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Extending theories on muon-specific interactions

Carl E. Carlson1,* and Michael Freid1,2,†
1Nuclear and Particle Theory Group, College of William and Mary, Williamsburg, Virginia 23187, USA

2Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
(Received 7 August 2015; published 23 November 2015)

The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydrogen and
electronic hydrogen, has yet to be resolved. There are suggestions that beyond-the-standard-model physics
could resolve both this puzzle and the muon anomalous magnetic moment discrepancy. Karshenboim et al.
point out that simple, nonrenormalizable, models in this direction involving new vector bosons have serious
problems when confronting high energy data. The prime example is radiative corrections to W → μν
decay which exceed experimental bounds. We show how embedding the model in a larger and arguably
renormalizable theory restores gauge invariance of the vector particle interactions and controls the high
energy behavior of decay and scattering amplitudes. Thus, beyond-the-standard-model explanations of the
proton radius puzzle can still be viable.

DOI: 10.1103/PhysRevD.92.095024 PACS numbers: 12.60.Cn, 12.15.Lk, 31.30.J-, 32.10.Fn

I. INTRODUCTION

The 7σ discrepancy between the proton radius measured
via the muonic hydrogen Lamb shift [1,2] and measured via
electron scattering or electronic hydrogen atomic level
splittings (including the Lamb shift in ordinary hydrogen)
[3], remains unresolved. Assuming the discrepancy is not
due to experimental error, we can consider the explanation
that there exists unaccounted for physics which masks itself
as a difference in proton size. Such an effect must lower the
muonic hydrogen 2S state by 310 μeV to match experi-
ment. There have been several proposed beyond-the-
standard-model (BSM) theories that could explain such
an effect. See Refs. [4,5] for reviews.
Furthermore, there exists a discrepancy of 3 or more σ

between the measured muonic g − 2 and that predicted by
the standard model [6–9]. A tantalizing hope and goal of
these BSM theories is to solve both the proton radius and
the muonic g − 2 problems simultaneously.
One idea in the BSM regime is the existence of a new

force that couples preferentially to muons [10–12].
However, a number of constraints must be addressed
[13–15]. Many of them can be avoided if we suppose
the new force carrier(s) couple(s) only to muons on the
leptonic side (or at least much more strongly to muons than
to other leptons) and only to first generation particles on the
hadronic side, with the hadronic coupling proportional to
the electric charge. A neat scheme of this sort has been
proposed by Batell et al. [11] and further studied by
Karshenboim et al. [15]. Our own study will be more
generic, along the lines of models studied by Rislow and
one of the present authors [12]; these models in particular
have smaller electron couplings than in Refs. [11,15] and a

different pattern of parity violation such that corrections
to the muonium hyperfine splitting and 133Cs weak charge
will not arise.
The new muon coupling will affect other processes

involving muons, and one immediately thinks of the
muon’s anomalous magnetic moment, ðg − 2Þμ, with its
circa 2.1� 0.7 ppm discrepancy between the standard
model and experiment. In the present context, it was early
noted [10] that if the mass of the BSM force carrier is very
light its effect on ðg − 2Þμ can explain the discrepancy
directly. If the mass of the new force carrier is not very
light, one has to arrange a fine-tuning involving at least one
more BSM force carrier to keep the effect of the new
physics on ðg − 2Þμ at the correct size. This is by now well
understood [11,12], and one can even turn it into a positive
by solving the ðg − 2Þμ problem and the proton radius
puzzle with the same model.
Further, if the BSM force carrier is not too heavy, it can

contribute as a bremsstrahlung or radiative correction to
decays involving muons. For example, the decayK → μνϕ,
where ϕ is the new force carrier, was studied by Barger
et al. [14] for the case where ϕ does not visibly decay.
If there is a small coupling allowing ϕ → eþe−, then the
eþe− spectrum would show a visible bump above the
QED background in K → μνeþe−, as was considered
in Ref. [16].
Karshenboim et al. [15] called special attention to the

need for embedding any new vector force carrier into a
renormalizable theory, or at least into a theory where the
scattering or decay amplitudes do not grow with energy
when the energy is high. They did this by studying radiative
corrections to W → μν decay. The width of this decay is
unambiguously predicted in the standard model and is
measured with an uncertainty of about 2%. Karshenboim
et al. showed that if there would be just a low mass vector
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boson that coupled to muons (but not to W’s or ν’s), with
a coupling chosen to explain the energy splitting deficit
in muonic hydrogen, then its contribution ΓðW → μνVÞ
would exceed the measured width of the W by a large
margin.
However, in a well-behaved and renormalizable

theory, the growth of amplitudes with energy cannot go
unchecked. Unitarity imposes limits on the energy behavior
of scattering amplitudes, and if one is using the conven-
tions of (say) Bjorken and Drell [17] or of Peskin and
Schroeder [18], an amplitude in a single partial wave must
not grow with energy at high energy [i.e., if the amplitude
grows like ðenergyÞn for large energies, then n ≤ 0].
Nonrenormalizable theories are known for their ultraviolet
divergences in loops, but their excessive energy depend-
ence can also appear at tree level in the form of unitarity
violations. A known historical example is the amplitude for
νeν̄e → WþW− in a simple vector boson theory [19]. The
calculation from Fig. 1(a) gives an amplitude that is
asymptotically in a single partial wave that grows like
E2 as the center-of-mass energy E → ∞. The Weinberg–
Salam extension of the theory also has a Z-boson Fig. 1(b),
which is significantly smaller than 1(a) at threshold but
asymptotically cancels the offending energy behavior and
restores perturbative unitarity [20]. A general study by
Llewellyn Smith has shown that the need to satisfy unitarity
bounds leads to a Yang–Mills structure for many theories
involving vector bosons [21].
In this paper, we consider new vector and (when needed)

axial-vector bosonic interactions that couple to the muon
and the proton but do not couple or couple weakly to the
electron and most other particles. Again, if this is all we
have, the result of Karshenboim et al. shows that the region
of parameter space which solves the proton radius problem
does not occur in the allowed parameter space given by the
known decay of theW. Inspired by Refs. [20,21], we add an
additional triple-boson vertex in the Lagrangian, giving an
interaction involving the standardW-boson, the new vector
particle ϕV , and a further vector boson with the same mass
as theW. We call this newest boson a “shadowW,” denoted
Ws with mðWsÞ ¼ mW . We also include, when needed,
a corresponding axial vector triple boson interaction,
involving the shadow Ws, the ordinary W, and the ϕA.
The inclusion of the Ws makes the ϕ interactions gauge
invariant or current conserving, arguably fixes the

nonrenormalizability of the original interaction, and, as
we shall show, definitively pushes the constraints on the
couplings due to W decay far away from the coupling
strength parameter region necessary to solve the proton
radius problem. Thus, it can be a plausible candidate for a
BSM solution to the proton radius problem.
We note that a current conserving theory with massive

bosons (ϕV and ϕA) and shadow W’s gives high energy
results, e.g., for radiative corrections to W decay, very
much like a theory with a massive scalar boson ϕs plus,
when needed, a corresponding pseudoscalar boson ϕp. We
briefly display such a scalar theory and show that decays
of the W involving such a scalar and pseudoscalar do not
restrict the necessary parameter space needed for solving
the proton radius problem with scalar exchanges.
We should also note that, though our theory is well

behaved and seems likely to be renormalizable (as argued
by Llewelyn Smith [21]), it is not yet a full theory
embedded into the standard model (SM). Further work
will be required to show how such a theory can be
embedded into the SM. For now, we simply consider
our theory as a phenomenological application of some
BSM physics, containing features that a full theory must
contain and controlling the high energy behavior of
scattering and decay amplitudes.
In the following, the bulk of our work concerns the new

vector or axial vector bosons and is described in Sec. II. We
also include some comments on why the corresponding
radiative corrections to Z → μþμ− decay are innocuous.
Results for the scalar case are given in a short Sec. III, and
conclusions are offered in Sec. IV.

II. VECTOR THEORY

We start with an interaction Lagrangian similar to
Ref. [12] where ϕV interacts with a muon (and proton)
via the explicit vector coupling Cμ

V (Cp
V) and where ϕA

interacts with a muon (and proton) through the axial vector
coupling Cμ

A (Cp
A). For brevity of notation, it is understood

that ϕ without a subscript represents either ϕV or ϕA in this
section. We also include an additional three-boson inter-
action [21] term involving the ϕ, the ordinaryW, and a third
boson, with coupling strength equal to Cμ

V (or Cμ
A) as is

necessary to make the decay W → μνϕ gauge invariant.
The third boson is the shadow W, denoted Ws, which
couples to the muon in the same manner as the W and
has mWs

¼ mW .
The new interaction terms in the Lagrangian are

Lint ¼ − ϕV
λ ½Cμ

V ψ̄μγ
λψμ þ Cp

V ψ̄pγ
λψp�

− ϕA
λ ½Cμ

Aψ̄μγ
λγ5ψμ þ Cp

Aψ̄pγ
λγ5ψp�

− iCμ
VϵijkW

i
αW

j
β∂αWk;β þ ifCμ

Atermsg
−

g

2
ffiffiffi
2

p ψ̄μγ
λð1 − γ5ÞψνW−

s;λ þ H:c:; ð1Þ

FIG. 1. The illustrative process νν̄ → WþW−.
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where in the Cμ
V terms

W1
α ↔ W−

α ;

W2
α ↔ Wþ

s;α;

W3
α ↔ ϕV

α ; ð2Þ

with V → A for the Cμ
A terms; ϵijk is the totally antisym-

metric Levi-Civitá symbol. Note that we could use two
shadowW’s (one vector and one axial vector) but appear to
need only one. Further note the different signs of the Cμ

V
and Cμ

A Yang–Mills terms necessary for gauge invariance
and that we have included an interaction of theWs with the
charge changing muon current.
If the Cμ

V and Cp
V have the opposite sign, then there exists

an additional attractive force between the muon and the
proton through the interaction with the ϕV . This additional
force will create a difference between the 2S-2P Lamb shift
in muonic hydrogen and hydrogen as [10–12]

ΔEð2S-2PÞ ¼ −
jCμ

VC
p
V j

4π

m2
ϕðmrαÞ3

2ðmϕ þmrαÞ4
; ð3Þ

where mr is the reduced mass of the (muonic) hydrogen
system. The contribution to ΔEð2S-2PÞ from the axial
coupling Cμ

A is very small.
To account for the energy difference that can be

interpreted as a proton radius difference, there must be
an extra 310 μeV in the 2S-2P Lamb shift of muonic
hydrogen [1,2]. The parameter CV necessary to satisfy this
constraint is plotted as the green band outlined by solid
lines in Fig. 3 where jCμ

V j ¼ jCp
V j ¼ CV .

Furthermore, the introduction of new ϕV and ϕA inter-
actions with the muon will shift the muon anomalous
magnetic moment. The vector and axial vector couplings
affect the anomalous moment with opposite signs and can
be tuned to account for the known discrepancy between
theory and experiment of muonic g − 2 [12]. If Cμ

V is set to
satisfy the proton radius problem, then the allowed region
for Cμ

A from the muon g − 2 constraint is shown by the
green band outlined by dashed lines in Fig. 3.
We now move on to consider a constraint emphasized

by Karshenboim et al. [15], that the branching ratio of
W→μνϕV plusW → μνϕA must be less than 4% (twice the
error in theW width as measured by the Tevatron). Without
the inclusion of a three-boson interaction, this constraint
eliminates the region of the (Cμ

V ,mϕ) parameter space
required to explain the proton radius puzzle. This decay
is calculated from the Feynman diagrams given in Fig. 2.
From (1) we can derive the necessary Feynman rules to

compute this decay amplitude as

iM ¼ iCμ
VgW

2
ffiffiffi
2

p ϵαðkÞϵ�βðp3Þūðp1Þ
(
γβðp1 þ p3Þ
ðp1 þ p3Þ2

γαð1 − γ5Þ

− γμð1 − γ5Þ
 
gμν −

ðp1þp2Þμðp1þp2Þν
m2

W

ðp1 þ p2Þ2 −m2
W

!

× ðgαβðkþ p3Þν þ gβνð−p3 þ p1 þ p2Þα

þ gανð−p1 − p2 − kÞβÞ
)
νðp2Þ; ð4Þ

where k is the W 4-momentum, p1 is the muon 4-
momentum, p2 is the neutrino 4-momentum, and p3 is

FIG. 2. W → μνϕ.

FIG. 3 (color online). The parameter space necessary to satisfy
experimental constraints. Solid lines refer to constraints on Cμ

V .
Dashed lines refer to constraints onCμ

A. The green band, outlined by
solid lines, is the constraint on Cμ

V necessary to solve the proton
radius problem (�2σ). The shaded red region, above the line labeled
BR ðW → μνϕÞ…, is the forbidden region of Cμ

V due to the
constraint that the branching ratio for W goes to μνϕV þ μνϕA

must be less than 4% under the assumption that Cμ
A solves the

muonic g − 2 problem. The shaded orange region is the restricted
region on Cμ

V due to energy splittings in muonic Mg and Si at 2σ.
The green band, outlined by dashed lines, is the constraint on Cμ

A
necessary to solve the muonic g − 2 problem (�2σ) under the
assumption Cμ

V solves the proton radius problem (�2σ).
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the ϕV 4-momentum. Here we have focused on the vector
contribution to the W decay, but one can easily show that
the axial vector contribution is equivalent up to an overall
minus sign (which is irrelevant to the decay amplitude
squared).
Letting the muon and neutrino mass be zero, we find (to

leading order in mϕ=mW)

ΓW ¼ GFm3
W ½ðCμ

VÞ2 þ ðCμ
AÞ2�

96
ffiffiffi
2

p
π3

×

�
log2

m2
W

m2
ϕ

− 5 log
m2

W

m2
ϕ

þ 37

3
−
π2

3

�
: ð5Þ

Keeping the muon mass would only give multiplicative
corrections to the coefficients like ð1þOðm2

μ=m2
WÞÞ.

This decay width has a strikingly different depend-
ence on mϕ compared to Ref. [15]. The 1=m2

ϕ depend-
ence found there that came from the longitudinal
component of the ϕ polarization is canceled by the
inclusion of the Ws propagator in the second diagram of
Fig. 2. Thus, at leading order in mϕ=mW , the mass
divergence is logarithmic and not inverse polynomial.
This logarithmic dependence pushes the constraints
from W decay far away from the desired parameter
space of Cμ

V and mϕ.
The contribution of Cμ

A in (5) can be obtained in terms of
Cμ
V using the constraint from ðg − 2Þμ [12]. The constraint

from W decay eliminates the region of (Cμ
V ,mϕ) above the

top curve, the shaded red area, in Fig. 3. The values of Cμ
V

below this area are allowed by this constraint.
Another constraint on Cμ

V occurs from transitions
between 3d and 2p orbitals in muonic 24Mg and 28Si
[13,15,22]. At two standard deviations, this constraint is
plotted as the shaded orange area bordered below by a solid
black line in Fig. 3 where allowed values of Cμ

V exist on and
below this line.
Note that an additional constraint due to muonium

hyperfine splitting discussed in Ref. [15] is not relevant
here since ϕ does not couple to the electron (or the coupling
can be kept quite small). For similar reasons, we do not
have a constraint on Cμ

A from a new parity nonconserving
interaction contributing to the weak charge in 133Cs,
significantly opening up the allowed parameter space
for ðCA;mϕÞ.
In Fig. 3 we see that there are broad regions of parameter

space for which we can find values of Cμ
V , C

μ
A, and mϕ that

simultaneously solve the proton radius puzzle and the
muonic g − 2 discrepancy while satisfying the considered
experimental constraints.
For completeness, we also comment on radiative cor-

rections to Z → μþμ− decay, namely Z → μ−μþϕV and
μ−μþϕA decay as represented in Fig. 4.

This decay amplitude is

iM ¼ i
2

gW
cos θW

Cμ
VϵαðkÞϵ�βðp3Þūðp1Þ

×

�
γβðp1 þ p3Þ
ðp1 þ p3Þ2

γα
�
−
1

2
þ 2sin2θW −

1

2
γ5
�

− γα
�
−
1

2
þ 2sin2θW −

1

2
γ5
� ðp2 þ p3Þγβ

ðp2 þ p3Þ2
�
νðp2Þ;

ð6Þ

where k is the Z 4-momentum, p1 is the muon 4-
momentum, p2 is the antimuon 4-momentum, and p3 is
the ϕV 4-momentum. As with the W decay, here we only
focus on the vector contribution to the Z decay, but one can
easily show that the axial vector contribution is equivalent
up to an overall minus sign (which is irrelevant to the decay
amplitude squared).
In this case, cancellations between the two diagrams

ensure the Ward identity is satisfied. Therefore, there is no
poor behavior at high energies when the ϕ is longitudinally
polarized. This is seen in the logarithmic dependence of the
decay width (7) on mϕ [which resembles that of the W
decay (5)],

ΓZ ¼ GFm3
Z½ðCμ

VÞ2 þ ðCμ
AÞ2�½12 − 2sin2ðθWÞ cosð2θWÞ�
48

ffiffiffi
2

p
π3

×

�
log2

m2
Z

m2
ϕ

− 4 log
m2

Z

m2
ϕ

þ 5 −
π2

3

�
: ð7Þ

As in the calculation of the W → μνϕ decay, we have
neglected the muon mass, and we have expanded the Z’s
decay width in (7) to leading order in mϕ=mZ. These steps
are motivated by the arguments given in the paragraph
following (5).

III. SCALAR THEORY

We also consider a scalar theory which is well behaved
without the addition of any shadow particles. The inter-
action Lagrangian is

Lint;S ¼ ϕS½Cμ
Sψ̄μψμ þ Cp

S ψ̄pψp�
þ ϕP½Cμ

Pψ̄μγ
5ψμ þ Cp

Pψ̄pγ
5ψp�; ð8Þ

FIG. 4. Z → μ−μþϕ.
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where ϕS is the scalar field, ϕP is the pseudoscalar field
where mϕS

≡mϕP
, and the C’s (with corresponding super-

scripts and subscripts) are the corresponding coupling
strengths. In this section it is understood that ϕ refers to
either ϕS or ϕP.
As with the vector theory, we again consider the constraint

due to the branching ratio of W → μνϕS plus W → μνϕP.
The decay amplitude for both scalar and psuedoscalar cases
is given by the Feynman diagram in Fig. 5.
The result for the decay width is

ΓW;scalar¼
GFm3

W ½ðCμ
SÞ2þðCμ

PÞ2�
96

ffiffiffi
2

p
π3

�
log

�
mW

mϕ

�
−
17

12

�
; ð9Þ

where, as with the vector case, we have taken the muon and
neutrino mass to be zero.
As with the vector theory, this logarithmic dependence in

(9) opens the parameter range in Cμ
S necessary to solve the

proton radius problem. This is seen in the constraint
plot Fig. 6.

IV. CONCLUSION

We have considered some of the constraints faced by
proton radius puzzle explanations that hypothesize a new
muon-specific force.
In particular, we have considered some of the necessary

features required for a vector mediator to be embedded
into a larger renormalizable model. Without the embed-
ding, amplitudes grow quickly with energy, and the
energy in W decay is enough to cause trouble. The
radiative corrections to W → μν would be larger than
the uncertainties in the measured and well-calculated W
decay rate, using couplings that could explain the proton
radius puzzle. However, with a theory which also contains
Yang–Mills couplings, the unphysical energy dependence
is ameliorated, and the W width constraint causes no
problem for BSM models solving the proton radius
puzzle.
The tightest remaining constraint follows from some

measured energy splittings in muonic Mg and Si, which are
well calculated in the standard model, and new physics
cannot cause a deviation larger than the experimental
uncertainty. Though this constraint is tight, it does elimi-
nate the muon-specific interaction at the level required for
the proton radius problem.
Thus, it is fair to say that a theory involving a new vector

(and axial vector) boson, ϕ, along with vector (and axial
vector) couplings to the muon and proton, as described by
the Lagrangian in Eq. (1), gives a viable representation of
the results for some to-be-determined complete solution
to the proton radius puzzle. Such a theory necessitates the
existence of an additional W-like boson, the shadow W
denoted Ws, which fixes the otherwise poor high energy
behavior in radiative corrections to W → μν decay first
noticed by Karshenboim et al. [15].
The arguable success of the vector and axial vector

theory, or the scalar and pseudoscalar analog, motivates
finding a suitable complete embedding into the Standard
Model. Such an embedding must be renormablizable. The
addition of a shadow W and corresponding triple-boson
interactions is one step in this direction (as pointed out by
Llewellyn Smith [21]).
Finding such an embedding may necessitate new inter-

actions which may lead to additional constraints. For
example, one must consider the process by which the
new bosons acquire their mass. We also expect loop
corrections to the self-energy of the W. Corrections with
loops of new particles correlate with contributions to
the Peskin–Takeuchi parameters [23–25]. Though these

FIG. 5. W → μνϕ.

10

FIG. 6 (color online). The parameter space necessary to satisfy
experimental constraints on the scalar coupling Cμ

S. The green
band, outlined by solid lines, is the constraint on Cμ

S necessary to
solve the proton radius problem (�2σ). The shaded red region,
above the line labeled BR ðW → μνϕÞ…, is the forbidden region
of Cμ

S due to the requirement that the branching ratio forW goes to
μνϕS þ μνϕP must be less than 4% under the assumption that Cμ

P
solves the muonic g − 2 problem. The shaded orange region is the
restricted region on Cμ

S due to energy splittings in muonic Mg and
Si at 2σ. The dashed green line is the constraint onCμ

P necessary to
solve both the proton radius and muonic g − 2 discrepancies (for
clarity, only the central value is shown).
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parameters are only defined under certain conditions, e.g.,
for BSM theories in which new particles are heavy, one
can find analogous parameters for theories in which, as in
our case, the new boson is light. Contributions to these
parameters will be calculated and compared against exper-
imental constraints.
It is also relevant to note that the addition of a new

muonic interaction necessitates new radiative corrections
beyond justW decay. For example, one may also consider
muon decay, pion decay, and the like. Such processes are
at a significantly lighter mass scale compared to that of W
decay and thus are less likely to cause trouble. We plan to
asses if this is true in the near future. Furthermore,
changes to the rate of muon pair production from proton
collider experiments may provide further constraints on
the theory.

These are just some examples of how a vector boson
theory may be more restricted than Fig. 3 appears.
However, successes so far point to the still possible viability
of these theories as solutions to the proton radius (and
muonic g − 2) puzzle. Thus, continuation of research down
this track is well motivated.
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