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ABSTRACT: Despite global investment in shellfish restoration activities, relatively little attention has been given to 25 

predicting optimal restoration sites and testing these expectations. We used a coupled biological-physical 26 

connectivity model as a guide to plant two distinct hatchery-spawned strains of the eastern oyster, Crassostrea 27 

virginica, in the Lafayette River, Virginia during the summer of 2013 at two locations corresponding to virtual 28 

spawning locations within the connectivity model. We utilized single nucleotide polymorphism markers to test the 29 

model predictions by genotyping oyster recruitment the year after planting and examining interannual recruitment 30 

variability for two successive years. None of our experimental oyster genotypes were detected; however, we did 31 

observe a genetic influence from an oyster strain used previously for restoration. Differences in environmental 32 

conditions between the two years of monitored recruitment likely affected larval dispersal and survival contributing 33 

to observed interannual differences in the demographics of newly recruiting cohorts. Oyster recruits from 2013 were 34 

genetically more similar to resident adults sampled in the Lafayette River, while the 2014 recruits exhibited 35 

genotypic frequencies more similar to adults from surrounding rivers. The winds during the spawning seasons 36 

differed between years providing conditions for retention in 2013 and mixing of water masses in 2014. We 37 

recommend that the monitoring of restoration activities should consider relevant environmental conditions and 38 

observe multiple years of recruitment to assess the genetic impacts of restoration plantings and variable reproductive 39 

success. 40 

 41 

KEY WORDS: citizen science; connectivity; Crassostrea virginica; restoration; seascape genetics; single nucleotide 42 

polymorphism   43 
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INTRODUCTION 44 

Traditionally, population genetic studies of larval and juvenile dispersal have focused primarily on the 45 

correlation between genetic and geographic distances to understand population connectivity. More recently, 46 

contemporary landscape genetics methods used in terrestrial environments have considered environmental data in 47 

addition to geographic distances to explain regional population structure; however, the marine environment presents 48 

unique challenges (Selkoe et al. 2016). For example, ocean surface currents forced by winds and tidal cycles are two 49 

important factors impacting the distribution and survival of estuarine organisms. As a result, the physical dynamics 50 

of estuaries are vital to understanding resident organisms, and hydrodynamic models that incorporate biological 51 

components are valuable for formulating population connectivity hypotheses. Restoration projects located in 52 

estuaries could benefit from the combination of physical modeling and population genetic analyses to better predict 53 

optimal restoration sites and track the reproductive influence of restoration introduced animals. 54 

Molecular markers have been used for tracking the efficacy of restoration projects by monitoring the 55 

genetic contribution of planted animals to newly recruiting individuals with varying success. In 2002, the Virginia 56 

Marine Resources Commission (VMRC) working with Virginia Institute of Marine Science (VIMS) researchers 57 

planted a selectively bred strain of oyster in the Great Wicomico River, Virginia with the goal of using nuclear 58 

microsatellite markers to track the progress of restoration efforts (Hare et al. 2006, Carlsson et al. 2008). Hare et al. 59 

(2006) identified a single oyster spat (of 1579) as a full offspring of the restoration planted oysters and 153 (9.7%) 60 

as F1 hybrids. Milbury et al. (2004) successfully used mitochondrial 16S ribosomal DNA sequences to detect 61 

genotypes specific to oysters planted for restoration in Delaware Bay. Although the percentage of recovered spat, 62 

spat defined as post-larval oysters less than 6 months old, assigned to oysters introduced during restoration efforts 63 

was low (~0.08%), the results confirmed that introduced oysters were contributing to reproductive output. Wilbur et 64 

al. (2005) determined that a small percentage of bay scallop (Argopecten irradians) recruits (~0.03%) were 65 

genetically related to restoration planted animals on the west coast of Florida based on two randomly amplified 66 

mitochondrial DNA (mtDNA) fragments. While these previous tracking studies had lower returns than expected a 67 

priori, they did demonstrate the utility of molecular markers for monitoring the reproductive contribution of 68 

restoration planted organisms. 69 

The eastern oyster, Crassostrea virginica, has a continuous distribution along the eastern coast of North 70 

America ranging from the Yucatan Peninsula in the south to Nova Scotia in the north (Buroker 1983). The 71 
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Chesapeake Bay is an important habitat for C. virginica and this region has a history of fishery exploitation 72 

contributing to population declines of oysters and reduction in the number of oyster reefs (Jackson et al. 2001). The 73 

ecosystem value of oysters has been estimated to range from $5,500 to $99,000 per hectare per year (Grabowski et 74 

al. 2012), and government agencies and non-governmental organizations have invested significant resources in 75 

oyster restoration within the Chesapeake Bay (USACE 2012). Restoration projects that plant live animals into the 76 

ecosystem assume that the restoration oysters will supplement the wild populations and contribute to future 77 

reproduction. Despite the emphasis on restoring oyster reefs in the Chesapeake Bay, there has been relatively little 78 

attention given to assessing the direct reproductive contribution of oysters planted during restoration activities. 79 

Our study was a collaboration that has its origins in C. virginica restoration efforts managed by the 80 

Chesapeake Bay Foundation (CBF). Since 1999, CBF has constructed oyster reefs in the Lafayette River, Virginia 81 

and planted oysters on many of these artificial reefs. To maximize the impact of the restoration efforts, the CBF 82 

contracted a modeling group at VIMS to develop a biological-physical connectivity model (referred to as 83 

connectivity model), which included oyster larvae behavior, to predict locations that would have the greatest larval 84 

export potential and locations that would have the greatest larval settlement in the Lafayette River (Sisson and Shen 85 

2012). The CBF used the predictions of the connectivity model as a guide to plant two hatchery-spawned strains in 86 

the Lafayette River during the summer of 2013 at two locations corresponding to virtual spawning locations within 87 

the model. We developed a panel of single nucleotide polymorphism (SNP) markers and used them to determine 88 

whether there was evidence that genetically characterized, planted oysters were reproducing and contributing to 89 

annual recruitment within the Lafayette River. Moreover, we compared the settlement and recruitment of oysters 90 

between two successive years in the Lafayette to better understand differences on interannual timescales. We also 91 

examined two years of oyster settlement data in the Lafayette River to make a qualitative comparison to the 92 

predictions produced by the biological-physical model created by Sisson and Shen (2012). 93 

METHODS 94 

EXPERIMENTAL OYSTER PLANTINGS 95 

CBF introduced two hatchery-spawned oyster strains into the Lafayette River during the summer of 2013 to 96 

experimentally track restoration-associated recruitment within the Lafayette. Adult oysters (nfemales = 35, nmales = 12) 97 

were collected from Cod Harbor, Tangier Island, Virginia (Figure 1a) by VMRC and strip-spawned at Oyster Seed 98 

Holdings, LLC, Goodwin Island, Virginia in July 2013. About 1.8 million hatchery-spawned Tangier Island oysters 99 



Turley et al. Interannual oyster recruitment 

 

 5 

were deployed as spat attached to cleaned oyster shell at the Granby Street Bridge reef (Figure 1b) in August 2013. 100 

Oysters from Tangier were used for this study because Tangier Island is geographically distant from the Lafayette 101 

River (>100 km), the prominent larval dispersal patterns do not favor direct connectivity between the two systems 102 

(North et al. 2008), and previous research found a pattern of isolation by distance for Crassostrea virginica in the 103 

Chesapeake Bay (Rose et al. 2006).  These lines of evidence suggested that oysters from Tangier and the Lafayette 104 

would be genetically distinct from each other. Additionally, about 114,000 Northeast High-Survival line (NEH®) 105 

cultchless oysters, which are individual oysters not attached to substrate, were deployed at the Larchmont reef 106 

(Figure 1b) in August 2013. The NEH® oysters were spawned at Rutgers Haskin Shellfish Hatchery in Port Norris, 107 

New Jersey during November 2012 and were donated by CBF from a decommissioned oyster lease located at 108 

Sarah’s Creek, Virginia. The NEH® oysters were used because they are a selectively-bred strain that are 109 

reproductively capable and was known to be sufficiently different from wild oysters in the lower Chesapeake Bay 110 

(defined here as the James, Elizabeth and Lafayette Rivers) to be used for recruitment tracking using genetic 111 

methods. The experimental oysters were planted on separate reefs chosen to coincide with virtual oyster larvae 112 

release locations within the Sisson and Shen (2012) connectivity model. The experimental planting locations were 113 

selected as a trade-off between model predictions, existing restoration reef locations, and locations with reasonable 114 

survival probability due to habitat characteristics. The Granby reef was predicted to have the second highest larval 115 

production potential after a location upriver (Sisson and Shen 2012). The upriver location with highest larval 116 

production potential is muddy and subject to environmental extremes not suitable for larval survival. The Larchmont 117 

reef was already the site of an extensive artificial reef with high densities of healthy oysters.  118 

OYSTER SAMPLING 119 

Adult oysters were sampled from multiple locations in the Chesapeake Bay to serve as reference groups to 120 

compare against spat sampled in the Lafayette River (Figure 1a). Oysters were acquired from the Elizabeth, James, 121 

and Great Wicomico Rivers by the VMRC vessel J. B. Baylor with hydraulic patent tong (methods detailed by 122 

Southworth and Mann 2015). Sampling was conducted during annual oyster surveys in the autumns of 2013 and 123 

2014 from randomly selected locations in the three rivers; however, the Great Wicomico was only sampled in 2014 124 

by dredge. Rappahannock River samples were obtained during the summer of 2015 from an annual naïve oyster 125 

disease survey conducted by researchers at VIMS. In the Elizabeth River, Hospital Point and the Western Branch 126 

reefs were sampled. Cruiser’s Rock, Wreck Shoals, and Upper Deep-Water Shoal reefs were sampled in the James 127 
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River. Colley Avenue Bridge, the seawall on Mayflower Road, and Granby Street Bridge were sampled in the 128 

Lafayette River. In addition, subsamples of the NEH® oysters and Tangier Island offspring, which were planted in 129 

the Lafayette River as our experimental oysters, were collected for genotyping. For this paper, samples refer to 130 

groups of individuals collected in the same river system as reference and groups of individual spat obtained from 131 

spat-collectors in same year. Sample abbreviations are as follows: Lafayette River adult reference (LR), Lafayette 132 

River 2013 spat (LR13), Lafayette River 2014 spat (LR14), Elizabeth River reference (ER), James River reference 133 

(JR), Rappahannock River reference (RR), Great Wicomico River reference (GR), Tangier Island offspring (TI), and 134 

Northeast High-Survival Line (NEH®).  135 

The CBF’s citizen-science spat-collector program was used to quantify the magnitude of oyster recruitment 136 

into the Lafayette River and to obtain spat samples for genotyping. The spat collectors were placed on the docks of 137 

volunteers within the Lafayette River from May through October of 2013 and 2014. Collectors were positioned 138 

approximately 15 centimeters off the bottom and agitated weekly to remove sediment. Spat from retrieved spat-139 

collectors were returned to the lab, and proportionate sampling was used to obtain a representative sample of the 140 

spat distribution from the river. 141 

Shell-string surveys were used to quantify larval supply and settlement timing within the Lafayette River. 142 

This survey was designed to capture late-stage larvae recently attached to substrate. The surveys were conducted at 143 

the docks of four volunteers in the Lafayette River from May through October in 2013 and 2014. One location was 144 

upriver, two were mid-river, and one was near the mouth of the river (Figure 1b). Shell-strings consisted of ten 145 

cleaned oyster shells with a hole drilled in the center and hung on 12.5-gauge wire. The shell-strings were suspended 146 

from docks about 15 cm off the bottom. Every other week the old shells were removed for sampling and replaced 147 

with new shells. A dissection microscope was used to enumerate larvae that settled on the oyster shells.  148 

OYSTER GENOTYPING 149 

Gill, mantle, and adductor-muscle tissue were sampled via sterile technique for DNA extraction and were 150 

preserved in 95% ethanol. Genomic DNA was isolated from tissue samples using either the DNeasy Blood and 151 

Tissue Kit (Qiagen, Valencia, CA) or the Genomic DNA – Tissue MicroPrep Kit (Zymo Research, Irvine, CA) 152 

using the manufacturers’ protocols. Concentration and purity of extracted DNA was quantified on either a 153 

NanoDrop 2000 or Qubit spectrophotometer (Thermo Fisher Scientific, Waltham, MA) and only samples with 154 

concentrations greater than 5.0 ng/μl were used for genotyping. 155 
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The SNP markers used in this study were designed based on published (Zhang and Guo 2010) and 156 

unpublished loci originally developed from expressed sequence tags to assess disease resistance in hatchery-selected 157 

strains of C. virginica.  A total of 95 loci were converted to SNPtype assays (Fluidigm, San Francisco, CA) using 158 

the D3TM Assay Design software (Fluidigm) and screened for reproducibility. The final assay panel consisted of 48 159 

SNP loci, and details of panel development can be found in Online Resource 1. Oysters were genotyped on a 48 x 48 160 

Dynamic Array IFC (Fluidigm) using the manufacturer’s recommended protocol. Briefly, pre-amplification PCR 161 

was done first using specific target amplification (STA) primers for each SNP locus to standardize the quantity of 162 

starting DNA template for each sample before input into the SNPtype assay reaction (see Online Resource 2 for 163 

primer sequences). The STA products were diluted 1:100 in DNA Suspension Buffer (Teknova, Inc., Hollister, CA). 164 

SNPtype assay reactions using the ASP primers (see Online Resource 2 for primer sequences) were performed on a 165 

Fluidigm IFC-1 cycler using the manufacturer’s recommended protocol and the diluted STA products as template on 166 

a 48 x 48 Dynamic Array IFC, which genotypes 47 individuals plus one blank control and 48 SNP loci 167 

simultaneously. Resulting fluorescence signals were recorded on a BioMark HD and data were processed using the 168 

SNP GENOTYPING ANALYSIS 4.1.2 software (Fluidigm, San Francisco, CA) using a k-means clustering algorithm. 169 

The confidence level for clustering was set at 65%, as recommended by the manufacturer, and cluster membership 170 

was verified by eye. Samples that had relative fluorescence values below 0.3 were invalidated and the data were re-171 

clustered. Ambiguous genotypes, defined as individual fluorescence values that were far from other genotype 172 

clusters or half way between two clusters, were excluded to minimize genotyping errors. During marker 173 

development, 141 individuals were run twice, and consistent results were obtained between replicate runs. There 174 

was variance in the fluorescence values for the individuals run twice, but the genotype of each individual was 175 

consistent between the duplicate runs.  Of the 48 loci chosen for our SNP panel, one locus was chosen as a duplicate 176 

to serve as an analytical control to assess reproducibility. The duplicate locus was removed from the data before 177 

downstream analyses were performed. Due to reproducibility issues only 41 loci were used in the statistical analyses 178 

(see Online Resource 1) 179 

STATISTICAL ANALYSIS 180 

Population genetic summary statistics were calculated for the data within and between sampled groups. 181 

Oyster genotypes were checked for conformance to the expectations of Hardy-Weinberg Equilibrium (HWE) using 182 

exact tests implemented in PEGAS 0.9 (Paradis, 2010) in R 3.4.0 (R Core Team, 2017). Individual locus F-statistics 183 
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were calculated as described by Weir and Cockerham (1984) in HIERFSTAT 0.01-14 (Goudet, 2014) in R. In 184 

addition, minor allele frequencies were calculated for each SNP locus to assess rare alleles in a sampled group. Tests 185 

for genotypic linkage equilibrium between pairs of loci were conducted using the index of association described by 186 

Brown et al. (1980) in the R package POPPR 1.1.4 (Kamvar et al. 2014). Linkage between loci within or among 187 

samples was used to assess independent assortment or if significant inbreeding occurred. Pairwise FST values across 188 

all loci were calculated in ARLEQUIN 3.3.2.2 (Excoffier and Lischer 2010). These pairwise F-statistics were used to 189 

determine within and among sample genetic variation to resolve potential sample relationships. Because there were 190 

a large number of individuals, loci, and tests performed, type I error using a standard p-value (alpha) would bias our 191 

interpretation of the results. To control the false discovery rate, an initial alpha of 0.05 was adjusted using the 192 

Benjamini-Yekutieli (2001) method (Online Resource 1). 193 

Multivariate analyses were used to explore non-random patterns of genetic variability within and among 194 

samples in a semi-spatial context. The analysis was semi-spatial because no explicit spatial data were used; 195 

however, individuals were identified by the geographic group in which they were collected. Principal component 196 

analysis (PCA) was used to investigate covariance across individual oysters and between the individuals’ allele calls 197 

using methods implemented by the R package ADEGENET 1.4.2 (Jombart 2008). For each column, the mean of the 198 

data was subtracted and divided by its standard deviation and missing allele calls were replaced with the column 199 

mean. There were 720 missing allele calls substituted out of 56,580 total allele calls due to failed fluorescence or 200 

ambiguous clustering (~1.3% missing data). The results of the PCA summarizes covariance between individual 201 

genotypic data and were used to examine differences on an individual, rather than on a population level. The 202 

advantage of PCA is that it does not make assumptions about the relationships within the data, such as HWE and 203 

linkage equilibrium, like the other population genetic analyses that were performed in this study. 204 

Bayesian clustering methods were performed to determine the probable number of population clusters and 205 

to determine likely cluster membership for each oyster. Individual genotypes were clustered using STRUCTURE 2.3.4 206 

(Pritchard et al. 2000), and were performed with correlated allele frequencies, admixture, and sampling location 207 

used as a prior. Simulations were run for 100,000 iterations with 50,000 initial steps discarded while k, number of 208 

putative populations, was set from one through ten at four iterations per k as recommended by the software 209 

developer. The most likely value of k was determined using the Δk method described by Evanno et al. (2005) and 210 

implemented in STRUCTURE HARVESTER (Earl and VonHoldt 2012). In addition, GENELAND 4.0.5 (Guillot et al. 211 
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2005) implemented in R was used to perform spatially-dependent clustering. Geographic coordinates were included 212 

as a prior distribution in the model and only samples that we were confident about their location were included in 213 

the spatial analyses. Four different subsets of the data were run for six iterations per set to account for possible 214 

cryptic regional population clusters and the highest mean log-likelihood of the data was used to determine the most 215 

likely run. GENELAND was run for 100,000 iterations with a thinning of 100, with k set from one to ten, and using 216 

the correlated allele frequencies model. The runs were post-processed by discarding the initial 200 iterations kept 217 

from the thinning. Both Structure and GENELAND use a similar Bayesian clustering algorithm that assumes putative 218 

populations conform to expected proportions of HWE and linkage equilibrium. 219 

RESULTS 220 

In total, 744 individuals were genotyped across 48 loci. Of these 48 loci, one was an analytical control and 221 

six were excluded due to poor fluorescence or ambiguous calls, leaving 41 markers for population genetic analysis 222 

(see Online Resource 1). Across all samples, expected heterozygosity ranged from 0.004 for locus prp-198 to 0.50 223 

for locus cm4-346 (Table 1). Within samples, the NEH® sample had the lowest mean expected heterozygosity at 224 

0.24, while the LR13 spat sample had the highest mean expected heterozygosity of 0.33. There were 14 loci that 225 

exhibited deviations from the expectations of Hardy-Weinberg Equilibrium (HWE) among the 41 loci (Table S1); 226 

however, no loci were out of HWE across all samples. Three loci, ba-83, nss1-228, and rpo-422, had significant 227 

deviations from HWE in seven, six, and five of the nine samples, respectively. Two loci, mych-289 and prp-198, 228 

were monomorphic in more than half of the samples (Table S1). Within samples, the number of loci out of HWE 229 

ranged from zero in LR to eight in the LR13 with a median of four loci out of HWE across all samples (Table S1). 230 

The linkage analysis indicated the reference samples LR, TI, and NEH® had significant global linkage (p < 0.002, p 231 

< 0.001, and p < 0.001, respectively, Table S2); however, no pairs of loci were significantly linked across all 232 

samples. The locus pairs nss-417 and hsp6-205, rpl9-451 and hsp6-205, and rpl9-451and nss-417 had large 233 

estimated linkage values indicating low probability of independent assortment in both the LR reference and LR13 234 

spat samples; however, these pairs were not linked in any other samples. Additionally, the linked loci had significant 235 

heterozygote excesses in the LR13 sample (p < 0.001), but not the LR sample. A pairwise relatedness analysis 236 

demonstrated that LR13 had a higher than expected levels of relatedness compared to LR and LR14 (Figure S1). 237 

 Population pairwise FST values were summarized in Table 2. Adult oysters were sampled from multiple 238 

locations within the Lafayette, Elizabeth, and James Rivers and pairwise FST values were first calculated between 239 
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sampling locations within each river. We found that all within river comparisons were non-significant (p > 0.01), 240 

therefore within river adult samples were combined for all subsequent analyses. The FST values were significantly 241 

different between 26 out of 36 total pairwise comparisons (p < 0.01), and had a median value of 0.02 ranging from -242 

0.04 (p = 0.99) between TI and RR and 0.14 (p < 0.01) between TI and NEH®. The FST values calculated between 243 

NEH® samples and all other samples were elevated relative to other pairwise comparisons, ranging from a minimum 244 

FST of 0.10 compared with LR14, ER, and JR to a maximum FST of 0.14 compared to both the RR and TI samples 245 

and all comparisons were significantly different (p < 0.01). The median FST for NEH® is 0.12 and the median of all 246 

other comparisons without NEH® is 0.01, an order of magnitude difference. The LR sample was significantly 247 

different from all other samples with median value of 0.01 with the exception of TI (FST = -0.02, p = 1.00). The spat 248 

samples LR13 and LR14 were significantly different from each other (FST = 0.03, p < 0.01). The LR13 spat were 249 

significantly different from the LR reference sample (FST = 0.01, p = 0.01) but not TI (FST = -0.03, p = 1.00). The 250 

LR14 spat were not significantly different from ER, JR, or TI (FST ~ 0, p = 1.00); however, they were significantly 251 

different from the LR reference sample (FST = 0.01, p < 0.01). 252 

 The PCA resolved several clusters of individuals. For reference group samples, the PCA indicated the 253 

presence of discrete clusters of individuals that were partially reflective of the geographic relationships of the 254 

samples in the Chesapeake Bay. The first two principal components retained from the PCA explained 6.5% and 255 

4.8% of the variance in the individual genotypic data (Figure 2a). The NEH® individuals were separated from all 256 

other genotyped individuals with minimal overlap in component space. The individuals from ER, JR, and GR 257 

clustered together, while the majority of individuals from RR and TI clustered together. Individuals from LR had a 258 

wider distribution, situated in component space among several clusters including space occupied by RR and TI, and 259 

in component space occupied by ER, JR, and GR. The spat samples LR13 and LR14 were separated from each other 260 

with minimal overlap. The LR13 sample had a wider distribution occupying space primarily with LR and some with 261 

ER, JR, and GR. While LR14 had a narrower distribution, sharing component space primarily with ER, JR, and GR. 262 

The results of the different STRUCTURE simulations had similar results and only the simulations using 263 

correlated allele frequencies and admixture are discussed. The results of the STRUCTURE simulations converged on 264 

three clusters (mean Ln likelihood = -25136) with individual oysters from RR and TI in cluster one; NEH® 265 

individuals exclusively in cluster two; while ER, JR, and GR individuals in cluster three (Figure 2b). The individual 266 

adults from LR were assigned to multiple clusters and showed evidence of admixture between clusters one and 267 
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three. The majority of LR individuals (60%, 32 of 53 oysters) were assigned to cluster three and the remainder were 268 

assigned to cluster one with the all RR and TI individuals. The majority of LR13 individuals (75%, 74 of 99 spat) 269 

were assigned to cluster one with RR and TI reference samples, while remaining LR13 spat were assigned to cluster 270 

one, which includes individuals sampled from the JR, ER, LR and GR. Unlike the LR13, which had individuals 271 

assigned to different clusters, the spat in the LR14 sample were exclusively assigned to cluster one. The STRUCTURE 272 

simulation results were qualitatively similar to the results from the PCA.  273 

When spatial data was explicitly taken into account, simulations performed in GENELAND resolved four 274 

population clusters in the Chesapeake Bay when all individuals were included. Overall, these results are similar to 275 

the PCA and STRUCTURE results except that results from GENELAND put the RR and TI samples into separate 276 

clusters (Figure S2). The discrepancy between these results is likely due to the spatial data used as priors in the 277 

GENELAND model input. In a second analysis including only those individuals sampled within the Lafayette River 278 

(i.e., LR, LR13, and LR14), an upriver section, eastward away from the mouth of the Lafayette, contains a cluster 279 

with 100% of the individuals from the LR reference sample, 91% of the LR13, and 31% of the LR14 individual spat 280 

(Figure 3). A second cluster located downriver and including the mouth of the Lafayette, which is connected to the 281 

Elizabeth River, contains 69% of LR14 and 9% of LR13 individual spat. 282 

Within the Lafayette River, the temporal and spatial patterns of post-larval oyster settlement based on the 283 

shell-string surveys contrasted with patterns of spat recruitment based on the spat-collectors. Within each year, the 284 

timing of settlement among shell-string sites was similar. Both the temporal and spatial patterns, however, varied 285 

between 2013 and 2014 (Figure S3). In the 2013 shell-string survey, post-larval oyster settlement was initially 286 

observed in mid-June and steadily increased with a peak in early August (Figure 4). By September of 2013, the 287 

supply of spat had decreased to levels that were observed in the beginning of the spawning in June. In 2014, the first 288 

post-larval oysters were not observed until mid-July, the peak of post-larval settlement occurred in early August, and 289 

a second peak was observed in early-September. The spatial pattern of settlement also differed between years (Table 290 

S3). In 2013 the majority of the post-larval oysters were recovered mid-river and upriver with few settling at the 291 

mouth, while in 2014 the majority of post-larval oysters were recovered near the mouth with some settlement 292 

upriver (Figure S3). The spatial pattern of recruitment was inferred based on the 2013 and 2014 spat-collector data. 293 

The total number of recruited spat in 2013 was 937 from 51 spat collectors (Figure 5a). The majority of the spat 294 

were collected near the mouth of the river (90%), very few were collected mid-river (6%) and up-river (4%). In 295 
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2014, the number of recruited spat was higher; 3132 spat were collected from 36 spat collectors (Figure 5b). Similar 296 

to 2013, the majority of recruited spat were from spat collectors returned from near the mouth of the river (94%), 297 

and few were collected from mid-river (4%) and up-river (2%). 298 

DISCUSSION 299 

We developed a SNP panel for use in a rapid, high-throughput platform that is easily scalable for genetic 300 

marker-based management studies of any species. Previous investigations of C. virginica to assess regional 301 

population connectivity predominantly relied on mtDNA or microsatellite markers (Milbury et al. 2004, Hare et al. 302 

2006, Carlsson et al. 2008). Our use of SNPs overcame many of the limitations exhibited by other molecular 303 

markers, particularly those of microsatellites (Morin et al. 2004, Garvin et al. 2010). Oysters have high levels of 304 

intra-specific polymorphism, and as a result null alleles and homoplasy are pervasive problems when using 305 

microsatellites (Launey and Hedgecock 2001, McGoldrick et al. 2000, Reece et al. 2004). Furthermore, SNPs are 306 

easily transferable between laboratories because they are less susceptible to subjective interpretation of fluorescence 307 

peaks, which is a common problem with standard microsatellite techniques. The SNP panel developed for this study 308 

has utility in C. virginica aquaculture and fishery research context, including stock identification, monitoring of 309 

diversity, and inbreeding assessment. 310 

Our results demonstrate that the SNP panel developed for this project can resolve genetic differences on 311 

small spatial scales, which is necessary for use in recruitment studies and restoration management applications. The 312 

SNP panel consisting of 41 loci resolved significant differences between adult oysters from the Lafayette, Elizabeth, 313 

and James Rivers. We expected a priori that there would be little difference between oysters from these sites 314 

because these rivers are hydrodynamic connected (Shen et al. 1999) and connectivity is within the time scale of 315 

oyster pelagic larval duration (Kennedy 1996). Additionally, our SNP panel resolved significant differences between 316 

oysters sampled from the lower Chesapeake Bay and those collected from the Rappahannock and Great Wicomico 317 

Rivers, which are mid-Bay and more than 70 km distant. Previous work using eight microsatellite markers resolved 318 

significant differences within the Chesapeake Bay, and demonstrated a subtle pattern of isolation by distance on 319 

spatial scales similar to the larger geographic scale encompassed by our study (Rose et al. 2006). The statistical 320 

power of the 41 SNPs used by this study is comparable to that of the eight microsatellites used by Rose et al. (2006) 321 

when trying to resolve moderate levels of population differentiation (FST ~ 0.01, Morin et al. 2009). Thus, our SNP 322 

panel was an adequate tool to evaluate annual oyster recruitment on small spatial scales. 323 
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The reproductive contribution of restoration oysters newly recruiting within the Lafayette River was 324 

assessed using the SNP panel developed for this study. Our panel was sufficient to resolve significant genetic 325 

differences between the hatchery-bred NEH® oysters and field-sampled oysters. However, neither NEH® offspring 326 

nor NEH®-hybrid spat were detected in the samples from the Lafayette in 2014 (Figure 2b). We do not interpret our 327 

results to suggest that the NEH® oysters introduced by CBF did not spawn nor contribute progeny during the time 328 

span of our study. Rather, it is likely NEH® oysters spawned, but our sampling did not capture NEH® derived spat. 329 

Approximately 114,000 NEH® oysters were planted in the Lafayette River in 2013 for this project, and the estimated 330 

census size is 3.4x109 oysters in the James River, and 3.0x106 oysters in the Elizabeth and Lafayette Rivers 331 

combined (Mann et al. 2015). The likelihood of detecting a genetic signal of NEH® progeny was low because the 332 

signal could be obscured by resident-oyster reproductive output. Wilbur et al. (2005) made a similar suggestion to 333 

explain an absence of a genetic signal from restoration scallops amidst signals from wild scallops in a Florida 334 

estuary. The Tangier Island oysters, the second restoration line used in this study, were not significantly different 335 

from the resident adult oysters sampled in the Lafayette, Elizabeth, or James Rivers. This lack of significant 336 

differentiation was not expected considering the geographic distance (greater than 100 km) between the lower 337 

Chesapeake Bay and Tangier Island; however, the history of restoration and oyster seed-stock movement throughout 338 

Chesapeake Bay provides a possible explanation. The CBF has been introducing oysters into the Lafayette and 339 

Elizabeth Rivers from a variety of sources around the Chesapeake Bay since 1999 (T. Leggett, personal 340 

communication). It is likely that significant genetic differences between oysters residing near Tangier Island and 341 

oysters in the lower Chesapeake Bay once existed due to isolation by distance (Rose et al. 2006) but may have been 342 

diluted out as a result of CBF restoration plantings. 343 

Despite the paucity of data that the experimentally planted oysters contributed to the 2014 recruitment, our 344 

analyses reveal a potential influence of oysters genetically similar to the RR reference samples (Figure 2). 345 

According to records from the CBF, about 1.1 million Rappahannock oysters were introduced to the Tanner’s Point 346 

and Larchmont reefs in the Lafayette River during the course of restoration activities in 2011 and 2012 (Table 3). 347 

Our analyses suggest that the Rappahannock oysters planted in the Lafayette reproductively contributed to the 348 

Lafayette genepool and influenced the genotypic signature for some of the 2013 spat in this study. However, 349 

variation in reproductive success can lead to an overestimation of the long-term contributions by restoration oysters 350 

(Hedgecock and Pudovkin 2011), and this may be the case with the Rappahannock oysters planted by the CBF. 351 
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Thus, while our results demonstrate a contribution of oysters that are genetically similar to RR, a sustained 352 

contribution of Rappahannock oysters cannot be inferred from this data. Therefore, a monitoring strategy to obtain 353 

cohorts from specific reproductive events over multiple years would be sufficient to parse interannual variation in 354 

larval demographics. 355 

The results of our study suggest that there were variable sources for spat recruitment within the Lafayette 356 

River on interannual timescales. Spat collected in 2013 had genotypic signatures that were more closely related to 357 

reference oysters sampled from the Lafayette River, and the spat were significantly different from the reference 358 

samples collected in adjacent rivers. These results indicate that 2013 was a retentive year in which the prevailing 359 

reproductive contribution to recruitment was from within the Lafayette River and there was low dispersal of larvae 360 

produced in Elizabeth or James Rivers. In contrast, the spat collected in 2014 had a different genotypic signature 361 

similar to the reference oysters collected from the Elizabeth, and James Rivers. We interpret our results to suggest 362 

that the 2014 spat were a mixture of larvae spawned in the Lafayette and the adjacent rivers. The pattern of 363 

recruitment in which more spat are found near the mouth of the Lafayette was similar between years (Figure 5); 364 

however, the relative contribution of sources was different (Figure 3). Differences in the observed interannual source 365 

populations for the recruiting spat were likely a consequence of variance in reproductive success as well as variance 366 

in larval survival (Hedgecock 1982). For example, C. virginica are highly fecund, broadcast spawners whose pelagic 367 

larvae experience high mortality, and variations in these processes differentially impact annual reproductive success. 368 

As a result, variable contributions by different source populations to new recruits influences their resulting 369 

genotypic signatures (Hedgecock and Pudovkin 2011). The changes to reproductive success can be associated with 370 

intrinsic demographic variability such as fluctuations in fecundity, but other factors may also be important such as 371 

changes to the physical environment encountered during the spawning season. 372 

To explore a potential physical mechanism for the observed variance in recruitment patterns and genotypic 373 

signatures between 2013 and 2014, wind data from Norfolk Naval Air Station, VA (Network ID: 374 

GHCND:USW00013750, obtained from NOAA National Climatic Data Center) were examined. Winds were 375 

considered because they are an important mechanism for physical mixing of relatively shallow water masses similar 376 

to the lower Chesapeake Bay. We found that wind patterns in the summer months before and during the peak post-377 

larval settlement differed between 2013 and 2014 (Figure 4). In 2013, the prevailing winds blew from the south-378 

southwest (Figures 4 and 5a), possibly forcing water out of the Elizabeth River into the James River near Newport 379 
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News, Virginia and creating a local sea-surface-height low in which water from the Lafayette River could move out 380 

in response to a horizontal pressure gradient. As surface waters in the Lafayette River moved out, oyster larvae 381 

would be dispersed, and larvae would possibly be restricted from moving into the Lafayette except in deeper tidal 382 

flow. However, bivalve larvae in laboratory settings demonstrate vertical movement in response to steep salinity 383 

gradients, restricting larval distribution below the halocline and limiting deeper, tidal dispersal (Mann et al. 1991). 384 

Alternatively, winds out of the southwest could have forced surface waters toward the Lafayette River creating a 385 

local sea-surface-height high, restricting larval dispersal due to reduced surface advection against a horizontal 386 

pressure gradient, and forcing locally produced larvae to settle within the river. 387 

In contrast, 2014 exhibited different wind patterns the weeks before and during peak post-larval settlement 388 

(Figures 4 and 5b). The winds were weaker on average and coming from both the south-southwest and east-389 

northeast in July and August, respectively. Furthermore, the weekly zonal winds (u, Figure 4) in July and August 390 

2014 demonstrated an alternating east-to-west pattern that was distinct from the autocorrelated pattern in 2013 for 391 

the same months (Figure 4). The shifting winds in 2014 likely facilitated mixing of local water masses and 392 

concurrent planktonic larvae contributing to the genotypic signal observed for the 2014 spat. The mesohaline James 393 

River tidal front weakens during ebb tide and mixes with waters from the polyhaline Elizabeth and Lafayette Rivers 394 

(Shen et al. 1999). The mixing facilitates expansion and dispersal of phytoplankton blooms initiated in either the 395 

Lafayette, Elizabeth, or James Rivers across this region in about 20 days (Mulholland et al. 2009, Morse et al. 2011). 396 

The temporal scale of the circulation patterns within the lower Chesapeake Bay is well within the pelagic larval 397 

duration of oysters (Kennedy 1996) and oyster reef connectivity between these rivers is a reasonable hypothesis. We 398 

suggest that the contribution of oysters spawned in disparate regions of the lower Chesapeake Bay to annual oyster 399 

recruitment in the Lafayette River varies on interannual time scales and is partially dependent upon the winds during 400 

the summer spawning season. Future work should investigate the interaction of wind forcing, hydrodynamics, and 401 

larval dispersal and settlement in this region. 402 

During peak oyster spawning months in the summer, the Chesapeake Bay can be host to several potentially 403 

harmful algal species. The harmful algal bloom (HAB) events in the lower Chesapeake Bay during 2013 and 2014 404 

were different. Specifically, the duration and geographic extent of the annual bloom of Margalefidinium (previously 405 

known as Cochlodinium) polykrikoides varied between these two years. In 2013, the M. polykrikoides bloom was 406 

first observed in the Lafayette on August 9th and lasted in the James, Elizabeth and Lafayette Rivers region through 407 
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September 6th. The effects of M. polykrikoides on adult and larval oysters in the field are not well understood. 408 

Laboratory studies, however, have demonstrated that adult oysters will close their shells to possibly reduce toxin 409 

exposure (Hégaret et al. 2007). Larval oysters exposed to M. polykrikoides in laboratory studies have demonstrated 410 

increased mortality possibly due to factors including toxicity to HAB by-products (Tang and Gobler 2009, 411 

Mulholland et al. 2009, Reece et al. 2012). It is possible that the 2013 bloom either restricted further spawning as 412 

adults limited exposure by closing their shells or that larvae in the plankton suffered high mortalities reducing the 413 

supply of oyster larvae into the Lafayette mid-August through early September. In contrast during 2014, the M. 414 

polykrikoides bloom in this region was limited both the spatial and temporal extent (Reece 2014). Few HAB 415 

samples were collected in the region from small bloom patches in mid-June through early July (Reece 2013, 2014, 416 

Marshall and Egerton 2013, 2014), before the peak timing of post-larval settlement within the river (Figure 4). The 417 

reduced HAB activity might have been partially contributed for the overall increased spat recruitment in 2014 as 418 

quantified by the spat collectors (Figure 5b). Unfortunately, our data cannot resolve the dynamics between timing of 419 

larval settlement, spat source, and HAB activity in the region; however, our results provide a tantalizing suggestion 420 

for recruitment control by HABs in the lower Chesapeake Bay that deserves further study. 421 

Our results offer support for larval settlement projections produced by the Sisson and Shen (2012) 422 

connectivity model. Overall, the model output demonstrates that oyster larvae spawned in the Lafayette River will 423 

settle out in the upper parts of the river away from the mouth leading to the rest of the lower Chesapeake Bay 424 

(Figure S4). The results from 2013 exhibit a similar retentive capacity of the Lafayette such that larvae produced in 425 

the river can settle within the river (Figure 3). A limitation of our study was that no spat collectors were placed 426 

outside the Lafayette to identify dispersal out of the river; however, several spat collectors in both 2013 and 2014 427 

were sampled at the mouth of the Lafayette. The results of the collectors at the mouth demonstrate genotypic 428 

signatures that were both similar to the Lafayette reference sample in 2013 and the adjacent rivers, while the 2014 429 

spat collector results at the mouth had a more cosmopolitan genotypic signature. The explanation for the discrepancy 430 

between the model projections and the field results were likely due to several factors. For example, the model was 431 

initialized with winds from 2008, a year with wind patterns more similar to those observed in 2013. The model 432 

cannot represent the wind variability present both in 2013 and 2014. Because the winds in 2013 were more similar 433 

to 2008 used to initialize the model, the observed retentive capacity of the Lafayette during 2013 compares well with 434 

the expected settlement projections produced by the model. In addition, the model did not simulate the settlement of 435 
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larvae produced outside the Lafayette River, and as a result the relative contribution by different rivers in the Lower 436 

Chesapeake Bay to the Lafayette cannot be assessed from the model output. Lastly, the connectivity model does not 437 

explicitly represent conditions within the estuary important for larval survival, settlement, and spat recruitment thus 438 

limiting the comparisons between observations and model output. In reality, the regions of highest recruitment 439 

projected by the model (Figure S4), upriver away from the mouth, are also the areas that have the lowest recovery 440 

per spat-collector (Figure 5). The upriver regions are not suitable for spat survival because these areas have little 441 

hard substrate for attachment, suspended sediments from runoff smother spat, and high heat during low tides in the 442 

summer spawning season easily desiccates spat. 443 

CONCLUSIONS 444 

Restoration projects, which introduce live organisms, make the assumption that planted individuals will add 445 

to the spawning potential of local populations and contribute to subsequent recruitment. The overall aim of this 446 

study was to test whether restoration efforts impacted the annual oyster recruitment such that genetic contributions 447 

could be detected within the Lafayette River, VA. Our study failed to detect any contribution in newly recruiting 448 

oysters from the two experimentally planted oyster strains chosen to be easily identified using molecular genetic 449 

methods. We did find evidence to suggest that oysters from the Rappahannock River previously planted for 450 

restoration had contributed to recruitment within the Lafayette River. The geographic distance between these rivers 451 

precludes direct dispersal, and as a result we can conclude that the observed spat genotypes are due to restoration 452 

activities. Furthermore, our research demonstrated that the source populations for newly recruiting oyster spat varies 453 

on interannual timescales within the Lafayette River. Thus, we suggest that ecological investigations for 454 

management objectives into sessile, broadcast-spawning estuarine species should consider the interannual 455 

differences in larval dispersal and recruitment. 456 

We identified several potential factors influencing the source and magnitude of oyster settlement and 457 

recruitment within the Lafayette River. Due to the timing of the blooms, HABs in 2013 could not influence the post-458 

larval oysters settling in the Lafayette until the second week of August. It is more likely that the winds influenced 459 

the hydrodynamics, precluding significant contributions of larvae spawned outside the Lafayette; however, some 460 

2013 spat were similar to oysters from outside the Lafayette. It is possible that the hydrodynamics in 2013 were 461 

sufficient for oysters spawned outside the Lafayette to settle in the Lafayette, but HABs may have exerted a greater 462 

control on post-larval survival in the late summer. In comparison, HABs in 2014 were early and limited in extent, 463 
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while shifting zonal winds provided ample energy to physically mix the water masses and the resident plankton in 464 

the lower Chesapeake Bay. Observations of the timing of spawning in the lower Chesapeake Bay, identification of 465 

specific cohort settlement timing, and plankton community composition would help to resolve the dynamics 466 

between oyster larval survival and HABs. We do not to intimate that the factors mentioned are the only influences, 467 

nor the most influential for settlement and recruitment; however, the preponderance of data lead us to suggest that 468 

the potential linkages mentioned are relevant on interannual timescales.  469 



Turley et al. Interannual oyster recruitment 

 

 19 

Funding: Virginia Sea Grant for provided program development funds. Also, the Tidewater Oyster Growers 470 

Association gave B. Turley a fellowship in support for this research. 471 

 472 

Conflict of Interest: The authors declare that they have no conflict of interest. 473 

 474 

Data availability: The datasets generated by this study are available from corresponding author upon request.  475 



Turley et al. Interannual oyster recruitment 

 

 20 

Literature Cited 476 

Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. The 477 
Annals of Statistics 29(4) 1165–1188. 478 

Brown AH, Feldman MW, Nevo E (1980) Multilocus Structure of Natural Populations of Hordeum spontaneum. 479 
Genetics 96(2):523–536. 480 

Buroker NE (1983) Population genetics of American oyster Crassostrea virginica along the Atlantic coast and the 481 
Gulf of Mexico. Marine Biology 75:99–112. 482 

Carlsson J, Carnegie RB, Cordes JF, Hare MP, Leggett AT, Reece KS (2008) Evaluating Recruitment Contribution 483 
of a Selectively Bred Aquaculture Line of the Oyster, Crassostrea virginica used in Restoration Efforts. 484 
Journal of Shellfish Research 27(5):1117–1124. https://doi.org/10.2983/0730-8000-27.5.1117. 485 

Earl D, VonHoldt BM (2012) STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE 486 
output and implementing the Evanno method. Conservation Genetics Resources 4(2):359–361. 487 
https://doi.org/10.1007/s12686-011-9548-7. 488 

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software 489 
STRUCTURE: A simulation study. Molecular Ecology 14(8):2611–2620. https://doi.org/10.1111/j.1365-490 
294X.2005.02553.x. 491 

Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: A new series of programs to perform population genetics 492 
analyses under Linux and Windows. Molecular Ecology Resources 10(3):564–567. 493 
https://doi.org/10.1111/j.1755-0998.2010.02847.x. 494 

Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and 495 
codominant markers: A Bayesian perspective. Genetics 180(2):977–993. 496 
https://doi.org/10.1534/genetics.108.092221. 497 

Garvin MR, Saitoh K, Gharrett AJ (2010) Application of single nucleotide polymorphisms to non-model species: A 498 
technical review. Molecular Ecology Resources 10(6):915–934. https://doi.org/10.1111/j.1755-499 
0998.2010.02891.x. 500 

Goudet, J (2014) hierfstat: Estimation and tests of hierarchical F-statistics, ver. 0.04-14. R package. 501 

Grabowski JH, Brumbaugh RD, Conrad RF, Keeler AG, Opaluch JJ, Peterson CH et al (2012) Economic Valuation 502 
of Ecosystem Services Provided by Oyster Reefs. BioScience 62(10):900–909. 503 
https://doi.org/10.1525/bio.2012.62.10.10. 504 

Guillot G, Mortier F, Estoup A (2005) GENELAND: A computer package for landscape genetics. Molecular 505 
Ecology Notes 5(3):712–715. https://doi.org/10.1111/j.1471-8286.2005.01031.x. 506 

Hare MP, Allen SK, Bloomer P, Camara MD, Carnegie RB, Murfree J et al (2006) A genetic test for recruitment 507 
enhancement in Chesapeake Bay oysters, Crassostrea virginica, after population supplementation with a 508 
disease tolerant strain. Conservation Genetics 7(5):717–734. https://doi.org/10.1007/s10592-005-9108-3. 509 

Hedgecock, D (1982) Genetic Consequences of Larval Retention: Theoretical and Methodological Aspects. In V. S. 510 
Kennedy (Ed.) Estuarine Comparisons (pp. 553–568). New York: Academic Press. 511 



Turley et al. Interannual oyster recruitment 

 

 21 

Hedgecock D, Pudovkin AI (2011) Sweepstakes Reproductive Success In Highly Fecund Marine Fish And 512 
Shellfish: A Review And Commentary. Bulletin of Marine Science 87(4):971–1002. 513 
https://doi.org/10.5343/bms.2010.1051. 514 

Hégaret H, Wikfors GH, Shumway SE (2007) Diverse Feeding Responses of Five Species of Bivalve Mollusc When 515 
Exposed to Three Species of Harmful Algae. Journal of Shellfish Research 26(2):549–559. 516 
https://doi.org/10.2983/0730-8000(2007)26[549:DFROFS]2.0.CO;2. 517 

Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ et al (2001) Historical Overfishing 518 
and the Recent Collapse of Coastal Ecosystems. Science 293(5530):629-637. 519 

Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 520 
24(11):1403–1405. 521 

Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, 522 
partially clonal, and/or sexual reproduction. PeerJ 2:e281. 523 

Kennedy VS (1996) Biology of Larvae and Spat. In VS Kennedy, RIE Newell, A Eble (Eds.) The Eastern Oyster: 524 
Crassostrea virginica (pp. 371–422). College Park, MD. 525 

Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying 526 
clustering modes and packaging population structure inferences across K. Molecular Ecology Resources 527 
15(5):1179–1191. https://doi.org/10.1111/1755-0998.12387. 528 

Launey S, Hedgecock D (2001) High genetic load in the Pacific oyster Crassostrea gigas. Genetics 159(1):255–265. 529 

Mann R, Bernardita MC, Luckenbach MW (1991) Swimming rate and responses of larvae of three mactrid bivalves 530 
to salinity discontinuities. Marine Ecology Progress Series 68:257–269. 531 

Mann R, Southworth M, Wesson, J (2011) Stock Assessment of Public Grounds and Sanctuaries in Virginia, Fall 532 
2011. Gloucester Point, VA. 533 

McGoldrick D, Hedgecock D, English LJ, Baoprasertkul P, Ward RD (2000) The transmission of microsatellite 534 
alleles in Australian and North American stocks of the Pacific oyster (Crassostrea gigas): selection and null 535 
alleles. Journal of Shellfish Research 19:779–788. 536 

Milbury CA, Meritt DW, Newell RIE, Gaffney PM (2004) Mitochondrial DNA markers allow monitoring of oyster 537 
stock enhancement in the Chesapeake Bay. Marine Biology 145(2):351–359. https://doi.org/10.1007/s00227-538 
004-1312-z. 539 

Morin PA, Luikart G, Wayne RK (2004) SNPs in ecology, evolution and conservation. Trends in Ecology and 540 
Evolution 19(4):208–216. https://doi.org/10.1016/j.tree.2004.01.009. 541 

Morin PA, Martien KK, Taylor BL (2009) Assessing statistical power of SNPs for population structure and 542 
conservation studies. Molecular Ecology Resources 9(1):66–73. https://doi.org/10.1111/j.1755-543 
0998.2008.02392.x. 544 

Morse RE, Shen J, Blanco-Garcia JL, Hunley WS, Fentress S, Wiggins M, Mulholland MR (2011) Environmental 545 
and Physical Controls on the Formation and Transport of Blooms of the Dinoflagellate Cochlodinium 546 
polykrikoides Margalef in the Lower Chesapeake Bay and Its Tributaries. Estuaries and Coasts 34(5):1006–547 
1025. https://doi.org/10.1007/s12237-011-9398-2. 548 



Turley et al. Interannual oyster recruitment 

 

 22 

Mulholland MR, Morse RE, Boneillo GE, Bernhardt PW, Filippino KC, Procise LA et al (2009) Understanding 549 
causes and impacts of the dinoflagellate, Cochlodinium polykrikoides, blooms in the Chesapeake Bay. 550 
Estuaries and Coasts 32(4):734–747. https://doi.org/10.1007/s12237-009-9169-5. 551 

North EW, Schlag Z, Hood RR, Li M, Zhong L, Gross T, Kennedy VS (2008) Vertical swimming behavior 552 
influences the dispersal of simulated oyster larvae in a coupled particle-tracking and hydrodynamic model of 553 
Chesapeake Bay. Marine Ecology Progress Series 359:99–115. https://doi.org/10.3354/meps07317. 554 

Paradis E (2010) pegas: an R package for population genetics with an integrated–modular approach. Bioinformatics 555 
26(3):419–420. 556 

Pritchard JK, Stephens M, Donnelly, P (2000) Inference of population structure using multilocus genotype data. 557 
Genetics 155(2):945–959. https://doi.org/10.1111/j.1471-8286.2007.01758.x. 558 

R Core Team (2015) R: A language and environment for statistical computing, ver. 3.1.3. Vienna, Austria: R 559 
Foundation for Statistical Computing. 560 

Reece K (2014) Monitoring for HAB species in VA Waters of Chesapeake Bay during 2014: Emerging HAB species 561 
in Chesapeake Bay. Gloucester Point, VA. 562 

Reece K (2013) Monitoring for HAB species in VA Waters of Chesapeake Bay during 2013: Emerging HAB species 563 
in Chesapeake Bay. Gloucester Point, VA. 564 

Reece K, Ribeiro WL, Gaffney PM, Carnegie RB, Allen SK (2004) Microsatellite marker development and analysis 565 
in the eastern oyster (Crassostrea virginica): Confirmation of null alleles and non-mendelian segregation 566 
ratios. Journal of Heredity: 95(4):346–352. https://doi.org/10.1093/jhered/esh058. 567 

Rose CG, Paynter KT, Hare MP (2006) Isolation by distance in the eastern oyster, Crassostrea virginica, in 568 
Chesapeake Bay. Journal of Heredity 97(2):158–170. https://doi.org/10.1093/jhered/esj019. 569 

RStudio Team (2013) RStudio, ver. 0.98.978. Boston, MA: RStudio. 570 

Selkoe KA, D’Aloia CC, Crandall ED, Iacchei M, Liggins L, Puritz JB et al (2016) A decade of seascape genetics: 571 
Contributions to basic and applied marine connectivity. Marine Ecology Progress Series 554:1–19. 572 
https://doi.org/10.3354/meps11792. 573 

Shen J, Boon JD, Kuo AY (1999) A Modeling Study of a Tidal Intrusion Front and Its Impact on Larval Dispersion 574 
in the James River Estuary, Virginia. Estuaries 22(3):681. https://doi.org/10.2307/1353055. 575 

Sisson GM, Shen J, Kim SC, Boon JD et al (1997) VIMS three-dimensional hydrodynamic-eutrophication model 576 
(HEM-3D): application of the hydrodynamic model to the York River system (Special Report in Applied 577 
Marine Science and Ocean Engineering No. 341). 578 

Sisson GM, Shen J (2012) Modeling of Oyster Larval Connectivity for CBF in Support of NOAA’s Community-579 
Based Restoration Program & Restore America’s Estuaries Oyster and Reef Balls on Sanctuary Reefs in MD 580 
and VA - Phase Three (Special Report No. 433 In Applied Marine Science and Ocean Engineering). 581 

Southworth M, Mann R (2015) The Status of Virginia’s Public Oyster Resource 2014. Gloucester Point, VA. 582 

Tang YZ, Gobler CJ (2009) Cochlodinium polykrikoides blooms and clonal isolates from the northwest Atlantic 583 
coast cause rapid mortality in larvae of multiple bivalve species. Marine Biology 156(12):2601–2611. 584 
https://doi.org/10.1007/s00227-009-1285-z. 585 



Turley et al. Interannual oyster recruitment 

 

 23 

Weir BS, Cockerham CC (1984) Estimating F-Statistics for the Analysis of Population Structure. Evolution 586 
38(6):1358–1370. 587 

Wilbur AE, Seyoum S, Bert TM, Arnold WS (2005) A genetic assessment of bay scallop (Argopecten irradians) 588 
restoration efforts in Florida’s Gulf of Mexico coastal waters (USA). Conservation Genetics 6(1):111–122. 589 
https://doi.org/10.1007/s10592-004-7747-4. 590 

Zhang L, Guo X (2010) Development and validation of single nucleotide polymorphism markers in the eastern 591 
oyster Crassostrea virginica Gmelin by mining ESTs and resequencing. Aquaculture 302(1–2):124–129. 592 
https://doi.org/10.1016/j.aquaculture.2010.02.012.  593 



Turley et al. Interannual oyster recruitment 

 

 24 

FIGURES 594 

Fig. 1 (a) Locations within the Chesapeake Bay where oyster samples were collected. G – Great Wicomico River; T 595 

– Tangier Island; D – Deepwater Shoal, James River; W – Wreck Shoals, James River; C – Cruisers Rock, James 596 

River; B – Eastern Branch, Elizabeth River; H – Hospital Point, Elizabeth River; L – Lafayette River. (b) Lafayette 597 

River inset with shell-string locations labeled with S and river regions labeled  598 
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Fig. 2 (a) Principal Component Analysis results for samples grouped by sampling group. Each point represents one 599 

individual oyster genotype. Variance explained for principal component one and two are in parenthesis on x and y 600 

axes, respectively. (b) Structure analysis results where three clusters (k = 3) is the most likely result; vertical bars 601 

indicate posterior probabilities of cluster membership for individual oyster genotypes. Cluster designation starts at 602 

the top and moves down; cluster one is indicated in purple; cluster two is indicated in orange; and cluster three is 603 

indicated in blue. For these results, admixture was allowed, allele frequencies were correlated, and sampling 604 

locations were used as a prior. Figure produced using Clumpak (Kopelman et al. 2015)  605 
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Fig. 3 (a) Results from GENELAND analysis for Crassostrea virginica sampled from the Lafayette River, VA. 606 

Colored contours represent probability of belonging to downriver cluster (west toward the mouth) or to the upriver 607 

cluster (east toward the head). Adult samples are represented by red diamonds, spat from 2013 are represented by 608 

yellow upward pointing triangles, and spat from 2014 are represented by green downward pointing triangles. The 609 

size of the symbol for LR13 and LR14 are proportional to the number of samples genotyped from each location. The 610 

colorbar on the right is the posterior probability of individuals being assigned to the first cluster. (b) GENELAND 611 

results displaying proportion of membership for Lafayette adults, 2013 spat, and 2014 spat to the downriver and 612 

upriver clusters  613 
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Fig. 4 Top row plots display the number of spat per shell from shell-string surveys in 2013 (left column) and 2014 614 

(right column). The error bars indicate standard error. Gray symbols near the top of the plots indicate the timing of 615 

harmful algal bloom events where circles were events reported in the Lafayette River, the X was an event reported 616 

in the Elizabeth River, and triangles were events reported in the James River. The bottom row plots show U winds, 617 

which were weekly averaged zonal winds where positive were winds blowing to the east and negative were to the 618 

west, and V winds, which were weekly averaged meridional winds where positive were winds blowing to the north 619 

and negative were to the south. Data were observed winds at Norfolk Naval Air Station, VA (Network ID: 620 

GHCND:USW00013750, obtained from NOAA National Climatic Data Center)   621 
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Fig. 5 (a) Total spat in 2013 from spat collectors deployed in the Lafayette River by citizen scientists. Monthly 622 

averaged wind vectors for July and August are from Norfolk Naval Airbase. Size of symbol is proportional to 623 

number of spat recovered at each station. Restoration Reef locations for deployment of experimental oysters are 624 

denoted L for Larchmont (NEH® plantings) and G for Granby (Tangier plantings). In addition, the location of 625 

Tanner’s Reef is labeled with a T. (b) Total spat in 2013 from spat collectors deployed in the Lafayette River by 626 

citizen scientists. Observed monthly averaged wind vectors for July and August are from Norfolk Naval Air Station, 627 

VA (Network ID: GHCND:USW00013750, obtained from NOAA National Climatic Data Center)   628 
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TABLES 629 
Table 1 HWE summary statistics for all samples. Statistics for observed heterozygosity (Ho), expected 630 

heterozygosity (He), inbreeding coefficient (FIS), and minor allele frequencies (MAF) were calculated over all loci 631 

per sample. Median, maximum, minimum and standard deviation (sd) across all loci per sample are displayed. The 632 

number of individuals (n) per sample are included 633 

Sample  Ho He FIS MAF 

LR median 0.32 0.32 0.02 0.20 

 max 0.60 0.51 1.00 0.50 

 min 0.29 0.31 0.07 0.22 

 sd 0.17 0.17 0.24 0.15 

 n = 53     

LR13 median 0.28 0.34 0.00 0.22 

 max 0.74 0.50 1.00 0.49 

 min 0.00 0.01 -0.58 0.01 

 sd 0.20 0.16 0.33 0.15 

 n = 99     

LR14 median 0.29 0.32 0.00 0.20 

 max 0.52 0.50 1.00 0.50 

 min 0.00 0.00 -0.14 0.00 

 sd 0.17 0.18 0.26 0.16 

 n = 187     

ER median 0.27 0.35 0.10 0.23 

 max 0.52 0.50 0.80 0.49 

 min 0.00 0.00 -0.15 0.00 

 sd 0.17 0.18 0.24 0.17 

 n = 71     

JR median 0.30 0.38 0.00 0.25 

 max 0.62 0.50 0.67 0.49 

 min 0.00 0.00 -0.23 0.00 

 sd 0.19 0.19 0.23 0.17 

 n = 69     

RR median 0.32 0.37 -0.04 0.24 

 max 1.00 0.51 0.54 0.50 

 min 0.00 0.00 -1.00 0.00 

 sd 0.25 0.17 0.32 0.17 

 n = 48     

GR median 0.28 0.33 0.02 0.21 

 max 0.57 0.50 0.56 0.50 

 min 0.00 0.00 -0.15 0.00 

 sd 0.17 0.18 0.19 0.15 

 n = 46     

TI median 0.33 0.34 -0.02 0.22 

 max 1.00 0.51 0.66 0.50 

 min 0.00 0.00 -1.00 0.00 

 sd 0.25 0.18 0.34 0.16 

 n = 47     

NEH® median 0.13 0.18 -0.02 0.10 

 max 0.64 0.50 0.84 0.49 

 min 0.00 0.00 -0.30 0.00 

 sd 0.22 0.21 0.28 0.18 
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 n = 70     

  634 
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Table 2 Pairwise FST values for oyster samples. The upper half of the matrix are p-values where bold underlined 635 

values are significant (p < 0.01, Benjamini-Yekutieli corrected p-value). The lower half of the matrix are the 636 

pairwise FST values with significant values bolded and underlined 637 

 LR LR13 LR14 ER JR RR GR TI NEH® 

LR  0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.00 

LR13 0.01  0.00 0.00 0.00 0.00 0.00 1.00 0.00 

LR14 0.01 0.03  0.40 0.55 0.00 0.00 1.00 0.00 

ER 0.01 0.03 0.00  0.96 0.00 0.01 0.34 0.00 

JR 0.01 0.03 0.00 0.00  0.00 0.00 0.32 0.00 

RR 0.02 0.01 0.03 0.04 0.04  0.00 1.00 0.00 

GR 0.02 0.04 0.01 0.01 0.01 0.05  0.71 0.00 

TI -0.02 -0.03 -0.01 0.00 0.00 -0.04 0.00  0.00 

NEH® 0.12 0.12 0.10 0.10 0.10 0.14 0.13 0.14  

  638 
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Table 3 Oysters planted by the Chesapeake Bay Foundation into the Lafayette River 639 

Year Location, Lafayette River Origin  Number  Method 

2011 Larchmont Reef Rappahannock 397,012 spat on shell 

2012 Tanner’s Point Rappahannock 727,145 spat on shell 

2013 Granby Reef Tangier Island 1,800,000 spat on shell 

2013 Larchmont Reef NEH® 114,000 cultchless 

  640 
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Electronic Supplementary Material 1: Details concerning the SNP panel development, significance testing 641 

correction, and connectivity model. In addition, supplementary figures are included. Figure S1 are results from 642 

relatedness analysis. Figure S2 are results from shell-string survey. Figure S3 are depictions of the connectivity 643 

model output. Supplementary table 1 displays across sample Hardy-Weinberg statistics results, table S2 are linkage 644 

analysis results, and table S3 are ANOVA results of shell-string data. 645 

 646 

Electronic Supplementary Material 2: Table listing the single nucleotide polymorphism markers used for this study 647 

including marker names, putative gene, base pair alternates, literature reference, Genebank accession number, and 648 

primer sequences used for methods. 649 
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