

Settlement at the reef site occurred when or shortly after water temperatures reached
30° C, salinities approached 16‰ , and water clarity rose; however, no single pa-
rameter could be used to reliably predict the onset of settlement.  It is difficult to use
any one physical factor as a predictor of settlement because the timing of settlement
events depend on a number of variables, including not only water temperature, sa-
linity, and water quality, but also dissolved oxygen, food supplies, substrate avail-
ability, predation, and flow conditions (Abbe, 1986; Kennedy, 1986).  Water tem-
perature is generally the best predictor of settlement (Kenny et al., 1990; McNulty,
1953), whereas salinity often has little effect on settlement within broad limits (Hidu
and Haskin, 1971; Haven and Fritz, 1985).  Turbidity may be deleterious to oyster
larvae (Davis and Hidu 1969) and if the suspended silts and sediment within the
water column accumulate on substrates, they may deter settlement (Abbe, 1986;
Morales-Alamo and Mann, 1990).  However, there is little known about how short
term (1-2 wks) changes in water clarity affect oyster settlement.

The exact role of flow velocity in settlement is yet to be determined.  Based on flume
studies and indirect field observation, bivalve larvae appear to demonstrate a preference
for low flows.  Jonsson et al. (1992) found that when flow speeds exceed 10 cm s-1 in a
flume bivalve larvae (Cerastoderma edule) are resuspended into the water column by
penetrating eddies when attempting to “land”, preventing  settlement from occurring.
Butman et al. (1988) found high rates of Mercenaria mercenaria settlement in low flows
generated in a flume, Bushek (1988) demonstrated that C. virginica preferably settle
nearshore on pier pilings where current velocities are low, and Hidu and Haskin (1971)
found high settlement in Delaware Bay at a sharp transition zone between high and low

Figure 6.  Mean spat counts per 30 shells calculated from non-destructive samples for (A) each of
the three tidal heights and for (B) each week of sampling (week 1 = July  15-21, week 2 = July 21-
28, and week 3 = July 28-August  4, 1994).  Error bars denote +1 SE and lines above the bars
represent results of SNK tests.
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current velocities.  On the other hand, polychaetes avoid settling in low flows (5-10 cm s-1 ),
and in the field settle in the highest flows for which attachment and substratum explora-
tion are physically possible (Pawlick and Butman, 1993).  Barnacle cyprids reject sub-
strates more frequently in high flows (10 cm s-1) than low flows (5 cm s-1) (Mullineaux
and Butman, 1991).  But Mullineaux and Butman explain that a higher rejection rate does
not necessarily result in lower settlement, since contact rate is higher in fast than slow
flows.  Thus, passive transport processes play a large role in bringing cyprids to the sub-
strate, but once there they prefer to settle in areas of low shear such as in crevices and pits
(Crisp, 1967; Wethey, 1986).

The results of this study unfortunately fail to elucidate the relationship between settle-
ment and flow velocity.  No linear dependence of settlement on flow was observed, nor
was any optimal flow velocity for settlement  apparent.  This may be a result of two
factors.  First, the  velocities considered within each tidal range may not have varied
dramatically enough for relationships to be observed.  Most of the studies focusing on the
effects of flow on settlement are conducted in flumes, allowing for the consideration of a
wide gradient of flows.  In this study, however, flow 10 cm above the reef surface in the
subtidal zone did not exceed 10 cm s-1.  Although flows were faster in the intertidal zone
as a result of flood and ebb tides, large differences in relative flow rates and wave action
were not observed across the hummocks (with the exception of hummock A where flow
and wave action were generally high).  Second, microscale flow conditions may have had
a larger impact on settlement intensities than mean flow rates calculated 10 cm above the
reef bed.  Oyster larvae setting on the underside of surface substrates and within the
fabric of the reef probably experienced dramatically different flow regimes than those

Figure 7.  Mean cumulative spat counts per shell at the -90 cm tidal height detected on shellstrings,
non-destructive  samples, and destructive samples in 1993 and 1994.  Error bars denote +1 S.E.



894 BULLETIN OF MARINE SCIENCE, 61(3): 881–897, 1997

measured 10 cm above the benthos.  Microspatial flow measurements at the point of
larval attachment need to be measured in oyster reef environments to accurately deter-
mine the role of flow on settlement.

Although no one physical factor investigated in this study was a predictor of the onset
of settlement and settlement intensity did not appear to be strongly dependent on flow
rate 10 cm above the reef bed, we did learn that vertical elevation relative to both the reef

Figure 8.  Salinity, Secchi disk readings, and water temperatures recorded at the reef site during
1993 and 1994. The symbol (I—I) indicates the beginning of the  settlement season.
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surface and MLW influences settlement.  Oysters settle not just at the surface of reef
communities but settle in comparable numbers within the reef interstices down to depths
of 10 cm.  This finding is significant because presently there is debate over which sub-
strates should be used for reef construction in the Chesapeake Bay.  Many of the proposed
reefs are to be composed of crushed clam shell, tile, or mounds of sediment capped with
a thin shell layer.  When these substrates are  used, subsurface interstitial space is limited,
precluding oyster community development below the surface.  The subsurface environ-
ment likely provides biological and physical refugia for oysters and may be very impor-
tant for survival in developing, artificial reef communities (Bartol and Mann, 1998).  Fur-
thermore, settlement on artificial reefs is generally greatest subtidally; however, there
may be localized areas within the community where conditions are beneficial for inter-
tidal settlement and intertidal/subtidal settlement rates are comparable.  These zones may
be important for oyster reef development because they allow for the rapid establishment
of intertidal and not just subtidal environments.  The establishment of oysters in heteroge-
neous intertidal/subtidal environments, habitats they once thrived in naturally, assuredly
is beneficial for dwindling oyster populations.
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