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Abstract 

 

   Statistics are applied to analyze the correlations of summer hypoxia in the 

Chesapeake Bay with watershed input and wind conditions based on nearly 

three decades of monitoring data. The Pearson correlation coefficients indicate 

that the averaged summer hypoxia has strong positive correlation with 

watershed nutrient load and discharge, and moderate negative correlation with 

summer average wind speed. Nutrient inputs and the subsequent decay of 

organic matter are the primary factor that controls the oxygen demand causing 

summer hypoxia, while episodic wind can partly erode stratification and 

hypoxia. The interannual variation of hypoxia is mainly controlled by 

watershed input, but wind plays an important role in modulating hypoxia, such 

as variations of hypoxic volumes in individual summer months. Although the 

extent of hypoxia reduction is different with different wind directions, a faster 

wind speed (above certain strength) causes stronger destratification and 

hypoxia reduction than weaker speeds, which is generally more important than 

the effect due to wind directions. Computer modelling is used to obtain 

dissolved oxygen conditions in finer temporal and spatial scales to supplement 

the discrete observations in scattered monitoring stations to better understand 

hypoxia development under episodic wind events, which enhances the 

understanding on physical relationships among the concerned constituents 

beyond the statistical analysis.  

 

Keywords:  Hypoxia, nutrient load, freshwater discharge, wind speed and 

directions, destratification, correlation analysis 
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Introduction  

 

   Summer hypoxia in the Chesapeake Bay threatens living resources of the 

Bay. Excessive nutrient loads and the subsequent bloom of algae that elevate 

bottom oxygen demands are the main cause of the hypoxia (Officer et al. 1984; 

Harding et al, 1992). Controlling nutrient load has been focused on the 

Chesapeake management to reduce hypoxia (USEPA 2010). On the other hand, 

destratification by wind energy (Kato and Phillips, 1969) can increase 

dissolved oxygen (DO) in deep water and reduce hypoxia, as has been 

observed in the Chesapeake estuary and other estuarine and coastal regions 

(Melone et al. 1986; O’Donnell et al. 2008; Wilson et al. 2008). The relative 

importance of nutrient loads and wind affecting Chesapeake hypoxia has been 

given attention recently since it has significant implication to management 

(Scully 2010a; Murphy et al. 2011). 

   The Chesapeake Bay is oriented approximately north to south from the upper 

Bay to the mouth connecting to the Atlantic Ocean. It is a partially mixed 

estuary (Prichard, 1967), with net seaward (to the south) flow in surface waters 

and landward (to the north) flow of bottom saltier water. The extent of 

destratification by winds from different directions is different (Chen and 

Sanford 2009; Scully 2010a; Li & Li 2011) because of the two-layer 

circulation, channel bathymetry, Earth’s rotation, etc. The relative importance 

on modulating hypoxia by wind direction and wind speed has also implications 

to management. Scully (2010b) attributes the sustained high hypoxia in the 

Chesapeake Bay in the past decades despite of nutrient reductions in past to a 

shift of wind that has been more westerly or southwesterly. However, Wang et 

al. (2013) found that wind speed over certain thresholds to be a more important 

factor than wind direction in many occasions. This paper focuses on the 

relative effects on hypoxia reduction by nutrient loads, wind speed, and wind 

direction. 

 

Data and Method  

   We use observed data supplemented with model simulated values to analyze 

the response of hypoxia to nutrient load and wind, and applied statistics on 

historical data. 

    Hypoxia Estimated based on field observations: There are about 80 long-

term monitoring stations of DO in the Chesapeake Bay, sampled once or twice 

each month since 1985. About 45 stations in the mainstem Bay and its lower 

tidal tributaries were selected to interpolate DO concentration spatially over the 

entire mainstem using the modified method of Wang et al. (2006) from the 

Chesapeake Bay 3-D interpolator (Bahner, 2001). Three levels hypoxia, i.e., 

DO<=0.2, <1, and <2 mg/l in the summer months (June to September) were 

assessed. The condition of low level of hypoxia (DO<=0.2 mg/l), also called 

anoxia (Jasinski, 2003; Wang et al. 2006) is the focus in this paper.  

   Hypoxia Estimated by Computer Models: The Chesapeake Bay Water 

Quality and Sediment Transport Model (WQSTM) (Cerco et al., 2010) is used 

to estimate hypoxia. The WQSTM is a peer reviewed and approved regulatory 
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model for the Chesapeake Bay water quality management. Its hydrodynamic 

module simulates estuarine circulation considering freshwater input and wind 

effects. The water quality module simulates 36 state variables including 

various species of nutrients, 3 groups of phytoplankton, and related 

biochemical processes. The errors of estimated DO in the mainstem are 0.3 

mg/l and -0.45 mg/l at depths of 6.7-12.8 m and greater than 12.8 m, 

respectively. Hourly hypoxic volume of the Bay is calculated by adding 

volumes of the model cells that have hourly average DO under the hypoxia 

thresholds.  

   The hypoxic volumes of the three levels DO thresholds, i.e., <=0.2 mg/l, <1 

mg/l and <2 mg/l, are labelled as AV (i.e., anoxic volume), HV1 and HV2. We 

use the suffix ’_mod’ if the values are from modelled results, otherwise the 

values are from observation (though the suffix ‘_obs’ is also used for 

observed).  

   Wind fields: Hourly wind observations at the Patuxent Naval Air Station, 

MD, USA, were collected. The counts, i.e., frequency, of hourly wind events 

for speed greater than certain thresholds and/or in certain directions were 

obtained. The events of 8 directions, i.e., N, NE, E, SE, S, SW, W, and NW, 

were filtered.  

   Watershed discharge and nutrient loads: Daily mean flows at the 

Conowingo  USGS station of the Susquehanna River were collected. Daily TN 

and TP loads from the Susquehanna River were estimated based on bi-weekly 

total nitrogen (TN) and total phosphorus (TP) measurements and daily mean 

flows (Wang and Liker, 2008). In the correlation analysis, TN and TP load are 

composed into a single variable, ‘nutrient index’ (Wang et al. 2006), which 

equals (TN+10TP)/2 of the N and P weights, labelled SNP. Annual ‘winter-

spring’ flow or load is calculated using their averaged values in January 

through May. The effective ‘nutrient index’ to the Bay’s anoxic center was also 

estimated according to Wang et al. (2006) and is labelled ENP.  

   Statistical analysis on factors impacting hypoxia: Statistics are conducted to 

analyze correlations among summer hypoxia, winter-spring watershed input, 

winds, and other influencing variables. The statistics are on 15 years of data in 

1991-2005, and in extended periods covering 1985-2012.  

 

 

Results and Discussion 

 

Inter-annual variation of hypoxia and related variables 

   Figure 1 shows inter-annual variation of summer anoxic volume (DO<=0.2 

mg/l) and hypoxic volume (DO<1 mg/l), winter-spring watershed discharge 

and nutrient load index, and summer average wind speed in year 1985 to 2012. 

Table 1 lists correlation of anoxic volume with watershed inputs, winds, 

stratification strength (SS), deep water temperature (Wtmp) and air temperature 

(Atmp).  

   The summer hypoxia is highly correlated (r> 0.88) with winter-spring 

nutrient load as observed by other researchers (Hagy et al. 2004; Kemp et al., 
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2005). The variations of interannual summer hypoxia well follow the variation 

of winter-spring nutrient load or flow (Fig. 1). The high winter-spring flow-

load years 1993, 1996, 1998, and 2011 have high anoxic volumes, and the low 

flow-load years 2002 and 2012 have low anoxic volumes. The excessive 

nutrient load in early months of the year causes algal blooms in the spring and 

summer (Harding et al., 1992). The dead algae increase oxygen demand of 

bottom water in the summer. The several months-long residence time enables 

nutrient to have sustained influence on hypoxia through the summer (Murphy 

et al., 2011). The correlation between summer anoxic volume and average 

wind speed (Wspd) is -0.37. The years of high or low hypoxia do not always 

have low or high wind in the summer.  

   The nutrient load and flow are highly correlated (r=0.98), and they have 

similar strengths of correlation with summer hypoxia. In physical processes, 

besides carrying nutrient load, freshwater discharge affects stratification that 

also influences hypoxia, independent of nutrient’s effect.  

    

Correlation between summer anoxia and wind speeds 

   Table 2 is correlation coefficients between summer anoxic volume and 

counts of summer wind events for speeds greater than 2, 3, 4, 5, 6, 7 and 8 m/s 

as symbols Cwd2 through Cwd8, and average wind speed (Wspd).  

   Cwd4 has the highest correlation with anoxic volume than other wind counts, 

indicating the winds with speeds greater or equal to 4 m/s influence anoxic 

volume more than the winds with lower speeds. The study from Chen and 

Sanford (2009) suggested wind speed at 2 m/s has little effect on 

destratification and hypoxia. Note that, Cwd2 includes all events of speed>2 

m/s. The main contributions to Cwd2 to have negative correlation with hypoxia 

(r=-0.28) may be from the events of higher speeds. However, winds of very 

high speed may not occur at comparable frequency around the DO observation 

dates among the years. The wind count only include high speeds, such as 

Cwd7, has weaker correlation with summer anoxia than Cwd4 does, although 

stronger winds influence more. The 6-8 sampling events in the summer in 

different years may meet with different strengths of wind, therefore, the wind 

effect on hypoxia reduction cannot be well represented, therefore, only medium 

strength (r= -0.37) of correlation is obtained between the observed summer 

anoxia and average wind speed. Greater negative correlation (r= -0.53) is 

obtained using modeled data, in which both summer anoxia and average wind 

speed were averaged from hourly values.  

 

Correlation of summer anoxia with wind directions 

   Table 3 is the correlation of anoxic volume and counts of wind events in 8 

wind directions based on 1991-2005 data for speeds equal and greater than 5 

m/s as the post-fix 5 after direction symbols. The N, NE, and E winds have 

moderate high negative correlation with anoxic volume (r= -0.38 ~ -0.52), 

while the south wind has a positive correlation with hypoxia (r=0.24). This 

does not mean that north wind reduces anoxic volume while south wind 

increases anoxia, because extensive research revealed that in the Chesapeake 
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Bay, under moderate high speed, either southerly or northerly wind can reduce 

stratification and hypoxia, and in many cases south wind reduces more hypoxia 

than north wind under a specified speed (Chen and Sanford 2009; Li and Li 

2011). The aforementioned correlations between the frequency of wind 

direction and hypoxia are basically a reflection of the correlation between wind 

speed and hypoxia. The following is our reasoning. In the summer of 1997 to 

2005, the stronger wind events (speed >=5 m/s) are more northerly than 

southerly, as we see high positive correlation between average wind speed 

(Wspd) and frequency of north wind (N5, r=0.88), but negative correlation 

between Wspd and frequency of south wind (S5, r=-0.34). Because wind speed 

has negative correlation with summer anoxia (r= -0.37), thus we see the 

apparent negative correlation of northerly wind frequency (N5) and anoxic 

volume and weak positive between southerly wind frequency (S5) and anoxic 

volume. The occurrences of southerly winds in different summers are not 

consistent with the variations of anoxic volume may be the other reason 

causing the said weak correlation with anoxia. Comparing to the effect on 

hypoxia by nutrient load or wind speed, the differences in the impact on 

hypoxia by wind directions are less important to the interannual variation of 

hypoxia, though some directions such as south winds can have greater impact 

than other directions.  

 

Model simulated hypoxia under different wind directions and durations  

   Fig. 2 is model simulated anoxic volume changes relative to no wind for 4 

wind directions. The wind started at 8 o’clock on August 10, 1996, and the 

anoxic volume was about 12.4 km
3
 at no wind. Fig. 2a is for wind speed at 8 

m/s that lasts about 2 days. Anoxic volume reduces rapidly at the beginning of 

wind, and reaches the lowest at third day, i.e., 0.5 day after wind stops. The 

difference in anoxic volume reductions between south and north winds is about 

1.2 km
3
 and between south and west winds is 2.2 km

3
. They are 12% and 22%, 

respectively, of the averaged reduction by winds from the no-wind. Due to 

sediment oxygen demands and re-stratification, the anoxic volume gradually 

recovers to the pre-wind condition after wind calms. It recovered 75% after one 

week.   

   Fig. 2b is for wind speed at 6 or 5 m/s that last for 1 hour. At wind speed=6 

m/s, the anoxic volume reduces 0.2 to 0.4 km
3
 at the first 1 hour, which are 

1.6% to 3.2% from the no-wind condition. The anoxic volume recovers about 

80% in 2 days – much faster than that by the 8 m/s wind of 2-day duration. The 

difference in anoxic volume reductions is mostly less than 0.1 km
3
 between 

south wind and north or west wind. The anoxia reduction by south wind of 5 

m/s is much less than that by west wind of 6 m/s. The anoxic volume gets a 

greater change by changing 1 m/s speed than by changing wind direction 

without speed change. Fig. 2 also indicates that wind of longer duration has a 

greater impact on hypoxia. 

  

DO, hypoxic volume and their associated wind in finer time steps 

   The circles in Figure 3 are observed anoxic volume (DO<=0.2 mg/l) in 
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summer (June through September) sampling cruises in years 1991-2005. The 

pluses are modeled daily anoxic volume during daylight hours in the summer, 

which are mostly in agreement with the observed anoxic volumes. The 

observed anoxic volumes are obtained through interpolation of field DO 

measurements in scattered monitoring stations in 4-7 days of a sampling cruise. 

Therefore, the anoxic volumes from the two methods are not directly 

comparable. Figure 3 also plots observed hypoxic volumes (DO<1 mg/l, in 

bigger dark dots). The small dots are wind speed>=6 m/s. The modelled 

anoxic\hypoxic volume responses to wind: usually depresses after high wind 

events.  

   Figure 4 is wind speed and directions for wind>=6 m/s. The high wind events 

in the summer of 1997-2005 are more prevailed from north, northeast and 

northwest, though there are many events blowing from south (and southwest or 

southeast) at speeds < 4 m/s which are excluded from the figure.  

   The 1996 and 1998 years have similar nutrient loads, but July hypoxia in 

1998 is about twice that of 1996. This is because in the month of July, 1996 has 

more frequent wind events of >=4 m/s than 1998 (242 vs. 181, accounting for 

all directions, Table 4). The higher speed events (i.e., >= 4 m/s) in 1996 are 

mainly in W, NW, and SW directions, as well as N and E, while, the frequency 

of southerly wind in July is more in 1998 than that in 1996, e.g., 118 vs. 100 

(for all speeds). The more reduction of July hypoxia in 1996 cannot be 

explained simply by wind direction, since under the same speed, westerly wind 

usually has weaker destratification than southerly wind. In this case, wind 

speed is more important than wind directions in hypoxia reduction. 

   The wind’s effect on June hypoxia is almost in the opposite pattern (Fig. 3). 

1996 has greater June anoxia and hypoxia than 1998, which is concordant to 

the fewer frequent June winds of speed > 4 (or 6) m/s in 1996 than in 1998.  

 

Correlation analysis using a longer period of data 

   The analysis on 15 years of data provides useful information on the inter-

annual change of hypoxia. Analyses using data in expanded periods were also 

performed. They are based on the 1991-2005 data and added additional data 

year-by-year forward to 2012 and backward to 1986. The correlations among 

the variables in Table 1 vary less than 0.1. If 1985 is included, the r’s reduce 

about 0.1-0.2. These are due to the additional years having different patterns or 

trends from the base years for the variables.  

   The lower correlation when adding 1985 to the data of recent years is 

coincident to the observation by Conley et al. (2009) who found 1986 to be a 

significant breakpoint in the Bay hypoxia trend. Kemp et al (2005) detected 2 

separate significant relationships between hypoxia and nitrate loading for 

1950–1979 and 1980–2001, with similar slopes but different intercepts, 

implying that the Bay has become less able to assimilate N inputs.  

   Hagy at el. (2004) collected July hypoxia from 1950 to 2001. If applied with 

the Scully (2010b) method, i.e., using May-July wind and counts of all wind 

events of > 2 m/s to conduct the correlation using Hagy et al. (2004) July 

hypoxia and winter-spring flow in 1950-2001, different results from Tables 1 
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and 3 were yielded: weaker correlations between July hypoxia and wind speed 

(r=+/- 0.1) or flow (r=0.2). On wind direction, it yielded moderate high 

correlation (r=0.6-0.7, p<0.05) between frequency of west wind and July 

hypoxia, and moderate negative correlation (r=-0.45) between frequency of 

southeast wind and July hypoxia. When the data were split into two periods 

(1950-1982 and 1985-2001), the correlations between hypoxia and river 

discharge were doubled, but the correlation between hypoxia and west wind 

frequency reduced 2/5 in each sub-period data. The split samples may increase 

data consistency among years in each subset, therefore, generally increase 

correlations among the variables that have physical links, such as hypoxia and 

river discharge. As pointed out by Browner and Newman (1987) and Taylor 

(1990), p and r values can only tell the significance of the correlation for the 

variables in the specifically selected sample, but does not tell whether they 

have a cause-and-effect relationship. The significant reduction of correlation 

between hypoxia and frequency of westerly wind in subsamples suggests that 

the high r and low p based on the data of entire period may not be highly 

related to their physical links. The wind events including May and June may 

not be appropriate to perform correlation with July hypoxia, because hypoxia 

may recover a few days after wind calms. The apparent high correlation 

derived from the lumped two periods of hypoxia data and the out-of-phased 

wind may not reflect their strong links in physical processes. Therefore, the 

importance of wind direction on modulating the interannual hypoxia variations 

based on such lumped data should be discounted. Together with other evidence 

presented in this article, we believe that the strength of winds (disregarding 

direction) is more important than direction in the overall cases, though a 

sustained southerly wind could reduce hypoxia more than a westerly wind.  

 

Nutrient load versus wind in regulating interannual hypoxia, and implication 

to management 

   The variations of interannual summer hypoxia follow the variation of winter-

spring nutrient load or flow (Fig. 1). The maximum difference in winter-spring 

loads among the years is over 100% of the mean. The fluctuation of interannual 

load has a potential to cause fluctuation of summer hypoxia. Due to long 

residence time (several months) in the estuary, nutrient and freshwater input in 

winter-spring can affect the eutrophication processes through the summer.  

   The maximum difference in average speeds or frequencies of wind of speed 

>=4 m/s in summertime among the years is about 20% of the mean, smaller 

than nutrient variations. The wind’s reduction on the nutrient-induced hypoxia 

among different years is less pronounced by comparing to nutrient’s variation. 

Note: in our analyzed data, hurricanes occurred only in late September of a few 

years, thus extreme events were excluded. In peak summer, hypoxia could 

recover to the pre-wind condition in the calm period (Fig. 2) because of re-

stratification and excessive oxidation from the bottom oxygen demand. The 

inter-summers variations of the episodic wind events do not follow the 

variation pattern of winter-spring loads but vary among months in a summer, 

thus reduce wind’s correlation with summer hypoxia in the annual scale. 



ATINER CONFERENCE PAPER SERIES No: ENV2013-0425 

 

12 

 

Nevertheless, wind is important on modulating hypoxia variation among 

months within a summer.  

   Therefore, nutrient load (plus stratification by freshwater input) is the 

primary factor causing summer hypoxia, while wind partly reduces hypoxia 

episodically, as we see A) high correlation of summer (average) anoxic volume 

with watershed load (r=0.89), B) moderate low negative correlation (r=-0.4) 

between summer hypoxia and average wind speed or frequency of higher wind 

events (Tables 1 and 2), and C) nutrient load to have stronger correlation with 

summer hypoxia than with individual months’ (such as July) hypoxia (e.g., 

r=0.89 vs. r=0.71).   

   Currently, the Bay partners use the average hypoxic volume from 6-8 

monitoring cruises in each summer to evaluate Bay’s water quality and to 

compare inter-annual hypoxia. Since wind can significantly modify hypoxic 

condition and wind varies frequently, more frequent observations could 

provide more representative conditions. For protecting living resources, we are 

better off using the DO observations that avoid big storms and the periods soon 

after a big storm to address the anoxic problem. The current practice in the 

Chesapeake Bay-wide long-term DO monitoring is considered acceptable, 

because it usually avoids strong storms. Thus, the monitored DO shows good 

correlation with watershed load. Although the averaged summer hypoxia better 

explains interannual variations, assessing hypoxia in July or other months is 

meaningful to capture the worst DO condition. Comparing to the hypoxic 

volume of DO<1 or <2 mg/l, the anoxic volume (DO<=0.2 mg/l) at lower 

depth is affected less by wind but may show sensitively due to greater percent 

change from the initial smaller values. It may be a better index to evaluate the 

influence on DO by nutrient load.  

   Figure 1 shows a decrease in the averaged summer wind speed from 1998 to 

2012. It is mainly contributed by fewer wind events of speed >= 4 m/s, 

including fewer southerly wind events. This implies that the Bay would be 

subjected to more severe hypoxic problem in later years if they have the same 

nutrient load. Nevertheless, since 2012 is one of the lowest hypoxia year due to 

low load (Fig. 1), indicating the nutrient is still the main factor governing 

interannual hypoxia. 

   Higher temperature in the summer reduces oxygen solubility, promotes 

oxidation and reduces DO in the bottom water, as well as enforces the bottom-

to-surface density stratification due to greater surface-to-bottom thermal 

gradient. However, Table 1 shows that the summer hypoxia has weak negative 

correlation with deep water temperature (Wtmp, r=-0.2). Deep water 

temperature in the summer is greatly impacted by stratification that prevents 

heat exchange between deep water and the warmer upper water and the air. The 

positive correlation of stratification (Strat) and summer hypoxia (r=0.5, Table 

1) and negative correlation of stratification and Wtmp (r=-0.15 to -0.29, table 

omitted) causes the apparent negative correlation between Wtmp and hypoxia. 

While the summer average air temperature (Atmp) in individual years reflects 

the temperature in the entire Bay system, thus we see positive correlation 

(though weak, r=0.17) with summer anoxic volume. Therefore, air temperature 
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has more significance than deep water temperature on inter-annual variation of 

hypoxia. As the result of global warming, the Bay could be subjected to more 

severe hypoxic problem.  

  

 

Conclusions 

 

   Both watershed load and wind have significant impact on Chesapeake 

summer hypoxia, but in opposite directions. The increase of sediment oxygen 

demand due to watershed nutrient load is the key factor leading summer 

hypoxia in the Chesapeake Bay. The hypoxia can be maintained in deep 

stratified water, which prevents exchange with surface water. The discharge 

accompanied with high watershed load enhances stratification and summer 

hypoxia. Wind erodes stratification and reduces hypoxia. Based on the past 

three decades observation, the internannual changes of hypoxia in the 

Chesapeake Bay is mainly controlled by load from the watershed, while, the 

influence by the interannual changes in wind conditions is less significant.  

   Wind conditions (e.g., speed and direction) vary in the time scale of hours, 

causing variations of hypoxia among months in a summer, which influence 

could be pronounced episodically. However, wind occurs naturally, and the 

magnitude of its variation in different summers is not as big as the interannual 

variation of nutrient load. While, the wind’s destratification and hypoxia 

reduction can usually be recovered in a few days. There is no fix pattern of 

wind condition in the DO monitoring events among different years. The 

combination of these factors causes the observed summer average hypoxia to 

have weaker correlation with wind than with nutrient load. 

   Although the reductions of hypoxic volume are different by different wind 

directions at a specific wind speed, the magnitude of wind speed (greater than 

certain threshold) is generally more important than wind direction in eroding 

stratification and hypoxia. There is certain impact due to decreased frequency 

of southerly winds in summertime in the last two decades, which plays a less 

significant role in controlling interannaual hypoxia than the variations in 

frequency of stronger wind events. 

   Considering the scatted monitoring events and episodic winds, summer 

averaged hypoxia value may better reflect the Bay’s DO problem and its 

relation to nutrient load than individual month’s value. However, July or 

August hypoxia should also be analyzed since it may represent the worst DO 

period in a year. 
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Table  1. Correlations of anoxic volume (AV) with its influencing variables 

based on 1991-2005 data 

  
Jan-May average July or Summer average 

ENP SNP Flow Strat Wspd Cwd4 Wtmp Atmp 

AV_ 

_Obs 

July 0.77 0.71 0.82 0.20 -0.36 -0.42 -0.20 0.17 

Summer 0.83 0.89 0.89 0.50 -0.37 -0.42 -0.15 0.33 

AV_ 

_Mod 

July 0.85 0.78 0.85 0.40 -0.66 -0.54 -0.24 0.34 

Summer 0.81 0.77 0.78 0.39 -0.53 -0.48 -0.29 0.36 

 

Table 2. Correlation coefficients of summer anoxic volume with counts of 

summer wind events that are over certain speed thresholds 

 Wspd Cwd2 Cwd3 Cwd4 Cwd5 Cwd6 Cwd7 Cwd8 

AV_obs -0.37 -0.28 -0.41 -0.42 -0.33 -0.24 -0.21 -0.39 

AV_mod -0.53 -0.25 -0.43 -0.47 -0.40 -0.33 -0.32 -0.34 

Wspd 1.00 0.48 0.67 0.67 0.66 0.62 0.72 0.75 

 

Table 3. Correlation of summer anoxic volume with count of wind event in 

summer for wind directions at speed>=5 m/s 

 N5 NE5 E5 SE5 S5 SW5 W5 NW5 Cwd5 

AV_obs -0.38 -0.52 -0.52 0.24 0.24 0.05 -0.03 0.41 -0.27 

AV_mod -0.61 -0.71 -0.27 0.09 0.42 -0.13 0.25 0.38 -0.40 

Wspd 0.88 0.87 0.31 -0.28 -0.34 -0.12 -0.14 0.11 0.66 

Cwd5 0.57 0.56 0.10 0.19 0.32 0.43 0.35 0.36 1.00 
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Table 4. Counts of wind event in 8 directions for 2 speed-ranges in June 25-

July 24, 1996 and 1998 

Wind directions N NE E SE S SW W NW All dir 

Speed 

ranges 

<4 m/s 149 31 28 37 78 44 53 56 476 

>=4 m/s 32 7 12 18 22 37 61 53 242 

1996,   all speeds 

Sum 
181 38 40 55 100 81 114 109 718 

           

Speed 

ranges 

<4 m/s 161 18 20 20 79 99 91 43 531 

>=4 m/s 28 14 5 9 39 25 34 33 187 

1998,   all speeds 

Sum 
189 32 25 29 118 124 125 76 718 

 

Figure 1. Summer average anoxic and hypoxic volume, wind speed, and 

winter-spring watershed nutrient load and freshwater discharge in 1985-2012 
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Figure 2. Model simulated changes of anoxic volume versus no-wind by 

artificial wind directions. The wind starts at hour 8 on Day 10 in August, 1996. 

A) wind lasts for 2 and half days at speed =8 m/s, B) wind lasts for 1 hour, and 

the post-fix numbers 6 and 5 indicate wind speed (at m/s). 

 
 

Figure 3. Observed anoxic volume (DO<=0.2 mg/l, circles)) and hypoxia 

volume (DO<1 mg/L, bigger dots), modeled daily anoxic volume (pluses) and 

hourly wind speed (>= 6 m/s, small dots) in summer months (June-Sept) in 

1991-2005.  The annual winter-spring averaged nutrient load index (stars, 

non-unit) 

June

June
July

July
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Figure 4. Wind speed (dots, in m/s) and directions (circles, wind coming in 

degrees from north) for speed>=6 m/s in summer (June-September) of 1991-

2005 
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