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ASPECTS OF THE PATHOPHY SIOLOGY OF BLUE CRABS,
CALLINECTES SAPIDUS INFECTED WITH THE PARASITIC
DINOFLAGELLATE HEMATODINIUM PEREZI

Jeffrey D. Shields, Christine Scanlon and Aswani Volety

ABSTRACT

Blue crabs, Callinectes sapidus, infected with Hematodinium perez frequently show signs
of weakness and lethargy and die when stressed by handling or capture. Radical changes to
the hemolymph of heavily infected crabs are obvious by reduced clotting ability, discolor-
ation, and a 50% to 70% decline in total hemocyte density. Few other signs of infection are
associated with infections and the resulting mortalities of blue crabs. To assay physiological
changes in infected crabs, we measured serum proteins, hemocyanin, serum acid phosphatase,
various hemolymph enzymes, hemagglutination activity, and tissue glycogen levelsin relation
to intensity of infection with H. perezi. Serum proteins and hemocyanin levels were lower
in infected versus uninfected males, but not in infected versus uninfected females. Acid
phosphatase activity was directly related to infection by the parasite. Acid phosphatase ac-
tivity in the hemolymph was below the detection limit in uninfected crabs, but was detectably
high in lightly, moderately and heavily infected crabs. Hemagglutination, possible indicator
of innate humoral defense activity, was not affected by infection. Glycogen levels in the
hepatopancreas of infected crabs decreased by 50% in females and 70% in males compared
to controls. Infection by H. perezi caused significant alterations to the hemolymph chemistry
and metabolism of the crab. Changes in serum proteins, hemocyanin, and glycogen levelsin
heavy infections indicate that crabs probably die from metabolic exhaustion.

Hematodinium perez is a parasitic dinoflagellate that proliferates in the he-
molymph of brachyuran crabs. In the American blue crab, Callinectes sapidus,
the parasite is highly pathogenic, and occurs in recurrent epizootics along the
eastern seaboard of the USA (Messick and Shields, 2000). The disease occursin
blue crabs in saline waters (>12%.) from Delaware to Florida (Newman and
Johnson, 1975) and into the Gulf of Mexico (Couch and Martin, 1982; Messick
and Shields, 2000). Since 1992, prevalences have reached 70% to 100% in crabs
from coastal bays in Maryland and Virginia with lower prevalences (0.1-10%) in
eastern portions of lower Chesapeake Bay (Messick, 1994; Messick and Shields,
2000). Prevalence shows a sharp peak in autumn with juveniles having a higher
prevalence and intensity of infection than adults (Messick, 1994). The parasite
may overwinter in infected crabs (Messick et al., 1999). Experimentally infected
blue crabs typically die over 14 to 40 days post inoculation and experience a
mortality rate of 86% (Shields and Squyars, 2000; Shields, 2001, in press).

At present only two species of Hematodinium have been described: H. perez
Chatton and Poisson 1931, and H. australis Hudson and Shields 1994. Newman
and Johnson (1975) and MacLean and Ruddell (1978) identified the species from
the blue crab as H. perezi based on distinct morphological features. Whereas this
diagnosis may be questioned, until comparisons are made with the type species,
we follow the convention of Newman and Johnson (1975) and MaclL.ean and
Ruddell (1978).

Blue crabs support the largest commercial fishery within Chesapeake Bay, with
annual harvests ranging from 80—100 million pounds (Kirkeley, 1997; Johnson
et al., 1998). Hematodinium perezi may cause losses of as much as $1.5 million
during major epizootics with annual losses approaching $250,000 to $500,000 in
Virginia alone (based on simple estimates from annual landings, Shields unpubl.
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data). Fishing pressure is often cited for the recent declines in blue crab stocks,
but disease and environmental processes have not been well examined. Hemato-
dinium-like dinoflagellates have impacted other fisheries. Parasitic dinoflagellates
cause bitter crab disease in the Tanner and snow crab fisheries (Chionoecetes
bairdi, C. opilio, Meyers et al., 1987; Taylor and Khan, 1995), as well as severe,
costly mortalities to the Norway |obster (Nephrops norvegicus, Field et al., 1992)
and velvet crab fisheries (Necora puber, Wilhelm and Miahle, 1996). The effects
of Hematodinium-like species on other large fisheries, and our current data (Mes-
sick and Shields, 2000), indicate that H. perezi has a significant impact on the
coastal blue crab fisheries along the Atlantic seaboard of the U.S.A.

Unfortunately, background mortalities due to Hematodinium are often difficult
to assess as dead crabs quickly deteriorate and become undiagnosable. Thus, our
primary objectives were to examine selected biochemical and physiological mark-
ers to gauge aspects of the pathophysiology of the infection and to investigate
underlying causes of death in crabs infected with H. perezi. We examined total
serum proteins, hemolymph acid phosphatase activity, the presence of selected
enzymes in the hemolymph, hemagglutination ability, and glycogen concentra-
tions in the hepatopancreas between infected versus uninfected crabs. The influ-
ence of host sex was examined for several of the biochemical constituents.

METHODS

CraB CoLLEcTION.—Crabs were collected with commercial crab pots from two
reference locations on the Delmarva Peninsula: Red Bank and Hungars Creeks,
Virginia. Additional samples were obtained from crab pots and trawls in Wach-
apreague Creek and Wachapreague Inlet, Virginia. Crab pot samples were biased
towards mature crabs. Sampling within lower Chesapeake Bay was done in con-
junction with the VIMS Trawl Survey and the VIMS Blue Crab Dredge Survey
as described in Shields and Squyars (2000). Crabs were chilled on ice for trans-
portation to the laboratory. In some cases, crabs were held in static 5 gal. (19
liter) aquariafor further observations. For the tissue analyses, intermolt blue crabs
were collected in autumn (primarily October) with some minor exceptions.

HemoLyMPH ANALYsSes.—Crab hemolymph was removed from the axillae of
the 5th leg (swimmer) using a 27 ga. needle with a 1.0 ml tuberculin syringe.
The hemolymph was examined as a wet smear with an additional smear being
processed through a Harris hematoxylin and eosin staining procedure as in Mes-
sick (1994). Wet smears were observed at 400X, prepared smears with oil im-
mersion at 1,000X. Parasite intensities (number of parasites per 100 host cells)
were obtained by direct counts of at least 300 cells.

CoLLECTION OF HEMOLYMPH AND HEPATOPANCREAS.—Hemolymph sampleswere
drawn with a sterile syringe and placed in a microcentrifuge tube. Serum samples
were obtained by clotting fresh hemolymph on ice for 30 min, macerating the
clot with a tissue grinder, centrifuging (4,000 rpm, 10 min, room temperature,
Fisher Scientific Micro 7), and freezing the supernatant at —80°C. Whole hemo-
lymph was obtained by drawing 1.5 to 2.0 ml fresh hemolymph into a syringe,
aliguoting into microcentrifuge tubes on ice, and freezing immediately at —20°C
followed by transferring to —80°C. Portions of muscle and hepatopancreas were
dissected, wrapped in heavy duty aluminum foil, placed in plastic freezer bags,
and stored at —80°C for later analyses.

HemoLyMPH CoNsTITUENTS.—Total proteins were analyzed with the biuret
method as in Lynch and Webb (1973). Serum samples were processed using a
standard kit (Sigma #541), and read with a spectrophotometer (Genesys 5) at 540
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nm. Controls consisted of diluted samples of bovine serum albumen (BSA), and
hemolymph samples spiked with known quantities of BSA. Hemocyanin assays
with sera were measured with a veterinary-grade serum protein refractometer
(Westover RHC-200). Acid phosphatase in whole hemolymph was measured us-
ing p-nitrophenyl phosphate as substrate (Andersch and Sczypinski, 1947) with a
commercial kit (Sigma #104), and read at the absorbance maximum of 420 nm.
Acid phosphatase activity was determined from a standard curve constructed us-
ing p-nitrophenol and expressed as concentration (units/ml of serum). Controls
were applied as per kit instructions. For statistical analyses, samples that were
below the minimum detectable level (0.1 SU/ml) were conservatively assigned a
value of half the minimum detectable level.

Enzyme constituents were measured in sera from adult female crabs. The fol-
lowing enzymes were measured using the apiZYM enzyme kit (bioMerieux,
France): alkaline phosphatase, esterase (C 4), esterase lipase (C 8), lipase (C 14),
leucine arylamidase, valine arylamidase, cystine arylamidase, trypsin, chymo-
trypsin, acid phosphatase, naphthol-AS-Bl-phosphohydrolase, «-galactosidase, 3-
galactosidase, B-glucuronidase, a-glucosidase, B-glucosidase, N-acetyl-B-glucos-
aminidase, a-mannosidase, a-fucosidase.

HemocyANIN.—Hemocyanin measurements were modified from Engel et al.,
1993. Briefly, hemolymph serum samples were diluted 1:10 (in some cases to
1:30) with buffer (50 mM Tris, 2.5% NaCl, 10 mM EDTA, pH 10.0) in 1.5 ml
cuvettes, and absorbances measured with a spectrophotometer at 338 nm. The
concentration of hemocyanin was calculated as Egg,,, = 2.33 for intact undisso-
ciated hemocyanin (Nickerson and Van Holde, 1971). Hemocyanin concentration
was calculated as (dilution X absorbance)/2.33 expressed as g/100 ml.

HEMAGGLUTINATION Assay.—Activity levels of serum hemagglutinins were
quantified for individual blue crabs. Aliquots of 50 pl crab serum were serialy
diluted on a 96-well microtiter plate to 1:1,028 using a Tris-NaCl dilution buffer
(50 mM Tris, 0.15 M NaCl, pH 7.5). Freeze-dried sheep (Sigma R3378), rabbit
(Sigma R1629), or chicken (Sigma R0504) red blood cells (RBC) were centri-
fuged and resuspended through three changes of Tris-NaCl buffer, adjusted to a
final preparation of 2% RBCs (v:v) and added as 50 .l aliquots to each microtiter
plate. Each plate was gently mixed, incubated, and examined at 2 and 24 h for
hemagglutination. Controls consisted of a well containing 50 pl of RBC suspen-
sion with 50 pl buffer. The titer for a given sample was expressed as the reciprocal
of the maximum dilution exhibiting hemagglutination.

Tissue GLYCOGEN.—T he anthrone oxidation method was used to assay for gly-
cogen (modified after Van Handel, 1965; Baturo et al., 1995). Aliquots of hepa-
topancreas (0.5 g, triplicate samples) were individually placed in 4.0 ml de-ionized
water mixed with 1.0 ml 30% potassium hydroxide solution (w:v) and boiled for
approximately 20 minutes. The samples were cooled on ice for 2-3 min, then
homogenized (Power Gen 125, 7 X 195 mm generator). The homogenates were
mixed with 6.0 ml 100% ethanol and 100 pl saturated sodium sulfate solution (1
g Na,SO, in 3.6 ml deionized water), and boiled for 1 min. Upon removal, the
samples were centrifuged at 2,000 g for 20 minutes. The supernatant was removed
from each tube and the precipitates were dried at 60°C overnight or until dry.
The precipitates were then resuspended in 500 wl deionized water, mixed with
3.0 ml 0.15% anthrone reagent (in 70% reagent grade H,SO,, made fresh daily)
and heated for 10 to 12 minutes in a 90°C water bath. The samples were cooled
to room temperature and read on a spectrophotometer at 620 nm. The amount of
glycogen in each sample was calculated based upon the absorbances of the stan-
dards. Dilutions and tissue weights of the samples were considered when calcu-
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Figure 1. Total serum proteins (biuret method) in blue crabs infected with Hematodinium perezi (* P
< 0.05, ANOVA, Tukey’s HSD, n = 12 per category except n = 6 lightly infected female crabs).
Intensity levels were uninfected (white bar), lightly (hatched bar, 0.3—3 parasites/100 host cells), mod-

erately (gray bar, 3.3-10 parasites per 100 host cells), and heavily (solid bar, 10+ parasites per 100
host cells) infected crabs.

lating quantities in tissues. For each daily series, a stock solution of oyster gly-
cogen (1 mg/ml) was prepared and standards (1,000, 500, 250, 125, 62.5, 31.25,
and 0 pg/ml solutions) were treated exactly as described above. In some cases,
samples were spiked with known quantities of glycogen to serve as additional
controls.

Stetistical analyses included regression, ANOVA, contingency tables, and
t-tests (Sokal and Rohlf, 1981; Wilkinson, 1997). A probability level of P < 0.05
was considered significant. Relationships between sex, level of infection (cate-
gorical: uninfected, light, moderate, heavy) and various constituents were exam-
ined with one- and two-way ANOVA and Tukey’s HSD. Proportional differences
in frequencies of responses for acid phosphatase assays were examined with con-
tingency tests (Chi-square). Relationships between intensities of infection (number
of parasites per infected host) and levels of each constituent were analyzed with
Pearson product-moment correlations.

REsuULTS

BAsic HEMoLYMPH CoNsTITUENTS.—Total serum protein levels and hemocyanin
concentrations exhibited significant changes in heavily infected crabs. Serum pro-
tein levels were 36% lower in heavily infected versus uninfected males (Figs. 1
and 3, ANOVA, P < 0.05 and P < 0.001 for biuret method and refractometer,
respectively). Infected females did not, however, have lower serum protein values
than their uninfected counterparts. The intensity of infection was negatively cor-
related with total serum proteins (refractometer) in infected males (Fig. 2; r =
—0.488, untransformed; r = —0.404, log,,-transformed, n = 40, P < 0.01), but
not in infected females (r = —0.254, untransformed; r = 0.082, log,,-transformed,
n = 26, P > 0.05). Serum protein levels varied from 0.6 to 6.7 g/100 ml in
uninfected males, and from 0.0 to 6.7 g/100 ml in infected males (biuret method).
Protein levels varied from 3.6 to 10.4 g/100 ml in uninfected females, and from
1.1to 12.1 g/100 ml in infected females (biuret method). As expected, total serum
protein levels and hemocyanin values were highly correlated, but the relationship
was more variable in females (r = 0.725, 0.526; n = 40, 26 for males, females,
respectively). Lipoproteins, associated with oogenesis and vitellogenesis and mo-
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Figure 2. Total serum protein (veterinary refractometer) in relation to intensity of infection with H.
perezi in (A) male (regression, y = 91.967e %57, r = —0.404, P < 0.01) and (B) female blue crabs
(r = 0.082, P > 0.1). Note change in scale between sexes for serum values.

bilized in the hemolymph during reproduction, were not considered in the anal-
ysis, nor were gonadal indices measured.

Hemocyanin concentrations also declined in relation to the level of infection
in male but not female crabs (Fig. 3). Hemocyanin was 42% lower in heavily
infected males compared to uninfected males (ANOVA, P < 0.001), and the trend
was apparent but not significant (due to high variance) in lightly and moderately
infected males. Infected females did not, however, have lower hemocyanin values
than uninfected females (ANOVA, P > 0.50). Hemocyanin values varied from
0.8 to 11.5 g/100 ml in uninfected males, and from 0.5 to 6.4 g/100 ml in heavily
infected males. Hemocyanin levels varied from 0.8 to 9.7 g/100 ml in uninfected
females, and from 1.9 to 9.1 g/100 ml in infected females. Intensity of infection
was not correlated with hemocyanin levels for males nor for females (r = —0.233,
—0.320; n = 40, 26, respectively).

AciD PHOSPHATASE AND OTHER ENzYME ConsTITUENTS.—ACid phosphatase ac-
tivity in the hemolymph varied significantly with infection in the host (Table 1,
Fig. 4). Uninfected crabs were significantly less likely to have detectable acid
phosphatase activity in whole hemolymph (Chi-square = 19.03, df = 3, P <
0.001). Diseased crabs had much higher acid phosphatase activity in their he-
molymph (up to 4.6 SU/ml), and significantly more infected crabs had detectable
acid phosphatase activity (ANOVA, Tukey’'s HSD, P < 0.001, df = 3). In a
moderately infected crab, whole hemolymph had high acid phosphatase activity
(0.789 = 0.051 SU/ml) while cell-free serum had no detectable activity. That is,
acid phosphatase was located intracellularly in the parasite, and was not measur-
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Figure 3. (A) Total serum protein levels taken with a veterinary refractometer, and (B) hemocyanin
levels in blue crabs infected H. perezi. (B) Hemocyanin levels in blue crabs infected with H. perezi
(** P < 0.01, ANOVA, Tukey’sHSD, n = 35, 4, 9, 19 females, and 75, 11, 5, 31 males, respectively).

able in the serum of at least one infected host. In general, enzyme activity was
negligible in control animals (Fig. 4).

Sample sizes for the apiZY ME enzyme analyses were small (9 uninfected vs.
8 heavily infected females) and exploratory in nature. Enzyme test strips showed
several differences in enzyme levels between uninfected and infected sera (P <
0.05, tyosmowmieds = 1.753). Infected sera showed significantly higher acid phos-
phatase (t = 3.04), napthol AS-BI phosphohydrolase (t = 2.89), and p-galacto-
sidase (t = 3.54) activities. Uninfected hemolymph showed significantly higher
(t = 2.99) a-fucosidase activity. B-glucuronidase was the only enzyme to show a
potential proportional difference with 2 of 9 uninfected crabs vs. 7 of 8 infected

Table 1. Acid phosphatase activity in hemolymph of blue crabs infected with Hematodinium perez.
Infection level was defined as uninfected (no parasites in hemolymph), lightly (0.3-3 parasites/100
host cells), moderately (3.3—10 parasites per 100 host cells), and heavily (10+ parasites per 100 host
cells) infected crabs.

Below detection Above
Status (0.1 sU/ml) detection
Uninfected 16 3
Light 4 4
Moderate 5 11

Heavy 2 13
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Figure 4. Acid phosphatase activity (log scale) in the whole hemolymph of blue crabs infected H.
perezi. Key to infection levels given in Table 1 and Figure 1; dashed line, detection limit for activity
level.

crabs exhibiting noticeable acitivity of the enzyme. [NB: with a larger sample
size, Chi-square may show this to be significant, but the means were not signif-
icant by t-test (t = 1.49) due to a high variance in enzyme activity.]

HEMAGGLUTINATION.—A large, replicated series of hemagglutination tests were
performed using rabbit, chicken and sheep red blood cells (RBCs) (Tables 2 and
3). No significant differences in proportions (Chi-square), or means (as exponents,
ANOVA) were apparent between levels of infection (uninfected, light, moderate,
and heavy infections). Infected and uninfected sera reacted poorly to sheep RBCs,
but both reacted highly with chicken RBCs. High titers (64+) were observed in
some infected animals but there were no differences in the frequencies of animals
showing high titers.

Tissue GLYcoceN.—Glycogen showed significant declines in the hepatopan-
creas of infected blue crabs (Fig. 5). Infected males and females showed major
declines in glycogen levels in the hepatopancreas (2-way ANOVA with interac-
tion, P < 0.001). In uninfected females, glycogen ranged from 4.93 to 10.54 mg/
gm, and in infected females, from 2.57 to 5.02 mg/gm. In uninfected males,
glycogen ranged from 6.33 to 10.68 mg/gm, and in infected males, from 1.51 to
5.63 mg/gm. The magnitude of the difference between infected males and females
was also significant (interaction term, P < 0.01); that is, infected males exhibited
a greater decline (70%) than infected females (50%). Glycogen levels were not
different between uninfected males and females (P > 0.05). Glycogen in the
muscle was not assessed.

Table 2. Proportion and percentage of individua hemolymph samples reacting with vertebrate red
blood cells.

Infection status Rabbit Sheep Chicken n

Infected 50/68 31/68 59/68 36 male
73.5% 45.6% 86.8% 32 female

Uninfected 17/24 9/24 24/24 12 male
70.8% 37.5% 100% 12 female

RBC reactivity Moderate Low High
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Figure 5. Glycogen levels in the hepatopancreas of uninfected and heavily infected blue crabs (stan-
dard error shown, n = 12, 12, 12, 9, respectively with triplicate sampling for each individual).

DiscussioN

Hematodinium infections elicit distinctly different pathophysiologies between
sexes of the blue crab, Callinectes sapidus. Serum proteins, hemocyanin, and
tissue glycogen were all more heavily altered in infected male versus infected
female crabs. Given such pathophysiological differences, we speculate that the
survival rate for infected males should be lower than that for females. A sex-
biased pathogenicity should present as either a lower prevalence of the disease in
males due to preferential mortality, or a higher prevalence in males due to a more
rapid and observable fulmination of infection. In most cases, however, males have
similar prevalences to females (Messick, 1994; Messick and Shields, 2000). Be-
cause female blue crabs show less alteration in serum proteins and hemocyanin,
future pathophysiological studies of chronic diseases should assess host sexual
differences.

Basic HEMoLYMPH CONSTITUENTS.—Serum protein levelsin several crustaceans
are altered when infected by disease agents (Table 4). Based on available data,
parasites found in the hemolymph and connective tissues (H. perezi, P. perniciosa,
Gram negative bacteria, Aerococcus viridans) cause significant declines in serum
proteins during heavy or late-stage infections. Concurrent declines are expected
for hemocyanin given that it comprises up to 90% of the serum proteins. Con-
versely, in most cases, tissue-dwelling parasites that lead to chronic disease (mi-
crosporidans, rhizocephalans, acanthocephalans) cause elevated levels of serum
proteins and hemocyanin (Table 4). Pathological processes may explain these
patterns. In hemolymph infections the logarithmic proliferation of the pathogens
coupled with their metabolic needs during rapid growth, and the resulting host
lethargy, drain the protein and carbohydrate constituents of the host. Hemolymph
glucose levels decline rapidly in such infections, in some cases reaching zero
(Stewart and Arie, 1973; Pauley et al., 1975; Spindler-Barth, 1976). Starvation
may be coupled with these disease processes as heavily infected crustaceans be-
come lethargic or cease feeding (Stewart and Arie, 1973; Taylor et al., 1996;
Shields, unpubl. data). Starvation can cause marked declines in serum protein and
hemocyanin levels (Uglow, 1969a, 1969b; Stewart et al., 1972). In longer, chronic
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infections where parasites such as rhizocephalans infect other tissues, host behav-
ior is altered, and crabs exhibit behaviors associated with egg grooming (e.g.,
Bishop and Cannon, 1979). Such behavioral effects may elicit mild hypoxia as a
metabolic effect of parasitism due to tissue destruction (e.g., Taylor et al., 1996),
or make the host more susceptible to fouling organisms which then interfere with
respiration (Gannon and Wheatly, 1992, 1995), or lead to increases in hemocyanin
levels as a host response (see Engel et al., 1993). In addition, severa tissue-
dwelling parasites lyse or alter the surrounding tissues causing increases in free
amino acids, protein constituents and enzymes (Vivares and Cug, 1981; Stentiford
et al., 1999).

The respiratory physiology of Norway lobster, Nephrops norvegicus, is seri-
ously affected by Hematodinium infections. Copper levels in the hemolymph of
infected Norway lobster were 35% lower and oxygen carrying capacity of the
hemocyanin was 43% lower than uninfected controls (Field et al., 1992; Taylor
et al., 1996). In addition, oxygen consumption in heavily infected lobster issimilar
to that of lobsters undergoing exercise, and is probably related to large numbers
of parasites in the hemolymph (Taylor et al., 1996). Serum proteins levels were
not altered in Aerococcus viridans infections in Homarus americanus (Stewart et
al., 1969), yet the oxygen binding capacity of hemocyanin was impaired by 50%
(Rittenburg et al., 1979), albeit hemocyanin levels were not assessed. The reduc-
tion in carrying capacity of the hemocyanin may explain the decline in tissue
glycogen and ATP activity (Stewart and Arie, 1973), and suggests a lack of in-
tracellular oxygen rather than nutrient depletion as the ultimate cause of death in
infected lobsters (Rittenburg et al., 1979; see also Stewart, 1980). The reduction
of serum proteins, hemocyanin, and glycogen levels in heavily infected male blue
crabs suggests that nutrient depletion is the primary cause of death (see below).
Regardless, the disruption or dysfunction of the hepatopancreas, the site of he-
mocyanin synthesis (Rainer and Brouwer, 1993) and glycogen storage, has neg-
ative consequences to respiration and lipid metabolism.

Phosphatases have been reported from the hemocytes of crabs (Roche and
Latreille, 1934), but little work has examined their role in blood chemistry in
crustaceans. Parasite-derived acid phosphatase apparently inhibit the production
of host-derived superoxide anions (Remaley et al., 1984). In trypanosomes, acid
phophatase is secreted extracelluarly (Lovelace et al., 1986) or is distributed on
the cell surface (Gottlieb and Dwyer, 1981). The acetosporan oyster parasite,
Bonamia ostreae, produces acid phophatase at levels similar to those for Leish-
mania spp. (Hervio et a., 1991). Similarly, the protozoan parasite Perkinsus mar-
inus produces high levels of acid phosphatase activity; such parasite-derived ex-
tracellular enzymes may inhibit the cellular defenses (as oxygen intermediates)
and phosphoproteins of the oyster host (Volety and Chu, 1997). Thus, the high
levels of acid phosphatase observed in cells of Hematodinium may inhibit innate
host defenses such as superoxide-mediated cell death. Alternatively, acid phos-
phatase, beta-glucuronidase and N-acetyl-beta-glucosaminidase may indicate high
levels of phagocytic or pinocytic activity by the parasite (Beckman et al., 1992);
yet, phagocytosis of host hemocytes is rarely observed with H. perezi (Shields,
pers. obs.). Other studies have examined enzyme levels in blue crabs, but not in
relation to disease (Walsh and Henry, 1990; Najafabadi et al., 1992).

HEMAGGLUTINATION AND HosT DEFENSEs.—INn crustaceans, agglutinins have
been found against vertebrate erythrocytes, bacteria, invertebrate sperm, proto-
zoans, and other cells (for review, Smith and Chisholm, 1992; Soderhall and
Cerenius, 1992). Agglutinins generally have low titers in crustaceans when com-
pared to other invertebrates and show specificity to n-acylaminosugars which are
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common constituents of bacterial cell walls. At least three lectins (serum-bound
and cell-bound) are known from the blue crab (Cassels et a., 1986). More re-
cently, a bacteriolytic killing factor, callinectin, a small peptide, has been found
in the sera and on the hemocytes of blue crabs (Noga et al., 1994; Khoo et a.,
1996). Decreased levels of callinectin are associated with shell disease in the
Pamlico River, North Carolina

There is surprisingly little correlative evidence on the role of agglutinins or
other humoral factorsin the disease resistance of crustaceans. Foreign bodies have
been shown to induce an increase in agglutination titers in the blue crab (Pauley,
1973). Rabbit and chicken RBCs induced a short, but weak rise in the titers of
agglutinins over 2 days. Lobster sera did not agglutinate Aerococcus viridans, but
Cancer irroratus and Chionoecetes opilio showed varying levels of agglutination,
but it was not correlated with infectivity of the pathogen (Cornick and Stewart,
1975). Pooled sera of Peneaus japonicus agglutinated horse, sheep, chicken and
human RBCs (Muramoto et al., 1995). In oysters, serum agglutinin levels did not
change in Crassostrea virginica infected with Perkinsus marinus, or with Hap-
losporidium nelsoni (Chintala et al., 1994). Serum agglutinins did, however, in-
crease markedly in C. gigas exposed to P. marinus, but declined to zero in mor-
ibund C. virginica (La Peyre et al., 1995). In blue crabs, hemagglutination in
individual serum samples did not correlate with infection by H. perez. Several
infected crabs did, however, show relatively high titers of activity (1:64). Opsonin-
like activation by agglutinins probably occurs because hemocytes form nodules
in response to bacterial and Hematodinium infections (Johnson, 1976; Field et al.,
1992; Messick, 1994; Field and Appleton, 1995).

Bacterial and protozoal diseases commonly lead to reduced hemocyte densities
in crustaceans. In blue crabs infected with H. perez, hyalinocyte densities decline
with infection, and declining hemocyte densities are correlated with host mortality
(Shields and Squyars, 2000). Loss of clotting is probably dependent on the decline
in hyalinocytes in infections, and may be associated with mortality. Clotting is
effected by the hyalinocytes and possibly semigranulocytes (Stang-Voss, 1971,
Johnson, 1980; Hose et al., 1990). Hyalinocytes dehisce to release products that
catalyze coagulogen, the main clotting protein (Bachau and DeBrouwer, 1974,
Ghidalia et a., 1981; Hose et al., 1990). Since blue crabs have Type C clotting,
or explosive cytolysis (Clare and Lumb, 1994), a rapid decline in hyalinocyte
densities coupled with changes in serum proteins leads to the loss of clotting
ability.

ENERGY METABOLISM AND GLYCOGEN.—Glycogen is the main storage substrate
in many invertebrates, providing energy for several physiological processes in-
cluding chitin synthesis (Gabbot, 1976). Winget et a. (1977) reported glycogen
a 8.4 = 0.5 (SE) mg/gm from the hepatopancreas of blue crabs collected in
autumn from Delaware Bay, a value slightly higher than that reported here. In C.
maenas, glycogen levels show marked variability with season, sex, starvation,
tissue sampled, and molt cycle (Heath and Barnes, 1970). In Chasmagnathus
granulata, glycogen levels show seasonal patterns in hemolymph and gill, but not
in muscle or hepatopancreas (Nery and Santos, 1993). The utilization of glycogen
was apparently different between summer and winter with glycogen being used
for energy metabolism during summer (with lipid storage), followed by glycogen
storage over winter (with lipid metabolism) (Kucharski and Da Silva, 1991; Nery
and Santos, 1993).

Glycogen reserves decrease with infections in decapod crustaceans (Table 4).
As with serum constituents, hemolymph-dwelling pathogens (Gram negative bac-
teria, A. viridans, H. perezi) are associated with declines in glycogen in the he-
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patopancreas over time. The rapid decline in glycogen in infected hosts indicates
a severe metabolic drain due to the pathogens. In lobsters, H. americanus, infected
with A. viridans, glycogen declined precipitously over two to four days in the
hepatopancreas and muscle, but took over one week to decline in the heart (Stew-
art and Arie, 1973). The declines in the hepatopancreas were as great as 70%
over four days, and were likely due to a bacterial predilection for that organ.
Experimentally infected lobsters stopped feeding two days after infection by A.
viridans (Stewart and Arie, 1973) and experimentally infected blue crabs showed
reduced feeding activity 14 days after inoculation with H. perezi (Shields, unpubl.
data); hence, the decline in glycogen may be exacerbated by cessation of feeding.

In contrast, tissue-dwelling microsporidans (A. michaelis, T. maenadis) appar-
ently only had alocal impact on the glycogen in the surrounding muscle; glycogen
reserves in the hepatopancreas were not affected (Findley et al., 1981; Vivarées
and Cuq, 1981). In addition, lipid levels did not change in infected crabs (Vivares
and Cuq, 1981). Glycogen and lipids increased in the hepatopancreas of C. maen-
as infected by Sacculina carcini (Smith, 1911, 1913) and lipid reserves did not
change in hermit crabs infected by a bopyrid isopod (Reinhard et al., 1947). The
high metabolic drain associated with these parasitic castrators may result from
mobilization and synthesis of proteins rather than use of lipids and glycogen
reserves.

Glycogen is a precursor for chitin synthesis, and large quantities can be found
in the epidermis and underlying connective tissues prior to ecdysis (Travis, 1955;
Johnson, 1980). Juvenile green crabs, C. carcinus, store glycogen in the hepato-
pancreas prior to molting while large, adult crabs (anecdysial) do not store large
quantities (Heath and Barnes, 1970). Juvenile snow and Tanner crabs, Chionoe-
cetes opilio and C. bairdi, with advanced stages of Hematodinium sp. may not
successfully molt (Meyers et al., 1987). Glycogen is depleted by 50% in these
animals (Shields and Taylor, unpubl. data). While it is unclear if heavily infected
snow crabs survive ecdysis, chitin deposition would likely be hindered during the
process. However, lightly infected blue crabs have successfully molted in the lab
(Shields, unpubl. data). Since there is no difference in the prevalence of H. perezi
in postmolt, intermolt, and premolt crabs (Messick and Shields, 2000), the re-
duction in glycogen may not be apparent in lightly infected blue crabs.

Several pathogens interefere with glucose metabolism. Hemolymph glucose
levels were 40% to 60% lower in blue crabs infected with P. perniciosa; indeed,
some infected crabs had no detectable quantities of glucose (Pauley et al., 1975).
Similar findings were reported for |obster, H. americanus, infected with gaffkemia
(Stewart and Cornick, 1972). Blue crabs parasitized by the microsporidan, Ameson
michaelis, show markedly increased levels of lactate and decreased levels of blood
glucose in the hemolymph, thoracic muscle and hepatopancreas (Findley et al.,
1981). Increases in lactate in hemolymph and muscle were also noted for C.
mediterraneus infected with Thelohania maenadis (Vivarés and Cuq, 1981). High
lactic acid levels in the hemolymph may result from the use of muscle tissue as
an energy source by the parasites or from parasite-induced stress and indicate that
the affected tissues are undergoing anaerobic metabolism in response to hypoxia
(Findley et al., 1981; Taylor et a., 1996).

The processes leading to host death in Hematodinium infections are complex.
Clearly, respiratory dysfunction is evident by the decline in hemocyanin levels
(Field et al., 1992; this study), the loss of oxygen binding capacity of the he-
mocyanin (Taylor et al., 1996), and the magnitude of parasitic congestion and
disruption of the gills, and other tissues (Meyers et al., 1987; Field et al., 1992;
Hudson and Shields, 1994; Messick, 1994). Ischemia and focal necrosis are im-
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portant factors in mortality of blue crabs infected with Vibrio spp. (Johnson,
1976), and may contribute to mortality in blue crabs infected with H. perezi. The
chronic nature of Hematodinium infections indicates that exhaustion of metabolic
reserves may occur over long periods and likely results from proliferation of the
parasite (Meyers et al., 1987; Shields and Squyars, 2000), and reduced feeding
activity associated with lethargy (Taylor et al., 1996; Stentiford et al., 2000;
Shields, unpubl. data). Lastly, low hemocyte densities are correlated with immi-
nent host death (Shields and Squyars, 2000), and may facilitate lethal secondary
bacterial infections (Meyers et a., 1987; Field et al., 1992), or lead to loss of
clotting ability with death ensuing from loss of hemolymph.
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