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SUMMARY

Fertilization is a conserved process in all sexually re-
producing organisms whereby sperm bind and fuse
with oocytes. Despite the importance of sperm-
oocyte interactions in fertilization, the molecular
underpinnings of this process are still not well under-
stood. The only cognate ligand-receptor pair identi-
fied in the context of fertilization is sperm-surface
Izumo and egg-surface Juno in the mouse [1]. Here
we describe a genetic screening strategy to isolate
fertilization mutants in Caenorhabditis elegans in or-
der to generate a more complete inventory of mole-
cules required for gamete interactions. From this
screening strategy, we identified, cloned, and char-
acterized spe-45, a gene that encodes an Izumo-
like immunoglobulin superfamily protein.Mammalian
Izumo is required for male fertility and has the same
basic mutant phenotype as spe-45. Worms lacking
spe-45 function produce morphologically normal
and motile sperm that cannot fuse with oocytes
despite direct contact in the reproductive tract. The
power of this screen to identify proteins with ancient
sperm functions suggests that characterization of
additional mutants from our screen may reveal other
deeply conserved components in fertility pathways
and complement studies in other organisms.

RESULTS AND DISCUSSION

A Genetic Screen for Sterile Mutants
We designed a forward genetic screen to isolate C. elegansmu-

tants defective in fertilization. We used the strain sem-

2(n1343);Is[Pelt-7::gfp;rol-6(su1006)] for our screening (Fig-

ure S1) and isolated 12 temperature-sensitive (ts) mutants and

23 non-conditional sterile mutants. Since this was a pilot screen,

we did not attempt to pick every single candidate from our

screen, and our screen did not reach saturation. Hence, the

same screening strategy can be employed to isolate a wealth

of mutants going forward that would help us understand the

biology of fertilization. The feasibility of high-throughput

screening in C. elegans can complement the use of other model

organisms in which other strategies aremore conducive, such as

biochemical analyses of sperm or eggs in the sea urchin and

in vitro fertilization in the mouse [2, 3]. To validate the utility of

our screening strategy, we decided to characterize one of our

new ts mutants, spe-45(as38). Adult spe-45mutants are healthy,

and all pre-fertilization events [4] are normal in spe-45(as38) at all

culture conditions (Table S1).

SPE-45 Is Required for Fertility in Both Sexes
Hermaphrodites that are homozygous for spe-45(as38)mutation

are completely self-sterile at 25�C. However, at 20�C and 16�C,
the spe-45(as38)mutants produce modest numbers of progeny,

suggesting that the as38 allele that we isolated is a ts mutant

(Figures 1A). In contrast, spe-45(tm3715) hermaphrodites were

profoundly sterile under all culture conditions (Figure 1A) [5].

We conclude that SPE-45 is required for fertility in hermaphro-

dites. Further, spe-45 mutant hermaphrodites with either allele

proved to be fertile upon crossing with wild-type males, indi-

cating that the fertility defect in spe-45 mutants is restricted to

their sperm and not their oocytes.

To test the fertility of males carrying spe-45 mutations, we

crossed them to fem-1 mutant hermaphrodites. fem-1 mutants

do not produce any sperm and hence do not produce any self-

progeny [6]. When crossed with him-5 males, the fem-1 animals

produce cross-progeny. However, the spe-45(as38);him-5

males fail to sire progeny when crossed with fem-1 at 25�C, indi-
cating that SPE-45 is required for fertility in males, as well.

(Figure 1B).

Spermatogenesis and Sperm Activation Is Normal in
Both Sexes of spe-45(as38)
The spermathecae of spe-45 hermaphrodites contain and retain

sperm, just like wild-type control animals (Figure 2A), indicating

that the sperm production is uncompromised and that the sper-

matozoa are likely to be motile in spe-45(as38) hermaphrodites.

To assess male-derived sperm morphology, we isolated sperm
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from spe-45;him-5 males, either in sperm media alone or in the

presence of the in vitro activator pronase (Figure 2B). As viewed

under DIC optics, both the spermatids and spermatozoa were

indistinguishable in both quality and apparent quantity from

that of control him-5 males. SPE-45 is dispensable for in vitro

activation since pseudopods were present in over 90% of sperm

from both wild-type and spe-45 mutant sperm. We also exam-

ined hermaphrodite-derived sperm from dissected spe-45

mutants. These sperm were activated in vivo with fully formed

pseudopods and were indistinguishable from wild-type sperm

(Figure 2B). Taking these data together, we conclude that sper-

matogenesis and sperm activation is normal in both sexes of

spe-45 mutants.

Sperm Migration Is Normal in spe-45(as38) Mutants
Upon mating, the sperm ejaculated from males should get acti-

vated and directionally migrate from the site of ejaculation (vulva)

to the site of fertilization (spermatheca). Furthermore, sperm are

dislodged from the spermatheca into the uterus during the pas-

sage of fertilized oocytes into the hermaphrodite’s uterus. These

sperm then crawl back into the spermatheca. Several factors

orchestrate the directional migration of sperm into the sperma-

theca [7]. As a defect in sperm migration into the spermatheca

can compromise fertility, we asked whether this is the case in

spe-45(as38) mutants. fem-1(lf) worms do not produce any

sperm, and hence the spermathecae of fem-1 animals are

devoid of sperm (Figure 2C). Just like wild-type sperm, spe-45-

male-derived sperm migrate from just inside the vulva to the

spermatheca (Figure 2C). This also indicated that male-derived

spe-45 sperm activated normally in vivo. Further, spe-45 sperm

were able to maintain their position in the spermatheca despite

passing oocytes. We conclude that spe-45 mutant sperm are

fully motile and display normal migratory behavior in the repro-

ductive tract.

The spe-45 Gene Belongs to the spe-9 Class of Genes
Spermatogenesis-abnormal (spe) genes are classified based on

the phase of the sperm development or sperm differentiation in

which their roles are critically important [8]. The ‘‘spe classes’’

are named after the founding member of the class. For example,

the ‘‘spe-9 class’’ refers to genes whose loss of function pheno-

copies spe-9 mutants where sperm development is normal but

sperm are unable to fertilize oocytes despite direct contact

with passing oocytes in the spermatheca [9].

Unlike in wild-type worms, whose uteri are filled with devel-

oping embryos, the spe-45 uteri are filled with unfertilized oo-

cytes (Figure 2A), suggesting that despite being motile and in

the correct position in the reproductive tract, spe-45 spermato-

zoa are incapable of fertilizing oocytes. Staining of wild-type

worms with DAPI showed the entry of sperm into the oocytes
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Figure 1. Worms with Mutations in spe-45 Are Sterile

(A) Brood sizes (self-progeny) of wild-type, spe-45(as38), and spe-

45(tm3715) mutants at the indicated temperature. ***p < 0.001 between the

wild-type and spe-45(as38). See also Figure S1 for the screening method

that identified spe-45(as38) and Table S1 for a summary of pre-fertilization

events.

(B) Brood sizes of spe-45(as38) hermaphrodites left unmated or mated with N2

males at 25�C and of fem-1(hc17) females mated with spe-45(as35);him-

5(e1490) or him-5(e1490) males. ***p < 0.001.

(C) Brood sizes of the indicated genotypes at 25�C. spe-45 gDNA refers to

extrachromosomal array comprising the admixture of the fosmids

WRM061bG12, WRM0641cH06, WRM066cF06, WRM0631aA01, and

WRM0624aC09.

Error bars indicate the SEM.

Current Biology 25, 3220–3224, December 21, 2015 ª2015 Elsevier Ltd All rights reserved 3221



as evidenced from the localization of a small, compact nuclear

material, characteristic of the sperm DNA, inside the oocyte (Fig-

ure 2D, blue arrow). In contrast, the spe-45 mutant worms

showed no sign of sperm entry into the oocytes, indicating that

SPE-45 is required for fertilization in C. elegans. The phenotypes

of spe-45 mutants are consistent with spe-45 belonging to the

spe-9 class of spe genes—all phases of sperm development

and differentiation remain unaffected; however, since themutant

sperm are incapable of fertilizing oocytes, the unfertilized oo-

cytes undergo endomitotic replication (EMO phenotype) (Fig-

ure 2D, white arrow) [10].

A further indictor of lack of sperm entry can be found in the na-

ture of the EMO phenotype seen in oocytes from unmated spe-

45 hermaphrodites. In addition to paternal DNA, sperm also

deliver centrosomes to the zygote. When sperm do not enter

the oocyte, they do not deliver centrosomes and the EMO DNA

forms a single mass as seen in spe-45mutants (Figure 2D, white

arrow; Figure S2) [10].

Oocytes Function Normally in spe-45(as38)

The observed sterility in spe-45(as38) could be due to the defect

in the sperm, oocyte, or both. At least two observations suggest

that SPE-45 is not required in oocytes. First, the brood size of

spe-45(as38) hermaphrodites could be restored to that of N2

upon crossing with N2 males (Figure 1B), indicating that SPE-

45 is dispensable in oocytes. Second, the spe-45(as38) her-

maphrodites lay large numbers of oocytes (mean = 91 ± 9 SE),

suggesting that oogenesis and ovulation are not compromised

in spe-45(as38) [10].

The Genetic Nature of spe-45(as38) Allele
Compared to spe-45(as38) homozygous mutants, which do not

produce any progeny at 25�C, the spe-45(as38) heterozygous

mutant produce a significant number of progeny (mean =

252 ± 22 SE, n = 25, p < 0.001), indicating that spe-45(as38) is

recessive (Figure 1C). The phenotype of spe-45(as38)/sDf27 is

Spe, which suggests that the null mutant phenotype is sperm

sterile (Spe). The tm3715mutation from the Japanese Knockout

Consortium harbors a large deletion within the protein-coding re-

gion of F28D1.8 (see below). As expected, the tm3715 allele ex-

hibited a Spe phenotype (Figure 1C). Next, we expected that the

as38 allele should fail to complement the tm3715 allele, if both

are alleles of the same gene. As shown in Figure 1C, there is

no significant difference between the brood sizes of as38/as38

homozygotes and as38/tm3715 trans-heterozygotes (p = 0.36),

indicating that same gene is affected in both the as38 and

tm3715 alleles. The molecular lesions for both alleles also map

to the same transcript (Figure 3).

Molecular Identification of spe-45
We did standard two-factor, three-factor, and SNP mapping

(Figure 3; Table S2) and found that the spe-45 locus maps to

the fourth chromosome between the genomic intervals defined

by the cosmids C42C1 and K08E7 (Figure 3A).

We used strains deficient in a defined region of the genome as

a tool to further map the locus of spe-45(as38). In complementa-

tion tests, the deficiency sDf22 complemented spe-45(as38); the

deficiencies sDf27 and sDf21 failed to complement spe-45(as38)

(Figure 3A). These results suggest that spe-45 lies within the re-

gion that is deleted by sDf27 and sDf21 and lies outside the re-

gion of sDf22. Further, spe-45 over a non-complementing
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Figure 2. Despite Normal Sperm Morphology and Migratory

Behavior, spe-45 Mutant Sperm Cannot Fertilize Oocytes

(A) Differential interference contrast (DIC) images of wild-type and spe-

45(as38) reproductive tracts. Black arrows indicate spermathecae containing

sperm. The uterus is located at the right side of the spermatheca; the ovary is

located at the left side of the spermatheca. Scale bar, 20 mm.

(B) Spermatids and pronase-activated spermatozoa of N2 and spe-45(as38)

males (left) and spermatozoa from N2 and spe-45(as38) hermaphrodites

(right). Arrowheads indicate pseudopods of sperm. Scale bar, 5 mm.

(C) 40,6-diamidino-2-phenylindole (DAPI) staining of the fem-1(hc17) females

mated with either N2 males or spe-45(as38) males. The yellow dotted lines

indicate the position of each spermatheca. The blue arrowhead indicates an

example of sperm DNA. Scale bar, 20 mm.

(D) DAPI staining of N2 and spe-45(as38). The blue arrowhead indicates the

compacted sperm chromatin mass in a newly fertilized oocyte; pink arrow-

heads indicate the meiotic oocyte chromosomes in a newly fertilized oocyte.

The white arrowhead indicates the chromosomes of an unfertilized oocyte that

have undergone endomitotic replication. The yellow dotted lines indicate the

borders of embryos or oocytes. See also Figure S2. Scale bar, 10 mm.
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deficiency has no new phenotypes and still has only a Spe

mutant phenotype.

Results from three-factor mapping, deficiency mapping, and

complementation testing suggested that the as38 mutation re-

sides within the interval of an approximately 400 kb region. We

introduced the extrachromosomal arrays representing this

genomic interval into the as38 mutant to test which, if any,

could rescue the as38 Spe phenotype. Among the tested ar-

rays, the fosmids WRM0641cH06 and WRM066cF06 rescued

the Spe phenotype of as38 (Figures 1C and 3A), indicating

that the molecular lesion responsible for as38 phenotype

should lie somewhere in the overlapping region of these two

fosmids.

We performed whole-genome sequencing of the spe-45(as38)

and our laboratory N2 strains to identify variants unique to spe-

45(as38). We discovered 23 candidate mutations on chromo-

some IV, defined as homozygous, non-synonymous variants.

Of those, only one mapped to the interval delimited by the

rescuing fosmids RM0641cH06 and WRM066cF06. The pres-

ence of that variant in spe-45(as38) was confirmed indepen-

dently by PCR amplification and Sanger sequencing. The variant

is a G/A transition in the gene F28D1.8 and encodes a

nonsense mutation predicted to truncate the protein at Trp185.

The gene name oig-7 (for one immunoglobulin domain) has

been proposed on the basis of structural prediction [11], but

no functional studies had been reported. Additional analyses

(described below) confirm the identity of F28D1.8 as spe-45,

and we use that designation hereafter.

Suppression of spe-45(as38)
We observed a point mutation altering the tryptophan codon

(TGG) to a stop codon (TAG) in the as38 allele of the spe-45

gene (Figure 3B). If this mutation is indeed responsible for the

observed Spe phenotype, we hypothesized that sup-5(e1464)

should be able to at least partially rescue the spe-45(as38)

mutant phenotype [12]. The sup-5(e1464) allele harbors a muta-

tion in a gene encoding tRNA, such that the anti-codon of tRNA

carrying tryptophan is TAG. Therefore, sup-5(e1464) is expected

to insert Trp in lieu of a stop codon TAG, allowing the protein syn-

thetic machinery to continue translating past the premature stop

codon TAG in our as38 allele. We tested our hypothesis by

constructing a sup-5(e1464);spe-45(as38) double mutant. The

spe-45(as38) essentially no progeny at 25�C. In contrast, the

sup-5(e1464);spe-45(as38) double mutant showed a statistically

significant increase in the number of progeny produced (Fig-

ure 1C), reaffirming that we have correctly identified the molec-

ular lesion responsible for the as38 phenotype.

spe-45 Encodes a Single-Pass Transmembrane Protein
with a Single Immunoglobulin Domain
The gene F28D1.8 is originally predicted to have seven exons

and six introns in Wormbase. However, close examination of

the sequence upstream of this gene revealed a predicted start

codon. Therefore, we analyzed RT-PCR products of F28D1.8

and found the existence of additional sequences upstream of

the predicted transcript. We conclude that F28D1.8 is composed

of eight exons and seven introns and is predicted to encode 492

amino acids (Figure S2).

We find that spe-45 encodes a one immunoglobulin (OIG)

transmembrane protein. This is a large family of proteins that is

found in a broad range of species and most likely functions in

many different tissues. In C. elegans, there are at least eight

members of this gene family, oig-1 through oig-8 [11]. The spe-

45 gene was originally annotated as oig-7. Where functional

and cell biological data exist, single-immunoglobulin proteins

from various species are involved in cell-cell interactions [11].

Further, recent biochemical analysis suggests that OIG proteins

can function in direct ligand-receptor interactions [1]. The OIG

protein Izumo1 has been shown to bind to an oocyte-specific

glycosylphosphatidylinisotol (GPI)-anchored protein Juno [1].
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Figure 3. Molecular Analysis Reveals that SPE-45 Is an Immuno-

globulin Superfamily Protein

(A) Genomic locus of spe-45(as38). See also Table S2. Complementing and

non-complementing deficiencies are indicated at the top of the figure. The list

of cosmids and fosmids tested for the genetic rescue of spe-45(as38) is indi-

cated. A single extrachromosomal array carrying a mixture of all fosmids listed

in mixture 1—but not mixture 2—rescued the spe-45(as38) phenotype. Introns

and exons of the spe-45 gene are indicated as lines and boxes, respectively;

the direction of the transcription is shown as wavy arrow.

(B) Schematic diagram of the SPE-45 protein. Complete sequence of the

immunoglobulin domain of the SPE-45 is indicated in the box. See also Fig-

ure S3 for full amino acid sequence of SPE-45.
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Izumo1 is a sperm-specific protein, and knockout mice have

male specific infertility [13]. Izumo1 was originally identified by

biochemical characterization of an antigen that upon inhibition

by monoclonal antibody prevented sperm-egg fusion in vitro

[13]. Izumo1 mutant sperm are morphologically normal, with

normal motility, the ability to find the egg, and transit through

the egg coat (zona pellucida). However, these sperm cannot

fuse with the egg plasma membrane. As presented in this paper,

spe-45 mutants have the equivalent mutant phenotype in

C. elegans. SPE-45 has a sperm-specific function. spe-45

mutant sperm are morphologically normal but cannot fuse with

the eggs despite direct contact at the site of fertilization in the

reproductive tract. Based on this structural [5] and functional

similarity, we propose that the spe-45 encodes an Izumo-like

function. A common ancestor for C. elegans and mammals ex-

isted about 700 million years ago [14], and our discovery of

spe-45 represents the most deeply conserved and ancient

fertility function discovered to date.

Use of many model organisms continues to shape our current

understanding of fertilization. Large quantities of sperm and egg

can be obtained from the sea urchin, which makes it feasible to

do a variety of biochemical assays. However, the current tech-

nology allows us to perform very limited genetic manipulation

in this organism. In contrast, a variety of sophisticated genetic

analyses are feasible in C. elegans. Since leveraging the

strengths of all model organisms advances the field of fertiliza-

tion, we have demonstrated that conducting an unbiased, for-

ward genetic screen, a procedure particularly well suited in

C. elegans, should aid in the discovery of new key components

of fertilization pathways.
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