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Abstract

While adult white sharks (Carcharodon carcharias) are apex predators with a circumglobal

distribution, juvenile white sharks (JWS) feed primarily on bottom dwelling fishes and tend to

be coastally associated. Despite the assumedly easier access to juveniles compared to

large, migratory adults, limited information is available on the movements, environments,

and distributions of individuals during this life stage. To quantify movement and understand

their distribution in the southern California Bight, JWS were captured and fitted with dorsal

fin-mounted satellite transmitters (SPOT tags; n = 18). Nine individuals crossed the U.S.

border into Baja California, Mexico. Individuals used shallow habitats (134.96 ± 191.1 m)

close to shore (7.16 ± 5.65 km). A generalized linear model with a binomial distribution was

used to predict the presence of individuals based on several environmental predictors from

these areas. Juveniles were found to select shallow habitats (< 1000 m deep) close to land

(< 30 km of the shoreline) in waters ranging from 14 to 24˚C. Southern California was found

to be suitable eight months of the year, while coastal habitats in Baja California were suitable

year-round. The model predicted seasonal movement with sharks moving from southern

California to Baja California during winter. Additionally, habitat distribution changed inter-

annually with sharks having a more northerly distribution during years with a higher Pacific

Decadal Oscillation index, suggesting sharks may forego their annual fall migrations to Baja

California, Mexico, during El Niño years. Model predictions aligned with fishery-dependent

catch data, with a greater number of sharks being captured during periods and/or areas of

increased habitat suitability. Thus, habitat models could be useful for predicting the pres-

ence of JWS in other areas, and can be used as a tool for potentially reducing fishery inter-

actions during seasons and locations where there is increased susceptibility of incidental

catch.
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Introduction

Individuals are constantly responding to shifts in environmental conditions and vary their dis-

tributions accordingly to maximize fitness [1–5]. By understanding the association between

animals and their preferred conditions, researchers can use this information to model animal

movements. Furthermore, with the advancement of computational tools and collection of

high-resolution environmental data, spatio-temporal models can be developed to examine and

predict how animals interact with their environments. This has implications for how we man-

age direct and indirect human-animal interactions, such as exposure to fishing activity, marine

pollution and shipping traffic across spatial and temporal scales [6–11].

However, physiological tolerances to environmental conditions, predation risk, and prey

availability, vary across ontogeny and result in juveniles of some species selecting different

habitats than adults [12–14]. Understanding the environmental drivers of juvenile distribu-

tions is particularly vital as many species exhibit naturally high mortality during the juvenile

stage, which is often one of the strongest limitations to population growth [15–19]. However,

identifying the spatio-temporal location of suitable nursery habitat for species with low natural

densities and high mobility is challenging, representing an impediment to conservation efforts

by hampering population recovery of overexploited species.

The white shark (Carcharodon carcharias) exemplifies a species that exhibits both ontoge-

netic shifts in habitat use, diet and thermal physiology and is listed as vulnerable by the Inter-

national Union for Conservation of Nature (IUCN) [20]. While subadult and adult white

sharks are known to aggregate around marine mammal colonies, neonatal (<150 cm total

length-TL) and young-of-the-year (YOY, <175 cm TL) white sharks are not found in these

aggregations. These juvenile sharks have been most commonly observed or captured in near-

shore, temperate waters during the warmer months of the year, where their diet largely con-

sists of smaller benthic elasmobranchs, teleosts, and invertebrates [21–24]. Factors driving the

separation of adult and juvenile habitat are not well understood, but may be related to differ-

ences in diet or physiology between adults and juveniles.

Understanding factors that drive juvenile habitat selection and at what times of the year

sharks are likely to be present is important for accurately determining annual recruitment,

population trajectory and effective conservation of white sharks. Furthermore, understanding

the spatio-temporal overlap between fisheries and nursery areas is vital to understanding the

degree to which humans may interact with this species of conservation concern. There is evi-

dence that white shark populations in some parts of the globe may be positively responding to

previously implemented conservation measures [22,24], however, there is little historic data

on white shark nursery use or population sizes. Predicting and identifying what habitats could

be utilized by this species as populations grow is necessary for understanding population

recovery.

In order to determine how juvenile white sharks (JWS) select habitats, quantifying the

oceanographic conditions and key habitat features that influence the presences of individuals

is necessary for developing informative models. However, due to their low natural densities,

relying on observations of catch data alone is insufficient to quantify the locations of individu-

als. By satellite tagging individuals and overlaying their movements onto the actual oceano-

graphic sea state, we aimed to define the environmental conditions (depth, temperature,

primary productivity) used by juvenile sharks. Using these characteristics, from tracks span-

ning months, we were able to predict the spatio-temporal patterns of suitable habitat for juve-

niles in the Northeast Pacific. To test the accuracy of the model, we compared commercial

gillnet fishing bycatch time and locations to demonstrate their utility in predicting fishery
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interactions and how it can be used as a future management tool. To examine the global appli-

cability of JWS nursery habitats, we extrapolated this model across all coastal areas worldwide.

Methods

Capture and tagging

From 2006 to 2009, in collaboration with local commercial gillnet fishers, incidentally captured

JWSs were brought to the nearest port in a large fish tote (1.2 x 1.2 x 1.2 m) with flowing sea-

water. Researchers then met fishers to physically assess, measure, and tag sharks. JWSs were

also captured directly using hook-and-line or small commercial purse seine, where they were

brought onboard, measured, and tagged immediately. Incidentally caught sharks were released

2 km offshore from the port of assessment, while targeted individuals were released at the site

of capture. A subset of these directly targeted individuals were transported to the Monterey

Bay Aquarium for public display for 11–138 days, and then subsequently tagged and released

off Monterey, California (for information on captive handing, display and post release behav-

ior see[25–27]). After release, these individuals displayed behavior that was consistent with

individuals released immediately after capture, thus data were treated the same as individuals

released after capture.

All sharks were fitted with Smart Position Only Tags (SPOT, mini SPOT 5AM-S182C and

AM-S183E, Wildlife Computers) that were attached to their dorsal fins using nylon bolts [28].

Additionally, a subset of individuals opportunistically received a popup satellite archival trans-

mitter (PAT, Mk10-PAT, Wildlife Computers), however, this data was not used for estimating

habitat selection. All tagging work was conducted under California Department of Fish and

Wildlife (CDFW) permit (#3450) and all procedures on animals were reviewed and approved

by the California State University Long Beach Institutional Animal Care and Use Committee

(IACUC) under permit number 274.

Location estimation

Geolocations of tagged sharks can only be generated when the fin-mounted tag breaks the

water’s surface and an orbiting ARGOS satellite is overhead. The accuracy (<250 m to>10

km radius) and frequency (hourly to weekly) of SPOT locations is highly variable, depending

on satellite coverage, individuals’ surface-oriented behaviors, the number of transmissions, sea

state, and the time between transmissions [29]. These sources of variability in transmission

data can impart certain biases in interpretation of movements. Therefore, only the highest

quality SPOT tag locations (Argos class 1–3) were used and standardized into mean daily posi-

tions for each individual to reduce pseudo-replication. We used this approach to reduce the

potential bias of some individuals having multiple transmissions on a given day, to make day,

not individual transmission, the statistical unit.

Many studies interpolate positions to standardize for differential spatial and temporal

detection probability; this produces tracks of positions that are equally-spaced throughout the

study. However, interpolating locations would increase the statistical sample size by creating

positions for days in which no transmissions were received, thus increasing the resultant

power of statistical analysis. Additionally, if there was a spatial bias in detection ability, inter-

polating between these positions could reinforce, rather than eliminate this bias, by placing

interpolated positions in areas of high detection probability. Additionally, as we were examin-

ing habitat selection on small spatial scales<4km, interpolations of positions could introduce

additional error. Thus, based on the observed JWS tracks and the scale of habitat selection we

were interested in, locations were not interpolated for days in which there were no received

Juvenile white shark habitat selection
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transmissions, to best reduce potential bias. See S1 and S2 Figs for comparison of habitat selec-

tion differences between daily standardized and interpolated datasets.

Habitat selection

To determine shark habitat selection preferences, environmental data for each shark location

were extracted. Environmental parameters included water depth, distance to shore, sea surface

temperature (SST), SST gradient, Chlorophyll A, and Chlorophyll A gradient at surface detec-

tion location (see S1 File). These parameters were chosen as temporal and spatial data were

available at fine resolutions (< 1 week and< 4 km, respectively) for the entire globe, and

closely matched SPOT tag geolocation resolutions to minimize spatio-temporal mismatch

between the environmental and SPOT location data.

A generalized linear model (GLM) with a binomial distribution was used to compare the

habitats used by tagged animals compared to available habitat. Available habitat was deter-

mined for each detection by using a diffusion model with the probability of a location being

available for each individual shark dependent on the distance to its release location and the

time since release (Eq. 1). The rate (diffusion constant) at which habitat becomes available was

calculated as the mean square displacement from observed SPOT tracks.

Pðx; tÞ ¼
1
ffiffiffiffiffiffiffiffiffiffiffi
4pDt
p e

ðx� x0Þ
2

4Dt ð1Þ

Using this model, pseudo absences were set as randomly selected locations based on their

probability that the location would be available to the shark. Randomly selected points were

chosen in this fashion as this procedure yields more reliable results when using regression-

based techniques [30]. A large number of random points (n = 1000) were collected at each

time point to pair with each presence (detection) point. Using this approach, the pseudo

absences do not reflect where the shark was not, but an approximation of where the shark

might have been. In the regression, pseudo absences were given a weight of 1/1000 so that the

weighted sum of presences equals the weighted sum of pseudo-absences [30].

Model selection

A full complement of models was constructed with the serial removal and addition of each

environmental parameter. Quadratic terms were also included for SST and chlorophyll to

determine if individuals were only selecting for certain ranges of these parameters, as many

organisms exhibit upper and lower selection criteria. However, in order to improve model

interpretation, biological relevance and limit the over parameterization of models, no interac-

tion terms were included. All models were compared to a null model with no predictors, sug-

gesting that individuals were not selecting any habitat features. The models with the greatest

change in the Akaike Information Criterion (AIC) from the null model that did not differ by

at least 2 AIC points were considered candidate models, with the selected model as the one

with the fewest number of parameters [31].

Suitable habitat identification

Habitat suitability was defined as the probability of a habitat being used based on the coeffi-

cients from the GLM (Eq 2).

P Selectionð Þ ¼
1

1þ einterceptþc1�Env1þc2�Env2þ���
ð2Þ

Daily habitat suitability maps were constructed for the entire study area from 2002–2015 by

Juvenile white shark habitat selection
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calculating the habitat suitability of each cell in the study area based on corresponding envi-

ronmental maps. Core habitat was identified as the cells that contained the top 25 percent of

the sum of the habitat suitability. As the coastline along the Southern Californian Bight (SCB)

and Baja California, Mexico, is largely aligned North-South, latitude was used as a proxy of the

location of suitable habitat. The median latitude of the 25 percent core areas was calculated

each month throughout the model period. To test for seasonal differences in the distribution

of suitable habitat, a linear mixed model with a random effect of year was used to determine if

median latitude across each season significantly differed. To determine if oceanographic

regime shifts affect the distribution of predicted suitable JWS habitat, the mean position of

white shark habitat during each month was regressed against the Pacific Decadal Oscillation

(PDO) index [32].

Model verification and application

To verify the model predictions of suitable habitat, incidental JWS capture records were spa-

tially and temporally compared with model predictions. Total gillnet fishing effort (e.g., set

duration in hours, length of net in fathoms, target species, etc.) was obtained from gillnet log-

books for the years 2004–2009 for southern California (defined here as the region between

Santa Maria and San Diego) reported by CDFW commercial fishing block (10’ X 10’ blocks).

Since gillnet length regulations vary among the fisheries, fishing effort data were normalized

by dividing net soak hours by fathoms of net length for each fishing block each month (herein

“effort” refers to standardized data unless otherwise noted) [33]. Suitabilities were aggregated

to be at the same coarser spatio-temporal resolution as CDFW blocks. This was done by aver-

aging the suitability of all locations within a CDFW block each month.

Date and location (i.e. block) of incidental white shark captures were obtained from the

CDFW archive of logbook records (2004–2009), where reporting of incidentally captured

white sharks is mandatory for commercial gillnet fisheries in southern California. The number

of white sharks caught in each block was regressed against both predicted suitability and stan-

dardized effort to determine if predicted suitability correlated with JWS bycatch. This was

done using a generalized linear mixed model from the lme4 package in R [34] with the number

of individuals being specified as a Poisson distribution. Fishing block was classified as a ran-

dom variable to account for the non-independence in the dataset.

Global habitat identification

Based on the habitat use of tagged sharks in the SCB and verification from fishery compari-

sons, habitat suitability for JWSs was projected globally. This was done by extracting daily

global environmental variables from Jan 2013—Dec 2015, and generating monthly predicted

suitability maps using Eq 3. Potential areas suitable for JWS were defined as the smallest area

that contained 50 percent of the total probability of presence based on environmental condi-

tions found for SCB JWS and independent of historic/actual white shark observations for a

given area. For areas that were available to individuals for a substantial portion of the year,

maps were constructed showing the number of months each area was considered suitable

habitat.

Results

Tagging

From 2006–2009 a total of 18 sharks were outfitted with SPOT tags (S1 Table). Fourteen indi-

viduals were tagged as a result of incidental gillnet capture, while four individuals were tagged

Juvenile white shark habitat selection
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from directed fishing efforts (hook-and-line: n = 1, purse seine: n = 3). All individuals were

captured between San Diego and Santa Barbara, California, and released close to the site of

capture, except for two individuals that were released in Monterey Bay after being kept on

exhibit at the Monterey Bay Aquarium. Of the eighteen, one individual died immediately after

release as indicated by its PAT tag, and recorded no locations (JWS_08–18), another individual

was likely eaten 36 days after release (JWS_08–07) and six individuals were subsequently cap-

tured and died in gillnets after release (JWS_06–13: 21 days, JWS_ 08–01: 233 days, JWS_ 08–

02: 614 days, JWS_ 08–13: 124 days, JWS_09–11: 113 days, JWS_09–12: 14 days).

There was wide variability in the number of geopositions rendered among individuals

(Class 0–3: 645 locations; mean per individual: 36, range: 0–130), with most tags reporting less

than one year after release (mean ± SD: 107 ± 132 days). The average time between subsequent

detections was 3.69 days, and when excluding the three longest intervals (>100 days) the aver-

age interval between subsequent detections was 1.99 days. When using the daily standardized

locations, 15% of subsequent locations were after more than 5 days. Distances traveled between

subsequent detections were small (31 km) and 50% of subsequent locations were within 15 km

of their previous location even after 5 days. As such, these tracks poorly reflect the true path

that the animal traveled. However, all individuals did not remain in the same area throughout

the entire study, with nine individuals indicating movements south of the U.S. border to Baja

California, Mexico, between the months of August and January (S3 Fig). During these times

individuals displayed directed movements with average displacement speeds up to 1.5 km/h.

Habitat selection

Sharks were found in surface waters between 14.1˚C and 26.3˚C (mean ± SD: 18.61 ± 2.25˚C)

over depths ranging from <1 to 2188 m (134.96 ± 191.1 m) and in habitats <1 to 59.8 km

from the shoreline (7.16 ± 5.65 km). An individual’s presence was significantly predicted by

depth, distance to land, temperature, and the temperature quadratic term, indicating sharks

are selecting for temperatures between an upper and lower limit (ΔAIC = 748.1859, GLM

Depth: Z = 4.591, p<0.001, Distance: Z = -6.067, p< 0.001, Temp: Z = 5.255, p<0.001,

Temp2: Z = -5.181, p<0.001). Individuals selected for areas that were close to land (<30 km)

with water depths shallower than 1000 m and water temperatures between 14 and 24˚C

(median 19˚C) (Fig 1). Based on the coefficients derived from the habitat selection function,

habitat suitability was calculated using Eq 3. Depth gradient, temperature gradient, chloro-

phyll, and chlorophyll gradient were all found to not significantly improve model fit and were

not used in predicting habitat suitability.

P Habitatð Þ ¼
1

1þ e� ð� 27:798274þ0:002244�Depth� 0:000103�Distanceþ3:460984�Temp� 0:09243�Temp2 ð3Þ

Suitable habitat distribution

Based on individuals’ habitat selection, suitable habitat distributions were extrapolated for the

entire Northeast Pacific, with the most suitable locations (defined as locations that summed to

50% of the total probability) for each month deemed as core habitat. Year-round JWS core

habitat was not available in most areas and inter-annual distribution of suitable habitat was

highly variable, with the exception of Vizcaino Bay, Baja California, Mexico, which was suit-

able all months of the year (Fig 2). Seasonally, there were significant shifts in the median lati-

tude of suitable habitat (Fig 3, mixed model, F11,4922 = 2493, p<0.001). Mean position of

suitable habitat was significantly and positively related to the PDO index (Fig 4, PDO: F1,4934 =

1353, p<0.001). In non-El Niño years, southern California was relatively unsuitable from

December through April, while the Gulf of California and much of the Pacific Coast of Baja

Juvenile white shark habitat selection
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California was suitable habitat for JWS during these months. During years when the PDO was

indicative of El Niño conditions, there was a more northerly shift in suitable habitat, with

southern California remaining suitable for JWS during the winter months.

Fig 1. Habitat suitability by environmental parameters. Presences (standardized daily positions) are shown as black

circles with a value of 1, while available points are shown as a having a value of 0. Values are plotted against distance to

land (A), temperature (B) and depth (C). Conditional predicted responses for each variable are displayed as red lines

by fixing the other two parameters.

https://doi.org/10.1371/journal.pone.0214642.g001

Fig 2. Map of habitat suitability in the Northeast Pacific Ocean. Map of the Northeast Pacific Ocean, with colors representing the monthly overlap

in the 25% core area.

https://doi.org/10.1371/journal.pone.0214642.g002
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Model verification and application

From 2004–2008, 42 sharks were reported captured in the California gillnet fishery, with a

maximum of three individuals being captured in one block during a single month (n = 3). All

captures occurred in only eight out of the available 196 blocks (4%) where fishing occurred. As

gillnet fishing is not allowed within California state waters (<5.5 km of land), all reported cap-

tures occurred outside of state waters (>5.5 km). JWS bycatch was reported in blocks that ran-

ged in suitability from 0.19 to 0.55 out of 1. Six JWS were captured in three of the eight most

suitable block-months, with 13 individuals captured in seven of the most suitable 40 block

months. Habitat suitability significantly predicted JWS capture; however, fishing effort did not

predict capture (Fig 5, GLM: Suitability: Z = 6.083, p< 0.001, Effort: Z = 0.277, p = 0.781). In

addition, catches within a block were highest when the block-months suitability was closest to

the blocks maximum suitability.

Fig 3. Monthly habitat suitability in the Northeast Pacific Ocean. Areas of suitable habitat for JWS in the Northeast Pacific by each month of the year, with

red being areas that are highly suitable while blue is unsuitable. Monthly averages are based on environmental variables throughout the study period (2002–

2015).

https://doi.org/10.1371/journal.pone.0214642.g003
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Global habitat distribution

When habitat suitability was calculated globally, seven areas of coastline displayed high degrees

of habitat suitability: the Northeast Pacific, Northwest Pacific, Northwest Atlantic, Southwest

Atlantic, the Mediterranean/North Africa, South Africa, and Australia/New Zealand. Within

each of these coastlines, there were hotspots with suitable habitat available for more than six

months of the year. For example, along the Northwest Atlantic, there were two large areas of

high potential habitat suitability for JWS, including areas off Cape Hatteras, North Carolina,

which could be suitable for up to eight months of the year and Long Island Sound, New York,

which may provide suitable habitat for six months of the year (Fig 6).

Discussion

Key habitat variables

JWS in the SCB selected habitats based on specific criteria of the variables evaluated. Warm

temperate water temperatures, shallow depths and short distance to shore were all found to be

important components of preferred JWS habitat. These findings are supported by previous

observations of JWS behavior locally and globally [21,23,28,35,36]. Individuals in this study

remained predominantly in coastal waters with few individuals making offshore movements,

supporting other findings that JWS are coastally associated. This coastal, shallow water associa-

tion may be related to prey availability as nearshore habitats offer potentially more abundant

and easy to capture prey species than offshore, deeper habitats. Stomach contents and isotopic

signatures suggest a large component of the JWS diet is composed of other nearshore

Fig 4. Median suitable latitude over time. The 10-day running mean of the median latitude of the 25% core area used each day. There were

significant monthly and yearly differences in the median position. In the summer of 2014 and 2015 there were northerly expanses in median

core latitude.

https://doi.org/10.1371/journal.pone.0214642.g004
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elasmobranchs and coastal teleosts with little pelagic influence [37]. Additionally, these habi-

tats might provide protection from predators as the only JWS in this study that made an off-

shore movement was consumed by an unknown predator [38].

Temperature is commonly found to be important in influencing species distributions, as

found in the current study, by regulating physiological processes of the focal animal (e.g. mus-

cle performance, metabolism, growth rate) [39–44]. Additionally, temperature simultaneously

alters the physiology of other organisms and thus drives ecosystem composition. Water tem-

perature was a significant predictor of JWS presence, with sharks demonstrating specific ther-

mal preferences. JWS were most likely to be detected in habitats greater than 19˚C, and less

likely in waters cooler than 13˚C and warmer than 26˚C. JWS in other localities demonstrate

similar preferences where 63% of sharks in South Africa were captured between 19 and 22˚C

[21] and in New South Wales where tagged individuals were found to spend 45% of their time

in temperatures between 19 and 20˚C [23,36], suggesting that this preference is likely con-

served across populations. However, it is important to note that our habitat selection model is

based on SST alone, and thus does not represent the thermal limits of the species at this age

class, as juveniles are known to spend time at depths with water temperatures as cold as 6˚C

Fig 5. JWS captures by predicted suitability. The number of JWS captured (black circles) in each block-month (left y- axis) against the

predicted habitat suitability. Habitat suitability predicted the mean number of JWS caught (red line). Sum total effort (right y-axis, Hours/

fathom length) across habitat suitability (purple line) is overlaid, and decreases with increasing habitat suitability.

https://doi.org/10.1371/journal.pone.0214642.g005
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[28]. Additionally, there is some evidence that individuals can survive prolonged exposure to

waters cooler than 14˚C. For example, two YOY white sharks that were on display in the Mon-

terey Bay Aquarium were released into Monterey Bay during the winter (January and Febru-

ary), where upon release these animals experienced SST<12˚ C for over two weeks while they

made fairly rapid and directed movements southward until they reached areas that had SST

>14˚ C [27]. These directed movements indicate that individuals were not just utilizing the

available habitat around them and did not return to the area from which they were originally

captured in, but traveled to an area of warmer waters.

As members of the lamnid family, white sharks display regional endothermy [45]; however,

when in their ontogeny they develop endothermic capability is unknown. Since juveniles have

larger surface area to volume ratios than adults, they likely lack the mass and physiological

means to defend a high body core temperature during prolonged cold temperatures (<10˚ C)

[28,36,46]. Our model supports this hypothesis as JWS selected for habitats with warm surface

waters and moved seasonally to follow temperature regimes. However, this does not prohibit

them from making forays into deeper waters colder than these preferences as long as they have

Fig 6. Habitat suitability hot spots for the Northwest Atlantic. Overlap of the monthly 25% core areas for JWS in the Northwest Atlantic. Colors

represent the number of months that area represents core suitable habitat for JWSs. There are hot spots off Long Island Sound and off the Outer

Banks of North Carolina (insets).

https://doi.org/10.1371/journal.pone.0214642.g006
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suitable habitat to return to after making these dives, a behavior observed in many organisms

that forage below the thermocline [47–51].

Identifying thermal limits of highly migratory species in a three-dimensional environment

is challenging. Since the sea surface represents the warmest part of the water column, it follows

that when SST approaches individuals’ lower thermal preferences, they must move horizon-

tally to find warmer water. However, at the upper thermal selection limit, individuals may

choose to move vertically, as opposed to horizontally, and remain at depth to access deeper

cooler water to regulate body temperatures [51–53]. This would be especially problematic in

this and other studies that rely solely on SPOT tags, because when the animals are not at the

surface there is no information collected on their location. This problem can be overcome by

utilizing PAT tags that record depth and temperature; however, geoposition estimates lack

adequate spatial resolution relative to the variation in local environmental conditions that can

influence an individual’s movements. Identifying upper thermal selection limit is further com-

plicated in that all the sharks tagged in this study were from the northern end of the suitable

potential range for JWS determined by this model. YOY white sharks have been found in the

summer and fall off Vizcaino Bay, Mexico, and off South Africa in environments warmer than

found in this study (> 25˚C) [21,54,55].

Models for management

Using fishery-dependent incidental catch logbook data we were able to evaluate the predictive

ability and, therefore, utility of developing a habitat selection model to reduce JWS-fishery

interactions. When fishing blocks had higher monthly predicted habitat suitability, they expe-

rienced an increase in JWS bycatch, despite prohibition of gillnet fishing in California State

waters (<5.5 km of land). Fishing effort did not predict the number of JWS caught, suggesting

that in California the time and areas selected by fishers is somewhat decoupled from those

selected by JWS. This contrasts with other areas such as Vizcaino Bay that have high habitat

suitability and relatively high fishing pressure, where higher fishing mortalities have been

recorded [55].

JWS interactions with fisheries may be further reduced in the SCB as gillnets can only be set

in areas outside 5.5 km of the California coastline. Restricting gillnets to areas further offshore

and in deeper coastal waters limits the degree of overlap with core JWS habitat. Thus, JWS

preference for shallow inshore core habitat explains why gillnet fishing in the SCB represents a

much lower threat to JWS in comparison to gillnet fisheries in Baja, Mexico which are not as

spatially restricted [38]. When gillnets are set for less than 24 hrs, sharks have a higher (>50%)

likelihood of surviving capture if they are immediately released [33]. Based on the performance

of this model, managers could use SST data to warn fishers where and when they may have the

greatest probability to interact with JWS and encourage them to check their nets more fre-

quently to minimize post-release mortality. Strategies that use environmental parameters to

determine the overlap of species of concern with fisheries have been used before when manag-

ing different tuna stocks as well as estimating albatross and sea turtle bycatch [7,56,57]. These

tools provide an essential function for resource managers to maintain effort in sustainable fish-

eries while maintaining the fisheries below bycatch quotas [6].

Northeast pacific habitat

Based on sharks’ habitat preferences, areas of suitable habitat for the Northeast Pacific ranged

from Pt. Conception, U.S., to Mazatlán, Mexico. However, within this range there were large

seasonal and inter-annual variations in the distribution of suitable habitat. During non-El

Niño years, the SCB was only predicted to be suitable for individuals in the late summer
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through fall, with water temperatures becoming too cold in the winter. This reduction in tem-

perature likely drives the distribution of individuals south of the U.S. border into warmer,

Mexican waters as observed in nine individuals from this study. These findings are further cor-

roborated by historic fisheries bycatch data in the SCB, which reports fewer JWS caught during

the winter months (January–March) [22].

In contrast, southern areas of Mexico, such as the southern tip of Baja and the Gulf of Cali-

fornia, were predicted to be unsuitable for JWS from the summer to fall as waters become too

warm, but larger individuals have been observed based on both fisheries-dependent and -inde-

pendent data [27,54,58,59]. In particular, the central Gulf of California has been hypothesized

to be a birthing area for JWSs [35]. According to the model output, the areas around Bahia de

Los Angeles, and Isla Angel de la Guarda, were the most suitable habitats in the Gulf of Califor-

nia because deep water upwelling cools this area extending the suitability to seven months of

the year.

Vizcaino Bay and Bahia San Ignacio were predicted to provide nearly year-round suitable

habitat for JWS and these areas are documented nursery habitats, with individuals captured

year-round [55]. During summer months, neonatal white sharks (<1 month old) are found in

both the SCB and Vizcaino Bay [22,54,55]. Individuals tagged in the northern SCB have

migrated to Vizcaino Bay in the winter and returned to southern California the following sum-

mer (JWS 09–09 this study, C.G. Lowe et al., unpub. data). However, it is unknown whether

YOY white sharks found in Vizcaino Bay in the summer remain there or whether some may

migrate into southern California waters. Determining the connectivity between these areas is

important for conservation and management. Efforts should focus on tagging individuals in

Baja nursery to determine the degree of movement from Mexican into U.S. waters; however,

the magnitude of movement would likely depend on the inter-year variation in suitable habitat

as sharks are less likely to move from areas when preferred habitat is immediately available.

El Niño southern oscillation events

During El Niño years, surface waters in the Northeast Pacific can warm to more than 5˚ C

above average [60]. During the strong 2015 El Niño, areas as far north as Monterey Bay were

predicted to provide suitable habitat for YOY white sharks. It is extremely rare to find YOY

white sharks in this area; however, two one-year-old white sharks that were tagged with acous-

tic transmitters in southern California were detected in Monterey Bay in September 2014 and

several individuals were observed along beaches in Monterey in September 2014 and 2015, (J.

O’Sullivan and D. Ebert Pers Comm, C.G. Lowe et al., unpub. data). Furthermore, in the win-

ters of 2013–14 and 2014–2015 southern California experienced increased water temperatures,

with winter surface waters rarely going below 14˚ C. During these winters, JWS tagged with

PAT and acoustic transmitters were observed to remain in southern California (C. Lowe et al.,

unpubl. data). Thus, it appears that some individuals are able to use opportunistically more

northerly available habitats during strong El Niño periods. This is a commonly observed pat-

tern with many coastal subtropical species such as smooth hammerhead sharks (Sphryna
zygaena) experiencing range expansions into California during these cycles [61,62]. Addition-

ally, there was a significant predicted range reduction south of Point Conception with little

predicted available habitat in the Pacific waters of Mexico and there were fewer individuals

than normal observed in Vizcaino Bay (E. Garcia-Rodriguez, Pers.comm.). The patterns found

with El Niño Southern Oscillation events have significant implications for how the availability

of suitable JWS will be affected rise ocean temperatures resulting from climate change. Thus,

habitat modeling is an important tool managers can use to forecast how species distributions

may shift in the coming years. Furthermore, El Niño Southern Oscillation events have been
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found to affect documented sub-adult and adult white shark predation rates in South Africa

[63].

Global estimates of white shark nursery habitat

While caution is needed when extrapolating findings to regions outside of the study area, espe-

cially when there are potential spatial collection biases, predicting the global location of JWS

habitats revealed overlapping areas with known JWS captures. The Northwest Atlantic, South

African, the Mediterranean and Southeast Australian coastlines have all previously been

reported to be potential nursery areas for JWS [21,24,35,36,64]. Despite some of the potential

problems with global model extrapolation there was evidence of congruence between model

predictions and known nursery areas.

When examining the Northwestern Atlantic, there are areas that display higher suitability

over longer periods of time, such as Long Island Sound, which contained the largest catches of

YOY on the east coast of the U.S. [24]. Recent JWS tracking results from the North West

Atlantic indicated that JWS caught and tagged off New York during the summer spent their

first winter months off the outer banks, an area that is highly suitable for JWS during the win-

ter [65]. While model predictions appear to be fairly robust, the areas identified are large, and

may pose challenges in confirming JWS presence but provide a baseline for understanding the

spatial location of potential nursery areas.

Obviously, there are many factors that drive the distribution of species, of which prey distri-

butions are likely important, and vary between populations and study areas. JWS are believed

to mainly consume benthic elasmobranchs such as sting rays, which have reduced shifts in dis-

tribution throughout the year [66,67]. Yet tracking data from multiple populations have now

shown large seasonal movements [36,65]. This study identified temperature as the predomi-

nant predictor of shifts in distribution; temperature should be a relatively robust predictor

between locations as individuals’ physiology is directly impacted by this variable.

Using this simple model we show general agreement with known JWS distributions sug-

gesting that these variables have predictive importance to the species. This is important as even

simple models from small sample sizes can be of utility when identifying sites for further sur-

veying effort [68] and by incorporating the likely distribution of individuals into population

models, better estimates of population size can be determined [69]. Using these simple predic-

tive models allows researchers to more specifically test hypothesis and identify commonalities

or divergent properties between populations potentially driving population specific

demographics.

Supporting information

S1 Fig. Interpolated v. standardized positions. Linearly interpolated daily positions (A) and

daily standardized positions (B) overlaid on top of the bathymetry data for Southern Califor-

nia. During periods when individuals were not detected, interpolated positions were often fur-

ther from land, and less characteristic of assumed behavior.

(TIFF)

S2 Fig. Interpolated v. standardized habitat selection. When GLMs are run on both interpo-

lated (blue) and daily standardized (red) positions there is a greater selection for habitats that

are further from land (A). The increased probability for locations that are further from land

can be attributed to unlikely interpolated paths. During movements, individuals are likely to

remain near to the shoreline, however interpolated straight tracks do not follow the coastline.

Additionally there is a slight selection for cooler habitats in the interpolated data (B). From
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acoustic and satellite data (Lowe un pub.), individuals are observed to make highly directed

movements when they shift habitats. If this shift happens during a prolonged period when the

individual was not detected, interpolated positions can lag behind the true location of the indi-

vidual, placing it into cooler waters than it actually inhabited.

(TIFF)

S3 Fig. Release locations and tracks. A) Release location (red circles) of each individual. B)

All daily standardized locations, color coded by each individual.

(TIFF)

S1 File. Environmental data. This is a description of the spatial environmental data used.

(DOCX)

S1 Data. SPOT tag tracks for all sharks used in this study.

(CSV)

S1 Table. Tracking durations. This is a table of the each individuals size, capture data, num-

ber of days detected and deployment duration.

(XLSX)
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