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A balanced nitrogen budget of the surface layer 
of the southern Ross Sea, Antarctica 

Walker O. Smith, Jr. 
Virginia Institute of Marine Science, College of William and Mary, 
Gloucester Point, Virginia 

Vernon A. Asper 
Institute of Marine Sciences, University of Southem Mississippi, 
Stennis Space Center, Mississippi 

Abstract. To understand marine biogeochemical cycles, it is 
critical to quantitatively balance organic matter transformations 
within the euphotic zone. Such an assessment for nitrogen is 
difficult because of lateral advection, uncertainties in individual 
measurements, the complexity of elemental transformations 
(including nitrification and denitrification), and the difficulty of 
collecting data on appropriate space and time scales. Two 
cruises were conducted to the southern Ross Sea, Antarctica, to 
understand the time-varying fluxes of nitrogen into its various 
pools. From these data a balanced inventory was constructed. 
Nitrate removal in the upper 200 m was balanced by particulate 
and dissolved organic nitrogen production, ammonification, and 
vertical flux. In austral spring nearly all (92%) of the new 
production remained as particulate nitrogen, but this percentage 
decreased markedly (52%) by mid-summer, when nitrogen 
regeneration, PN flux, and DON production were 23, 13 and 
12% of net production, respectively. The organic matter budget 
in this coastal Antarctic site is dominated by particle 
transformations. 

southern Ross Sea in 1994 and 1995/96 in order to understand 

the conversions of organic matter within the surface layer. Such 
transformations are strongly influenced by phytoplankton 
removal of nitrate and production of particulate and dissolved 
organic nitrogen (PN and DON, respectively), as well as by 
heterotrophic (bacterial and planktonic) use of this material and 
subsequent release of inorganic (as ammonium) nitrogen and 
DON. Phytoplankton production often is temporally uncoupled 
from heterotrophic utilization in polar systems (e.g., Smith and 
Sakshaug, 1990), and so any analysis of the various 
transformations must sample over the appropriate time scales 
and include periods of positive growth, relatively rapid nitrogen 
removal, and active remineralization. 

Because processes such as nitrification and denitrification are 
quantitatively negligible during summer in waters of the 
Southern Ocean [Karl et al., 1996], nitrogen budgets are 
simplified relative to other oceanic regimes. The changes in the 
various pools of nitrogen (NO3-, NO2-, NH4 +, DON, PN and 
FpN, the vertical flux of PN) can be related by the following: 

A NO3- = APN +ANO2- + ANH4 + + ADON + FpN (1) 

1. Introduction 

The Ross Sea is one of the most productive regions in the 
entire Antarctic, with production approaching 200 g C m-2 for 
the growing season (from late October through early March; 
Smith and Gordon, 1997; Arrigo et al., 1998). Indeed, the 
seasonality of the production cycle is a major feature of 
Antarctic waters [Nelson et al., 1996]. Although the onset of 
rapid growth in spring is somewhat variable (Arrigo et al., 
1998), the patterns of biomass distribution and production are 
relatively invariant. Large deposits of diatomaceous oozes 
occur in the sediments [DeMaster et al., 1996], and seasonal and 
annual vertical flux rates are substantial [Dunbar et al., 1998]. 
The southern Ross Sea is dominated by two taxa: diatoms and 
the haptophyte Phaeocystis antarctica [Arrigo et al., 1999]. The 
spatial distribution of the two groups is largely distinct, but each 
has markedly different impacts on local biogeochemistry and 
nitrogen transformations. Two cruises were conducted to the 
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Because growth in austral spring begins from winter conditions 
[Smith and Gordon, 1997] and these conditions are 
quantitatively similar to deep-water values (due to winter 
convective overturn), it is possible to accurately identify the 
initial, pre-growth concentrations of each pool. Nitrite 
concentrations were exceedingly small under all circumstances 
(mean - 0.037 _+ 0.025 •M; n = 1407) and were not included in 
this analysis. A series of stations was sampled repeatedly (from 
13 - 22 stations, depending on ice concentrations) along 76ø30'S 
(between 167øE and 176øW; Fig. 1), and the pools of nitrogen 
quantified (Table 1). The sampling spanned two seasons, and 
the data represent a seasonal composite. Although interannual 
variability could obscure the seasonal pattern, interannual 
variations appear to be small relative to those imposed by 
seasonal growth (Smith et al., 2000). This likely results because 
phytoplankton growth is limited by irradiance in spring, which 
in turn is largely a function of ice concentration (Arrigo et al., 
1998). 

Initial nitrate and PN concentrations were taken as being 
equal to the mean [NO3-] and [PN] at 150 m from 15 stations 
sampled in early spring. Nitrate concentrations at 150 m during 
this first transect varied by _+1.2%, which is a measure of the 
error associated with the integrated nitrate pools (and hence new 
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Figure 1. Region where nitrogen pool data and fluxes in the 
Ross Sea were collected. Solid circles (0) indicate the location 
of the deployment of floating sediment traps (Asper and Smith, 
1999). 

production estimates). Pre-bloom ammonium concentrations 
were negligible, and vertical flux rates were assumed to be zero. 
Vertical flux rates were determined from drifting sediment traps 
deployed for short periods (days) at 200 m during the same 
periods that the N pools were assessed [Asper and Smith, 1999]. 
Phytoplankton nitrate removal through 150 m at each station 
was computed by integrating nitrate concentrations from 12 
depths between the surface and 150 m, and subtracting those 
from the pre-bloom integrated concentration. Because the 
vertical gradients in all variables were small and consistent 
between 100 m and 500 m, the distributions were extrapolated 
to 200 m using the values observed at 150 m. Concentrations 
of all variables were integrated both from 0 - 150 m as well as 
from 0 - 200 m. PN stocks were integrated by the same 
procedure except that PN concentrations were used from the 
same 12 depths. 

2. Results and Discussion 

Phytoplankton nitrate uptake increased rapidly as the spring 
bloom developed and continued to increase through early 
January (Fig. 2). Particulate nitrogen accumulation also 
increased in parallel with NO3- removal in early spring, but PN 
concentrations began to decline in mid-December (Fig. 2). 
Nearly all (> 90%) of the nitrate removed was convened to 

particulate nitrogen during austral spring, but this percentage 
steadily decreased as the bloom progressed (Fig. 3). The early 
(mid-bloom) decline in PN suggests that either losses from the 
upper 150 m via vertical flux or remineralization of organic N 
had become substantial. However, the vertical flux at 200 m 
was not observed to increase, and ammonium (the end product 
of oxidative consumption of organic nitrogen) concentrations 
rose sharply (Table 1). Hence, heterotrophic remineralization 
of particles was the likely cause for the decrease in integrated 
PN concentrations. 

Equation 1 can be solved directly for the change in DON 
concentrations using the measured fluxes. When the initial (pre- 
bloom) and mid-January data are used, DON production in the 
upper 200 m is 67.3 mmol m-2. If this increase were confined 
to the upper 100 m, this would correspond to a net DON 
increase of 0.67 gM over 75 days, or an increase of < 0.01 gmol 
1-1 d-1. Such DON production rates, while being net rates and 
not directly comparable to short-term, 15N- isotopic estimates, 
are modest and similar to those derived by isotopic studies 
[Bronk et al., 1994]. It strongly suggests that the role of DON 
production in the nitrogen budget of the Ross Sea is minor. This 
conclusion is also supported by the net changes in dissolved 
organic carbon concentrations [Carlson et al., 1998]. Integrated 
DOC levels increased by 220 mmol m-2 over the same period 
(from 6,490 to 6,750 mmol m-2), and if the DOM had a C:N 
molar ratio of 6.6, this increase would represent a DON increase 
of 0.33 gM in the upper 100 m, which is similar to that found by 
our analysis. Thus DON (or at least that portion which can be 
considered semi-labile; Carlson and Ducklow, 1992) represents 
a small pool of nitrogen in Antarctic waters. 

The one-dimensional nitrogen inventory was remarkably 
consistent, especially in comparison to other areas of the ocean, 
where such analyses are poorly constrained [Quay, 1996; 
Emerson et al., 1997]. For example, in the equatorial Pacific 
production estimates have fairly large uncertainties [Bender et 
al., 1999], and estimates of fluxes from the surface layer using 
different techniques also have yielded orders of magnitude 
variations [Murray et al., 1996; Bacon et al., 1996]. Similarly, 
the variations in nutrient supply rates from depth are difficult to 
measure in oligotrophic (low nutrient) regions (such as the US 
JGOFS time series sites off Hawaii and Bermuda), and hence a 
quantitative balance between production, regeneration and flux 
has been impossible to obtain [Ducklow et al., 1995]. Because 
waters of the Southern Ocean are exceptionally seasonal in their 
production cycle and production is initiated from the same 
baseline each year, seasonal growth estimates can be more 
easily derived [Karl et al., 1991]. Similarly, transformations 

Table 1. The concentrations of nitrogen pools along 76ø30'S at various times of the growing season. All concentrations and 
vertical fluxes (F) integrated and measured through 200 m. The time interval represents the mean sampling date within each 
transect. ANO3- is calculated from Year Day 300, and flux data were collected within each transect. N = number of stations 
in each transect. 

Year N [NO3-] ANO3- [NH4 +] [PN] F200 m 
Day (mmol m-2) (mmol m-2) (mmol m-2) (mmol m-2) (mmol m-2 d-i) 
300 - 4687 0 0* 32.1 0* 

318 14 4562 126 9.2 139 0.146 

337 15 4328 359 24.6 290 0.779 

356 24 4271 416 55.9 340 1.08 

370 15 4169 518 86.8 286 1.29 

375 22 4200 487 92.8 257 1.14 

*: Assumed value 
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Figure 2. The temporal changes in various pools of nitrogen (and their standard errors) within the upper 200 m of the Ross Sea. 
Production calculated from nitrate disappearance (relative to pre-bloom conditions), and remineralization estimated by the increase 
in NH4 concentrations. Flux data represent the cumulative PN determined from drifting sediment traps]2. 

within the surface layer can be determined if all N pools are 
assessed. Our results constrain the flux estimates and give us 
confidence that the flux at 200 m was reliably measured. 
Similarly, the build-up of ammonium is similar to the estimated 
remineralization rates, which again give us confidence that the 
one-dimensional approach is producing reliable insights into the 
nitrogen transformation rates in the surface layer of the Ross 
Sea. 

It has been argued that in some areas of the ocean respiration 
exceeds photosynthesis [del Giorgio et al., 1997], but Williams 

[1998] argued that the upper 100 m of the ocean are largely in 
balance with regard to photosynthesis and respiration. The 
mean respiration rate as a percentage of gross production from 
the Southem Ocean (based on oxygen profiles largely collected 
during austral summer; Williams, 1998) was 39%. Our data, 
while being derived in an entirely different manner, suggest that 
in mid-summer there is a quantitatively similar relationship 
between nitrogen remineralization and new production, with 
strong temporal control on regeneration (Fig. 3). Early in the 

b) 

13-Nov 3-Dec 23-Dec 12-Jan 13-Nov 3-Dec 23-Dec 12-Jan 
Date Date 

Figure 3. The temporal variations of a) the percentage of material remineralized relative to new production (NP), and b) the 
percentage of nitrogen which is contained in the particulate nitrogen pool. 
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bloom respiration accounts for only a small (ca. 7%) percentage 
of new production (or nitrate removal), whereas during the 
austral summer the percentage increases to nearly 37% (quite 
similar to oxygen based estimates for the Southern Ocean). The 
early season values likely reflect the temporal uncoupling of 
autotrophic production and heterotrophic consumption (by 
bacteria and/or herbivores). 

The Ross Sea is known to have spatially restricted 
phytoplankton distribution [Arrigo et al., 1999], with diatoms 
dominating the western region and the haptophyte Phaeocystis 
antarctica dominating in the central region. No evidence was 
found that the nitrogen inventories were quantitatively 
influenced by species composition, despite the fact that regions 
dominated by either diatoms or P. antarctica may have different 
rates of production and vertical flux [Smith and Dunbar, 1998]. 
It is likely that by using means for the entire transect and 
completing the analysis over seasonal time scales that these 
species effects became quantitatively less important. The 
presence of mesoscale eddies also was not detected, which 
would increase the nitrate concentrations within a transect and 

alter the distribution of biomass [McGillicuddy et al., 1998]. We 
conclude that either the frequency or intensity of such eddies in 
the Ross Sea during this study was small, or that our sampling 
pattern was too coarse to include their effects. 

Our analysis shows that in coastal Antarctic waters an 
internally consistent N budget can be derived. The nitrogen 
budget for the southern Ross Sea shows that it is highly 
productive, that most of the production is partitioned into 
particles, and that community respiration of organic matter 
increases through the season and is alecoupled from new 
production during austral spring. The inventory also confirms 
that drifting sediment traps can accurately determine particulate 
flux from the surface layer under some circumstances, and that 
these fluxes were quantitatively similar to DON production 
during this period. Such elemental analyses should be of great 
use when extended to other polar regions that undergo seasonal 
progressions of nitrogen transformations, and should help in the 
elucidation of the temporal evolution of the various organic 
pools within the water column. 
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