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TRANSPORT OF PARTICLES ACROSS CONTINENTAL 

SHELVES 

Charles A. Nittrouer 

Marine Sciences Research Center 

State University of New York, Stony Brook 

L. Donelson Wright 
Virginia Institute of Marine Science 
College of William and Mary, Gloucester Point 

Abstract. Transport of particulate material across 
continental shelves is well demonstrated by the distri- 
butions on the seabed and in the water column of 

geological, chemical, or biological components, whose 
sources are found farther landward or farther seaward. 

This paper addresses passive (incapable of swimming) 
particles and their transport across (not necessarily 
off) continental shelves during high stands of sea level. 
Among the general factors that influence across-shelf 
transport are shelf geometry, latitudinal constraints, 
and the timescale of interest. Research studies have 

investigated the physical mechanisms of transport and 
have made quantitative estimates of mass flux across 
continental shelves. Important mechanisms include 
wind-driven flows, internal waves, wave-orbital flows, 
infragravity phenomena, buoyant plumes, and surf 
zone processes. Most particulate transport occurs in 
the portion of the water column closest to the seabed. 
Therefore physical processes are effective where and 
when they influence the bottom boundary layer, caus- 
ing shear stresses sufficient to erode and transport 
particulate material. Biological and geological pro- 

cesses at the seabed play important roles within the 
boundary layer. The coupling of hydrodynamic forces 
from currents and surface gravity waves has a partic- 
ularly strong influence on across-shelf transport; dur- 
ing storm events, the combined effect can transport 
particles tens of kilometers seaward. Several impor- 
tant mechanisms can cause bidirectional (seaward and 
landward) transport, and estimates of the net flux are 
difficult to obtain. Also, measurements of across-shelf 
transport are made difficult by the dominance of along- 
shelf transport. Geological parameters are often the 
best indicators of net across-shelf transport integrated 
over time scales longer than a month. For example, 
fiuvially discharged particles with distinct composition 
commonly accumulate in the midshelf region. Across- 
shelf transport of particulate material has important 
implications for basic and applied oceanographic re- 
search (e.g., dispersal of planktonic larvae and parti- 
cle-reactive pollutants). Continued research is needed 
to understand the salient mechanisms and to monitor 

them over a range of timescales. 

INTRODUCTION 

The continents are the largest source for most types 
of particulate material entering the world ocean. The 
fraction of material that is carried to the ocean beyond 
continental shelves is dependent on mechanisms that 
transport particles across shelves. This is the funda- 
mental importance of across-shelf transport, but it also 
has several corollary considerations. (1) Many of the 
dissolved components supplied by continents are 
transformed into particles on shelves (e.g., particle- 
reactive metals, biological nutrients), and therefore 
the fates of these materials also depend on mecha- 
nisms of particulate transport. (2) Mechanisms pre- 
venting across-shelf transport (i.e., accumulation of 
particles on continental shelves) are equally important 
because they also control the quantity and quality of 
material delivered to the deeper ocean. (3) Some oce- 
anic mechanisms can transport particles landward. In 
areas where these mechanisms operate and during 
periods when they are operating, net transport of par- 

ticles is toward and possibly into estuaries, lagoons, 
beaches, or other coastal environments. 

The importance and diverse aspects of across-shelf 
transport for all materials (water, solutes, and parti- 
cles) have led to much research, and this paper re- 
views some of the more recent studies. The present 
synthesis is confined to the following considerations. 

1. Discussions focus upon passive particles that 
consist primarily of inorganic sediments but also in- 
clude dead organic solid phases. Living organisms are 
relevant only if they reside on particles (e.g., some 
bacteria) or are incapable of horizontal or vertical 
motion (e.g., some planktonic larvae). The flux of 
water is considered only as the transporting medium 
for particles. Some dissolved phases are relevant, but 
only after their transformation to a particulate form. 

2. Particulate transport across continental shelves 
(e.g., toward the shelf break) will be considered. The 
mechanisms for transport off shelves are not necessar- 
ily the same and will not be discussed explicitly. 

3. Continental shelves are geologically ephemeral 
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features. They do not exist during glacial low stands, 
or during long periods of high stand where shorelines 
are able to prograde to the shelf break. In addition, 
across-shelf transport probably behaves differently 
during periods of rapid rise or fall of sea level. Discus- 
sions will be limited to relatively stable high-stand 
conditions. 

The following sections provide a synthesis of the 
general considerations for across-shelf transport of 
particles. Physical processes drive the transport, and 
most of the mass flux occurs in the bottom boundary 
layer. The longer-term evidence for the transport is 
demonstrated from geological observations. Consider- 
ations for future research are discussed in the final 

section. 

GLOSSARY OF TECHNICAL TERMS 

Active versus passive continental margins: Active 
margins are tectonically active in the sense that they 
are in the immediate vicinity of a convergence (colli- 
sion) between lithospheric plates or near an active 
spreading center. Passive margins are relatively inac- 
tive tectonically and are distant from spreading or 
convergence. 

Baroclinic' Pertaining to processes that involve 
pressure gradients related to density differences (strat- 
ification) within the water column. 

Barotropic: Pertaining to processes that involve 
pressure gradients related to variations in sea surface 
elevation. 

Bottom boundary layer: The layer of the water 
column just above the seafloor where flows are signif- 
icantly retarded by bed friction and where vertical 
momentum transfers are most intense. 

Buoyant plumes: Relatively thin layers of posi- 
tively and negatively buoyant sediment-laden water 
issuing from a point source such as a river mouth. 
Positively buoyant plumes disperse in the surface 
layer, negatively buoyant plumes disperse over the 
bed. 

Coastal-trapped waves (continental shelf waves): 
Long-period (several days) oscillations that are topo- 
graphically trapped near the coast and propagate along 
the coastal boundary. They propagate poleward along 
eastern boundaries (i.e., where the land is east of the 
shelf) and equatorward along western boundaries (i.e., 
where land is west of the shelf). 

Downwelling versus upwelling: Downwelling 
flows are typically seaward near the bed and thus 
downslope in the regional shelf-wide sense; they are 
commonly accompanied by shoreward flows near the 
surface. Upwelling flows are shoreward and upslope 
near the bed and are often accompanied by seaward 
transports in the surface layer. 

Edge waves: Gravity waves that are trapped by 
refraction over the inner shelf and in the surf zone. 

They commonly have infragravity frequencies (peri- 
ods between 20 and 300 s). 

Epicontinentalversuspericontinentalshelves' Epi- 
continental shelves are semienclosed and lie partially 
within the confines of continents (e.g., the Yellow 
Sea). Pericontinental shelves are those off open coasts 
(e.g., the Atlantic or Pacific coast of North America). 

Gravity waves: As used in this review, gravity 
waves imply water waves (such as wind-induced sur- 
face waves or tides) in which gravity provides the 
restoring force that sustains wave propagation. Grav- 
ity waves may be either barotropic (surface) or ba- 
roclinic (internal). 

Geostrophic currents' Steady currents that are 
sustained by a balance between a pressure gradient 
force and the Coriolis force (e.g., the Gulf Stream). 

Groupy waves: Wind-driven surface gravity 
waves in nature commonly arrive at any point as a 
succession of alternating packets or "groups" of high 
and low waves. The resulting wave train of varying 
wave amplitude is referred to as groupy. 

Hydraulic roughness: The nominal height of the 
bottom roughness elements in terms of their effects on 
near-bottom flows. The greater the hydraulic rough- 
ness length, the higher will be the elevation above the 
bed at which friction causes the current velocity to go 
to zero. 

Infragravity waves: Surface gravity waves with 
oscillation frequencies lower than those of the wind- 
generated surface waves. The periods of infragravity 
waves are in the range of 30 to 300 s. Infragravity 
waves have multiple origins: edge waves, leaky mode 
standing waves, or groups of wind-generated surface 
waves. 

leaky mode standing waves: Standing waves that 
are not trapped near the coast. In contrast to edge 
waves, reflected energy associated with leaky mode 
standing waves is radiated ("leaked") back to sea. 
Typically, these waves have infragravity frequencies. 

Radiation stress: An excess flux of momentum 

(associated with surface gravity waves) in the direc- 
tion of wave propagation. 

Shear stress: A friction force per unit area. As 
applied in the context of this paper, shear stress refers 
to a friction force per unit area of seafloor induced by 
the motion of water above the bed. 

Wave-current boundary layers: Bottom boundary 
layers within which wave oscillatory flows and mean 
currents interact very close to the bed (--•10 cm) to 
enhance the total shear stress and rate of momentum 

transfer. 

FACTORS DISTINGUISHING SHELVES 

Numerous factors distinguish particulate transport 
across continental shelves. Some of these result from 

the combination of physical processes operating for a 
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Figure 1. Continental shelves today (and 
through geologic time) fall into two 
broad categories. Epicontinental shelves 
are semienclosed basins extending into 
the interiors of continents (e.g., the Yel- 
low Sea, Adriatic Sea, and North Sea). 
Pericontinental shelves are marginal to 
continents and are common today be- 
cause of the Holocene rise in sea level 

(during approximately the past 17,000 
years). From Heckel [1972]. 

particular shelf area (e.g., internal waves, buoyant 
plumes) as discussed in the next section. Other factors 
are more general characteristics of the shelves and are 
discussed below. 

Geometry 
Continental shelves fall into two broad categories 

(Figure 1 [Heckel, 1972]). Pericontinental shelves are 
marginal to continents, and are most common today. 
They are ubiquitous because the Holocene rise in sea 
level (beginning about 17,000 years ago) flooded the 
land surface fringing continents. Epicontinental 
shelves,are semienclosed basins that extend into con- 

tinental interiors at a number of locations around the 

world (e.g., the Yellow, Adriatic, North, Baltic, and 
Arabian seas). In the geologic past, epicontinental 
shelves were more common, depending on the history 
of vertical motions of sea level (eustatic fluctuations) 
and land surfaces (tectonic activity). Epicontinental 
shelves have a three-dimensional geometry that makes 
transport processes more complex and the question of 
across-shelf transport more confused (what directions 
are along shelf and across shelf?). 

Other sections of this paper demonstrate that the 
width, depth, and steepness of a shelf affect energy 
(e.g., sediment resuspension by surface waves or en- 
ergy expenditure by tidal friction) and material (e.g., 
entrapment of sediment) aspects of across-shelf trans- 
port. Broad shelves are typically found in association 
with continental margins that are tectonically passive 
and are relatively shallow (•100 rn or less at shelf 
break, e.g., east coast of North America) [Intoart and 
Nordstrom, 1971]. Narrow shelves are the common 
result of collisions between oceanic and continental 

crust (active margins, e.g., west coast of South Amer- 
ica). Generally, these shelves are also deeper (> 100 m 
at shelf break) and therefore steeper. 

The shapes of landward and seaward boundaries 
have a significant effect on particulate transport across 
continental shelves (Figure 2). Protrusions seaward 
from the shoreline (capes, headlands) can redirect 
along-shelf flow and cause across-shelf transport (e.g., 
near Cape Hatteras [Pietrafesa, 1983] or near rocky 
headlands [Cacchione and Drake, 1990]). Similarly, 
depressions can extend landward from the shelf break 
as gentle shelf valleys or dramatic submarine canyons, 

Figure 2. Schematic of the northern California shelf, showing the effects of shoreline promontories that 
steer sediment transport seaward. This mechanism is aided by landward surface currents that downwell 
to cause seaward bottom flow. From Cacchione and Drake [1990] (copyright ¸ 1990 by John Wiley, 
reprinted by permission of John Wiley & Sons, Inc.). 
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Figure 3. General paths for iceberg drift surrounding the Antarctic continent. These icebergs can carry 
significant amounts of particulate material, which is released as the icebergs melt. Typical trajectories are 
along shelf (anticyclonic relative to the continent), but at several points the icebergs cross the shelf and 
head seaward. From Reid and Anderson [1990] (reprinted by permission). 

and these features can act as conduits for particle flux 
(e.g., Hudson shelf valley [Freeland et al., 1981; Vin- 
cent et al., 1981], Lacaze-Duthiers Canyon [Monaco 
et al., 1990], Nazare Canyon [Dias and Nittrouer, 
1984], Quinault Canyon [Carson et al., 1986], and 
Zaire Canyon [Eisma and Kalf, 1984; Pak et al., 
1984]). 

Latitude 

Through a diversity of processes, the latitudinal 
location of a site can affect across-shelf transport. The 
most obvious examples are at the extremes: polar and 
tropical settings. Iceberg rafting provides a mechanism 
for seaward transport of coarse sediment (sand to 
boulder size) released by calving glaciers [Anderson et 
al., 1984]. Sea ice (frozen seawater) can acquire sedi- 
ment nearshore, where the seabed is frozen together 
with seawater (fast ice) [Clark and Hanson, 1983]. 
Sediment-laden icebergs and sea ice float with prevail- 
ing surface currents (Figure 3), melting and dropping 
sediment hundreds of kilometers seaward of their or- 

igins [Jacobs, 1989; Reid and Anderson, 1990]. In 
some cases, large floating ice sheets (e.g., the Ross Ice 
Shelf) release their sediment load beneath the sheet; 
the sediment is then transported by ambient currents, 
forming seaward prograding subice deltas [Alley et al., 

1989]. In Arctic settings, sea ice cover inhibits across- 
shelf transport by limiting the fetch of winds that 
generate surface gravity waves during the summer. 
The fetch is generally eliminated during the winter as 
sea ice welds to the shoreline [Hill and Nadeau, 1989]. 
This is significant because seasonal rivers and meltwa- 
ter streams supply much sediment to the nearshore, 
and it is not carried much farther seaward (e.g., the 
Canadian Beaufort shelf [Hill et al., 1991]). Similar 
considerations are not relevant in Antarctic settings 
because the entire shelf is below the wave base (>200 
m, due to continental subsidence from ice sheets) and 
surficial meltwater does not occur. 

Low-latitude settings can reveal unique mecha- 
nisms for across-shelf transport due to factors of phys- 
ical transport and particle source. Trade winds repre- 
sent a nearly continuous source of energy (with some 
fluctuations of intensity and direction) for production 
of surface gravity waves and currents. The waves can 
resuspend and transport sediment [Harris, 1991; Pujos 
and Javelaud, 1991]. However, the generating winds 
also drive water against the coast, sloping the water 
surface, and creating barotropic currents with a pre- 
dominant along-shelf transport direction (e.g., the 
Java Sea [Hoekstra et al., 1989], the Gulf of Papua 
[Wright, 1989], or northeast South America [Geyer et 
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al., 1991]). Tropical seabeds distant from dispersal 
systems of rivers usually contain deposits of calcium 
carbonate debris produced by marine organisms (e.g., 
Halimeda algae, coral). The input of this material is 
unique, because the source (biological production) is 
distributed across the shelf. Transport landward can 
occur into beach and tidal flat settings [Shinn, 1983; 
Inden and Moore, 1983]. Transport seaward is easy 
and permanent because carbonate shelves typically 
accrete as relatively narrow features that descend 
steeply beyond their seaward edge. Waves and cur- 
rents can cause off-shelf transport [Hine et al., 1981], 
and topographic depressions (chutes and canyons) aid 
the removal of sediment [Moore et al., 1976; Hoskin et 
al., 1986]. 

limescales 

Across-shelf particulate transport is dependent on 
the timescale of interest. At the short-term extreme, 
transport direction commonly reverses over the period 
of a surface gravity wave (seconds). Even the net 
transport from waves (averaged over many periods) 
can reverse between fair weather and storm conditions 

[Swift et al., 1985]. Tidal processes are another source 
of temporal variability that can cause speed and direc- 
tion of transport to fluctuate on timescales of hours. 
Further, the net effect of tidal currents can vary over 
fortnightly scales with spring-neap modulation of the 
tides [Geyer et al., 1991; Kineke et al., 1991]. On 
seasonal time scales, particles transported seaward in 
river plumes during the seasonal peak discharge can be 
returned landward in bottom waters during the rest of 
the year as part of estuarine circulation [Meade, 1969]. 
A catastrophic event (e.g., with recurrence interval > 
10 years) such as an extreme flood of a river [Drake et 
al., 1972; Borgeld, 1985] or major storm (e.g., hurri- 
cane [Morton, 1981; Snedden and Nummedal, 1991]) 
can significantly affect the average across-shelf trans- 
port. At the long-term extreme, sea level fluctuations 
over millennia influence across-shelf transport, but 
these are beyond the scope of the present discussion. 

The history of most particle movement involves 
short periods when shear stress is sufficient for erosion 
and transport, and longer quiescent periods when par- 
ticles rest on the bottom. During the quiescent peri- 
ods, the particles can be buried or mixed downward by 
bioturbation and thereby removed from the transport 
system. The particles are then trapped at some loca- 
tion on the shelf. The factors influencing the outcome 
are rates of particle accumulation and biological mix- 
ing, the frequency of erosion, and depths of mixing 
and erosion [Nittrouer and Sternberg, 1981]. Particles 
are not all the same in regard to size, shape, and 
composition. Physical erosion and transport and bio- 
logical mixing processes may selectively bury certain 
particles, causing particles to be sorted during their 
journey across the shelf [Nittrouer and Sternberg, 
1981; Kachel and Smith, 1986]. 

Along-Shelf lransport 
For most locations the magnitude of along-shelf 

particulate transport is much greater than the corre- 
sponding across-shelf component (e.g., for the U.S. 
Mid-Atlantic Bight [Butman et al., 1979] or for the 
Washington shelf [Smith and Hopkins, 1972; Stern- 
berg and McManus, 1972; Kachel and Smith, 1989]). 
This observation has much relevance to individual 

shelves, affecting the fundamental mechanisms for 
particle transport as well as the measurement of trans- 
port. Where along-shelf transport is the overwhelming 
process, across-shelf transport can be dominated by 
considerations of geometry, such as capes or canyons, 
which divert flow across the shelf before more subtle 

transport mechanisms become effective. Across-shelf 
fluxes must approach zero nearshore (away from a 
river mouth or estuary); therefore across-shelf gradi- 
ents in transport are normally greater than along-shelf 
gradients. This is particularly true off straight coasts 
and over the inner shelf. The distinct difference in 

magnitude between strong along-shelf and weak 
across-shelf transports makes across-shelf particle flux 
difficult to resolve. 

PHYSICAL PROCESSES 

Particulate transport in both the along-shelf and 
across-shelf dimensions is driven almost entirely by 
water motions. Understanding the physical oceanog- 
raphy of the shelf is thus an essential prerequisite to 
understanding the more complicated questions of 
across-shelf particulate transport. Over the past 5 
years, several reviews and workshops have summa- 
rized the state of knowledge of shelf physical ocean- 
ography. Brink [1987] offered a succinct review of 
coastal ocean circulation including references to the 
state of the art (as of 1987) on boundary layer pro- 
cesses, coastal-trapped waves, and upwelling. More 
recently, Huyer [1990] reviewed theoretical and em- 
pirical knowledge on currents, including upwelling and 
downwelling flows, over the continental shelf. The 
roles of internal waves and other baroclinic processes 
on continental shelves are treated in a special volume 
edited by Mooers [1986]. The intense but relatively 
small scale surf zone processes that operate in the 
innermost region of the margin are summarized in the 
reviews and general treatises by Battjes [ 1988], Massel 
[1989], and Battjes et al. [1990]. A workshop report by 
Holman et al. [1990] details the state of the art and 
future research needs in nearshore processes research. 
Two important workshop reports covering multiple 
aspects of coastal oceanography are those prepared by 
the Coastal Physical Oceanography (CoPO) [CoPO 
Steering Committee, 1989] and Coastal Ocean Pro- 
cesses (COOP) [Brink et al., 1990, 1992] steering com- 
mittees. 

The flow regimes of continental shelves are not at 
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Figure 4. Conceptual diagram illustrating the major physical processes responsible for across-shelf 
particulate transport. 

all uniform from the shore to the shelf break but vary 
appreciably as water depth changes. Some of the 
transport phenomena governing across-shelf fluxes of 
particles are illustrated in Figure 4. Not only do ve- 
locities change across the shelf, but so too do the 
relative roles played by various types of flows. For 
convenience, the shelf is divided into regimes of the 
outer shelf, the middle shelf, the inner shelf, and the 
surf zone (Figure 5). Over the outer shelf, geostrophic 
flows are most important, frictional forces are small, 
and wave-induced bottom agitation is minimal most of 
the time. In contrast, the inner shelf is a frictionally 
dominated realm in which surface and bottom bound- 

ary layers overlap and may occupy the entire water 
column. Breaking waves are the dominant source of 
flows within the surf zone. The midshelf region is 
generally characterized by relatively steep across- 
shelf transitions in flow regime and by a seaward 
decrease in the frequency and intensity of bed agita- 
tion. 

This review will focus on the specific mechanisms 
that contribute the most to across-shelf particulate 

transport (Figure 4). Specifically, these are (1) wind- 
driven upwelling and downwelling flows, (2) internal 
waves, (3) wave-orbital flows, (4) infragravity oscilla- 
tions, (5) buoyant plumes (positive and negative), and 
(6) surf zone (wave driven) processes. 

In simple cases where stratification is neglected and 
flows are depth averaged and time averaged over sev- 
eral wave cycles, the along-shelf (y) and across-shelf 
(x) momentum balances are [e.g., Brink, 1987; Lentz 
et al., 1990] 

Ov O• 1 [ OSxy] --+ NL + fu = -29 •yy + • 'rsy- 'l'by -}- OX ] at 

(•) 

OSxx] 
ox j Ou O• 1 [ -- + NL - fv = -29 •xx + • *sx - 'rbx + at 

(2) 

where v and u are respectively the along-shelf and 
across-shelf components of flow, t is time, NL desig- 

Surf Inner Shelf Mid Shelf Outer Shelf 
zone 

I 
, 

_ Sun'ace boundary layer 
Figure 5. Spatial relationships of the major 
subregions of the continental shelf. Note that 
the surface and bottom boundary layers 
merge over the inner shelf. 
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nates the relevant nonlinear terms, f is Coriolis fre- 
quency, g is acceleration of gravity, p is water density, 
h is water depth, xl is sea surface elevation, *s and *b 
are surface and bottom shear stresses with subscripts 
y and x designating the along-shelf and across-shelf 
components, Sxy is the oblique component of surface 
gravity wave radiation stress [Longuet-Higgins and 
Stewart, 1964], and Sxx is the component in the direc- 
tion of wave propagation that is assumed here to be 
shore normal. The radiation stresses are proportional 
to the square of wave height, H. Over the outer shelf 
and midshelf regions, the contributions of the radiation 
stress terms are negligible and those of the bed stress 
and nonlinear terms are very small [e.g., Huyer, 1990]. 
Over the inner shelf, radiation stress terms remain 
small but are not negligible, bed stress and nonlinear 
terms are important, and fu becomes negligible as the 
shore is approached. Radiation stress gradients strongly 
dominate surf zone circulation [Battjes et al., 1990]. 

In fact, flows are not vertically uniform. If they 
were, there would be no net across-shelf transport of 
water or particles over the inner shelf, because the 
vertical average u must vanish over the inner shelf and 
nearshore (at least so far as u is averaged in y and t). 
However, net particle transports are effected by the 
fact that flows near the bed are often in the opposite 
direction to flows at the surface or at middepth. Ver- 
tical segregations of flow over the shelf, and horizontal 
and vertical segregations in the surf zone, are thus 
crucial to across-shelf fluxes. 

Wind-Driven Flows 

Surface and bottom mixed layers over the outer 
shelf are often distinct and separated by a stratified 
interior (Figure 5; also Huyer, [1990]). In such cases, 
seaward Ekman transport in the surface layer, driven 
by along-shelf winds with the coast to the left (north- 
ern hemisphere), is accompanied by upwelling at vary- 
ing depths [Huyer, 1990; Smith, 1981]. With winds in 
the opposite direction, surface transport is landward, 
and seaward downwelling flows prevail at depth. 

-1 
Smith [1981] observed upwelling flows over 10 cm s 
to be dominant within the bottom layer of the outer 
shelf off northwest Africa but to be most intense at 

middepth off Peru and Oregon. Results from the outer 
shelf of the Middle Atlantic Bight obtained via the first 
Shelf Edge Exchange Processes (SEEP-I) field study 
showed that net transports were seaward in the sur- 
face and bottom layers; landward flow of slope water 
took place at middepth [Walsh et al., 1988]. Lyne et al. 
[ 1990a] obtained long-term near-bottom current mea- 
surements from six stations in the 60- to 80-m-depth 
region of the southern Georges Bank and the Middle 
Atlantic Bight. The results revealed both landward and 
seaward mean flows with speeds of the order of 10 cm 
s -•. Vertical velocity profiles obtained from the mid- 
shelf region off northern California during the first 
Coastal Ocean Dynamics Experiment (CODE) showed 

-1 
bidirectional across-shelf flow speeds of up to 4 cm s 
at all depths [Lentz et al., 1990]. In that data set, 
seaward flows at a depth of 4 m were accompanied by 
landward flows at depths of 11, 23, and 27 m. 

Complex patterns of across-shelf particulate trans- 
port have been observed for upwelling systems [Pak 
and Zaneveld, 1977; Drake and Cacchione, 1987] be- 
cause water motions are distinctly three dimensional, 
involving vertical as well as across- and along-shelf 
flows. During periods of equatorward winds off north- 
ern California, upwelling of nutrient-rich water in- 
creases primary productivity, and biogenic particles 
spread seaward with surface waters. With relaxation 
of the winds, upwelled water sinks and returns sea- 
ward along the bottom. The bottom nepheloid layer 
expands with a combination of biogenic and lithogenic 
particles, and the seaward motion is superimposed on 
a poleward flow. 

The thicknesses of the surface and bottom mixed 

layers are important in determining the vertical por- 
tions of the water column influenced by across-shelf 
fluxes. Lentz and Trowbridge [1991] showed that the 
bottom mixed layer on the outer shelf off northern 
California typically varies in thickness from 5 to 15 rn 
but can occasionally attain a thickness of 50 m. They 
note that off Oregon, northern California, and Peru the 
mixed-layer thickness increases with increasing water 
depth up to a maximum thickness of one half the water 
depth. For the northern California case, Lentz and 
Trowbridge [1991] found that the greatest thicknesses 
occurred during downslope near-bottom flows. 

Surface and bottom layers merge over the middle 
and inner shelf (Figure 5) and the interior region dis- 
appears [Mitchum and Clarke, 1986; Huyer, 1990]. On 
the inner shelf, the entire water column is often fric- 
tionally dominated by a combination of xs and Xb. Field 
observations of near-bottom flows on the inner shelf of 

the Middle Atlantic Bight have been made by Wright 
et al. [1986, 1991a] during northeasterly storms, 
when wind stress created both southerly and landward 
setting surface transports and resulted in high-standing 
water being trapped against the shore. Offshore flows 
within the lower meter of the water column attained 

speeds of up to 20 cm s -• [Wright et al., 1986, 
1991a]. During the extreme "Halloween" storm of 
October 1991, near-bottom (125-cm elevation) flows 
over the 13-m isobath attained along-shelf (southerly) 
and seaward velocities of 50 cm s -• and 10 cm s -•, 
respectively [Madsen et al., 1993]. However, shortly 
after the wind shifted to northwest, resulting in a 
seaward wind stress component, the across-shelf flows 
reversed and set toward shore, causing shoreward 
sediment flux (Figure 6 [Wright, 1993]). 

Internal Waves 

Internal waves, particularly internal tides, propa- 
gating shoreward over the shelf are an important 
mechanism for the landward transport of larvae and 
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1979], especially during stratified conditions in the 
summer. These velocities are sufficient to significantly 
affect across-shelf transport rates. Observations of in- 
ternal waves on the eastern Canadian continental shelf 

(Sable Island Bank and Grand Banks) suggest that net 
sediment fluxes are seaward [Boczar-Karakiewicz et 
al., 1991]. 

Wave-Orbital Flows 

In a later section of this review, simple back-and- 
forth motions from wave-induced near-bottom flows 

are discussed along with their contributions to bed 
shear stress and sediment entrainment. In addition, 
nonlinearities cause orbital velocity asymmetries and 

Figure 6. Burst-averaged across-shelf components of flow 
measured on the inner continental shelf at a water depth of 
13 m off Duck, North Carolina, during the severe extratro- 
pical storm of October 1991. The flows shown were at an 
elevation of 125 cm above the bed and were measured with 

a Marsh-McBirney electromagnetic current meter (3.8-cm 
sphere). Sampling frequency was 1 Hz, and burst duration 
was 17 min. 

other particulates [Shanks, 1983, 1988; Shanks and 
Wright, 1987; Pineda, 1991]. These internal waves, 
with diurnal or semidiurnal frequencies, are typically 
generated near the shelf break; first-mode internal 
tides are usually dominant over shelves [Baines, 1986; 
Largier, 1987]. Because flows associated with internal 
tides are oscillatory, both landward and seaward flows 
occur, and the actual direction of particle transport 
will depend on the level within the water column that 
the particles occupy. Larvae tend to remain at a con- 
stant depth [e.g., Forward, 1990], and this can cause 
them to remain within the landward flows of both the 

crests and the troughs of first-mode internal waves. As 
internal tides shoal over the shelf with progressively 
decreasing water depth, they become asymmetrical 
and ultimately break [Kao et al., 1985; Holloway, 
1987; Helfrich, 1992]. Pineda [1991] reports large tem- 
perature fluctuations at the end of the Scripps pier 
(southern California) that he attributes to internal tidal 
bores that surge landward after breaking over the inner 
shelf. Pineda [1991] further suggests that these bores 
contribute to the landward transport of planktonic 
larvae all the way to the surf zone. The likely impor- 
tance of shoaling internal waves in suspending as well 
as transporting sediment was reported 2 decades ago 
by Cacchione and Southard [1974]. 

For the outer shelf of the Celtic Sea, internal waves 
have been observed to propagate both onshelf and 
offshelf [Heathershaw, 1985]. Flow velocities associ- 
ated with the internal waves are 30-40 cm s-• and are 

superimposed on other local currents. Similarly, large 
currents (20 cm s -1) from internal waves have been 
observed on the New Jersey shelf [Butman et al., 

amplitude and decreasing water depth. Fenton [1990] 
describes current theory of nonlinear waves including 
higher-order Stokes theory, cnoidal wave theory, and 
Fourier approximation methods. Empirical models for 
across-shelf sediment transport by asymmetrical 
wave-orbital velocities are discussed by Krause and 
Horikawa [1990], among others. The idea that orbital 
asymmetries dominate the landward transport of sand 
over the middle and inner shelf is prevalent among 
many geologists and engineers [e.g., Wells, 1967; Hail- 
ermeier, 1981;Swift et al., 1985]. However, the pres- 
ence of wave ripples can reverse the direction of near- 
bottom particle transports [Krause and Horikawa, 
1990; Nielsen, 1979, 1992]. In addition, Trowbridge 
and Madsen [1984a, b] show that mass transport in 
the wave boundary layer can be in either direction. 
Dean and Perlin [1986] conclude that fairly elaborate 
hybrid models must be used to estimate bed stress 
under asymmetrical waves. Most recently, cospectral 
analyses applied to field data of simultaneous velocity 
and time series of suspended sediment concentration 
show that wave asymmetries do in fact cause onshore 
transports inside the surf zone [Osborne and Green- 
wood, 1992a, b]. Outside the surf zone, wave-in- 
duced transport may be in either direction [Wright et 
al., 1991a]. 

Infragravity Phenomena 
Waves in nature are typically "groupy" in the sense 

that they come in alternating sets of high and low 
waves. Longuet-Higgins and Stewart [1962, 1964] 
show that a second-order, group-forced long wave 
results from the temporal variations in radiation stress, 
Sxx(t), that are associated with a groupy wave train. 
The time-varying water surface elevation, xl'(t), of the 
group-bound long wave is described by 

(3) 

where Cg is wave group velocity. Equation (3) predicts 
a long-wave trough with its attendant seaward setting 
flows to coincide with packets of high waves; the 

Hours 
0 24 48 72 96 net mass transports that increase with increasing wave 
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Figure 7. Example of instantaneous and low-pass-fil- 
tered time series of across-shelf flows, u(t), at a depth 
of 13 m (measured 124 cm above seabed) off Duck, 
North Carolina, within a burst during the extratropical 
storm of October 1991. Note the infragravity fre- 
quency intensifications of seaward flows in conjunc- 
tion with groups of larger waves (as expressed by 
higher instantaneous orbital velocities). Based on data 
discussed by Wright et al. [1994]. 
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long-wave crest occurs in association with the small 
wave sets. Field observations obtained over the inner 

shelf during a severe storm by Wright et al. [1994] 
show seaward flows to experience amplifications 
greater than 10 cm s -• under packets of high waves 
(Figure 7). 

The interactions, within the bottom boundary layer, 
of the long wave with the groupy incident waves pro- 
vide a potential process of seaward sediment transport 
over the inner shelf and midshelf regions and over the 
outer shelf during severe storms [Shi and Larsen, 
1984; Dean and Perlin, 1986]. Field measurements of 
cospectra for across-shore sediment fluxes in the near- 
shore zone reveal landward transports to be related to 
incident waves with infragravity motions contributing 
primarily to seaward fluxes [Osborne and Greenwood, 
1992a, b]. Wright et al. [ 1991 a ] also found infragrav- 
ity oscillations to make significant contributions to 
across-shelf transport of suspended sediment over the 
inner shelf (8-m depth). However, the associated 
fluxes were just as often landward as seaward. This 
result was likely attributable to the fact that over the 
inner shelf and particularly in proximity to the surf 
zone, infragravity motions other than simple group- 
bound long waves are present and complicate the 
across-shelf flows at infragravity frequencies. 

Recent studies show that the infragravity motions 
that commonly dominate the surf zone and are signif- 
icant over the inner shelf consist of a combination of 

edge waves (trapped nearshore) and leaky mode stand- 
ing waves in which the reflected infragravity energy is 
radiated seaward [Huntley et al., 1981; Oltman-Shay 
and Guza, 1987]. Over the inner shelf, edge wave and 
leaky mode oscillations coexist with the group-forced 
long waves [Oltman-Shay, 1991; Okihiro et al., 1991]. 
The field-based study by Okihiro et al. [1991] indicated 
that 50-75% of the infragravity energy at a depth of 10 
rn was related to group-bound long waves. List [1992] 
has developed a finite-difference model that predicts 
the characteristics of long waves in the nearshore 

region, considering the combined effects of shallow- 
water group-bound long waves and long waves gener- 
ated by a time-varying break point. List [1992] con- 
cludes that the group-bound long waves are amplified 
within the surf zone before being reflected from the 
shore. The implications are that infragravity motions 
have multiple origins and thus that all transports at 
infragravity frequency need not necessarily be in any 
one preferred direction. Future studies are needed to 
ascertain the importance of infragravity "climate" in 
controlling the direction of across-shelf transport. 

Buoyant Plumes 
Positively and negatively buoyant plumes contrib- 

ute to surface and near-bottom seaward transports, 
respectively, of particles across shelves. Characteris- 
tically, both plume types are sharply bounded offshore 
by fronts [Simpson and James, 1986; Garvine, 1987]. 
The lowered relative densities of positively buoyant 
(hypopycnal) plumes are attributable in most instances 
to low-salinity water issuing from rivers and estuaries 
[e.g., Garvine, 1982]. Negatively buoyant (hyperpyc- 
nal) plumes result from intense cooling of coastal wa- 
ter (e.g., by cold air outbreaks); by brine extrusion 
from freezing sea ice; and by high suspended sediment 
concentrations (e.g., turbidity currents and related 
phenomena; see review by Seymour [1990]). 

Positively buoyant surface plumes issuing from riv- 
ers and estuaries are major sources of buoyancy and 
sediment to the coastal ocean. Milliman and Meade 

[1983] report that about 33 x 103 km 3 of fresh water 
enters the sea annually from rivers. In many cases 
these plumes reach no farther than the inner or middle 
shelf before being carried parallel to the coast (e.g., 
the Amazon shelf[Curtin, 1986; Geyer et al., 1991]). In 
other cases (e.g., the Gulf of Alaska [Royer, 1982]) 
they occupy the entire shelf. Chao [1988] developed a 
model that predicts the behavior and offshore reach of 
river-forced estuarine plumes over sloping and flat 
shelves. Chao classifies plumes on the basis of a den- 
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simetric Froude number (a dimensionless ratio of in- 
ertia relative to buoyancy) and the rate of dissipation. 
Model applications indicate that over sloping shelves, 
the seaward extent of the plume is reduced by vortic - 
ity. Over flat shelves the plumes can extend farther 
seaward. 

Negative buoyancy is responsible for the highly 
energetic, autosuspending turbidity currents that 
transport large quantities of sediment to the base of the 
continental margin via submarine canyons. Seymour 
[ 1990] offers an up-to-date review of these phenomena, 
which includes field evidence that this mode of across- 

shelf transport also may operate over the inner shelf 
and need not be confined by canyons. Wright et al. 
[1986, 1991a] also found evidence that negative 
buoyancy may contribute significantly to across-shelf 
sediment transport on the inner shelf during storms, 
when waves maintain high suspended sediment con- 
centrations in the bottom layer of the water column. 
Negatively buoyant river plumes, though compara- 
tively rare, occur off the mouths of rivers carrying 
unusually high suspended-sediment loads. The Huang- 
he (Yellow River) is a prime example. Wright et al. 
[1990] concluded that the across-shelf dispersal of 
Huanghe sediments is dominated by negatively buoy- 
ant underflows. Early extinction of those underflows 
significantly constrains transport and results in most of 
the sediment being deposited near the river mouth. 

Surf Zone Processes 

Although the surf zone occupies only a very small 
fraction of the total shelf width, the transport pro- 
cesses that operate there are extremely intense and 
therefore deserve mention. In contrast to other shelf 

environments, the surf zone is severely constrained 
laterally, and geostrophic effects are negligible. Circu- 
lation is driven almost exclusively by forces resulting 
from the dissipation of breaking waves (e.g., by 
OSxy/OX and OSxx/OX [Batties et al., 1990; Massel, 
1989]. The surf zone alongshore currents and three- 
dimensional rip currents that result from these gradi- 

--1 
ents typically attain speeds well in excess of 1 m s 
[e.g., Massel, 1989]. In addition, vertically segregated 
across-shore flows, with landward transport in the 
surface layer and seaward flow i n a near-bottom "un- 
dertow," have been widely observed and modeled 
[e.g., Wright et al., 1982; Svendsen, 1984; Roelvink 
and Stive, 1988]. Although these flows are confined 
largely to the region landward of the break point, large 
storm-generated rips have been observed to extend 
well beyond the surf zone [Cowell, 1986]. 

The dissipation of wave energy across surf zones is 
accompanied by the growth of energy at infragravity 
(0.033-0.003 Hz) frequencies. These energetically 
dominant infragravity oscillations have the form of 
trapped mode edge waves and leaky mode standing 
waves [Guza and Thornton, 1985]. Field observations 
in storm-driven surf zones show that suspended sedi- 

ment transport associated with infragravity motions 
can be 3 to 4 times larger than that associated with 
incident waves [Beach and Sternberg, 1988]. Further- 
more, cospectra of time series for across-shore sedi- 
ment concentration and fluid velocity indicate that 
whereas incident waves are the major contributors to 
landward transport, infragravity flows cause predom- 
inantly seaward transport [Osborne and Greenwood, 
1992a, b]. In addition to the trapped mode and leaky 
mode infragravity waves, low-frequency (far infra- 
gravity; frequency < 0.01 Hz) oscillations have re- 
cently been observed and attributed to shear instabil- 
ities in the alongshore current [Dodd et al., 1992]. The 
contribution that these waves make to across-shore 

transport is not yet clear. 

BOTTOM BOUNDARY LAYER PROCESSES 

Processes that determine bed shear stress x influ- 

ence sediment transport in two ways: (1) they deter- 
mine the bottom drag sensed by the mean flows and 
hence the near-bottom velocity profile in the region 
where particle concentrations are highest, and (2) they 
determine the skin friction applied to sediment parti- 
cles and thus govern the suspension of particles. Over 
the continental shelf, bottom boundary layer pro- 
cesses typically involve interactions among currents, 
waves, bed micromorphology, and sediment suspen- 
sion and transport. The interactions are complex and 
nonlinear. Fortunately, substantial progress has been 
made in recent years in understanding all of the afore- 
mentioned aspects of the problem. Recent reviews of 
the shelf bottom boundary layer and sediment trans- 
port processes are offered by Grant and Madsen 
[1986], Cacchione and Drake [1990], Sleath [1990], 
and Soulsby [1990]. 

Wave-Current Boundary Layer Models 
On the shelf, wind-generated waves are generally 

present and are responsible for the existence (in the 
bed layer of the inner shelf under most conditions and 
in that of the midshelf during storms) of a thin (1-10 cm 
thick) oscillatory boundary layer. This is nested within 
the much thicker boundary layer of wind-driven or 
tidal currents. In such cases the bottom friction of the 

current is enhanced by the wave boundary layer, and 
the bottom friction associated with the waves is en- 

hanced by the current. Over the past 15 years, bound- 
ary layer models appropriate to combined waves 
and currents over rough bottoms have been advanced 
by Smith [1977], Smith and McLean [1977], Grant 
and Madsen [1979, 1986], Davis et al. [1988], 
Christofferson and Jonsson [1985], and Glenn and 
Grant [1987]. Wave boundary layer models developed 
by Sleath [1987], Madsen [1991], and Trowbridge and 
Madsen [ 1984a, b] are also relevant to the general 
problem of shelf benthic dynamics. 
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For wave-current boundary layers, most models 
consider three shear velocities: (1) U.c associated with 
the mean current shear stress above the wave bound- 

ary layer, (2) U.wm associated with the wave-induced 
bed stress; and (3) U.cw associated with the combined 
wave-current shear stress within the wave-current 

boundary layer that has a thickness •cw (approximate- 
ly the same as the wave boundary layer). Laboratory 
experiments and field observations have demonstrated 
extensively that within the near-bottom region (lower 
than 1 or 2 m) of fully turbulent boundary layers, 
where stress is nearly constant with elevation, the 
velocity varies linearly with the log of the elevation. 
This region is the so-called "log layer," within which 
a relatively simple relationship exists among elevation- 
dependent velocity, shear velocity, and bed roughness 
as expressed by the widely used Prandtl-von Kfirmfin 
equation. For the profile of the mean current velocities 
Uc in the log layer and within the wave-current bound- 
ary layer, Grant and Madsen [1979, 1986] give 
Prandtl-von Kfirmfin expressions of the form 

U.c(U.c t z u = In -- z < gcw (4a) 
• \U.•w/ z0 

or 

/2, c z 
u• = In z > gcw (4b) 

K Z • 0c 

where • is von Kfirmfin's constant (•0.41), Zo is the 
physical roughness of the bed (Zo = k•/30; k• includes 
ripple roughness), and Z;c is the apparent roughness 
felt by the current above gcw, 

Oc = 8cw (5) 

in which 

• : H•c/H•c w. 

An important feature of the Grant and Madsen 
[1986] model is its ability to account for variations in 
the angle between the current and the direction of 
wave travel. The various wave-current boundary layer 
models differ in the way in which the eddy viscosity • 
is treated. Most models consider • to be time invari- 

ant. An exception is the model of Trowbridge and 
Madsen [1984a, b] that utilizes a time-varying eddy 
viscosity to accommodate second-order effects (e.g., 
mass transport) associated with steep waves. The 
ways in which • is assumed to be distributed vertically 
differ considerably. By the formulations of Grant and 
Madsen [1979, 1986], 

e = •<U,cwZ z < gcw (6a) 

or 

• = •<U,cZ z > gcw. (6b) 

This has the unattractive characteristic of yielding a 
discontinuity in e at •cw. Similar discontinuities are 
also present in the model of Christofferson and Jons- 
son [1985]. Continuous eddy viscosity formulations 
are used by Wiberg and Smith [1983]. The model of 
Glenn and Grant [1987] extends the earlier models of 
Grant and Madsen [1979, 1986] to include the effects 
of stratification caused by sediment suspension; this 
model has recently become widely used [e.g., Vincent 
and Green, 1990; Cacchione and Drake, 1990; Drake 
and Cacchione, 1992; Drake et al., 1992]. 

Field Observations of Bed Stress 

Field measurements of bed stress on the middle and 

outer shelf and on the continental slope have been 
made in recent years via the multi-institutional CODE 
and Sediment Transport Events on Shelves and Slopes 
(STRESS) research programs. Measurements during 
the earlier CODE programs on the northern California 
shelf utilized velocity profiles made with arrays of 
electromagnetic current meters (EMCMs) mounted on 
the Geological Processes Bottom Environmental 
(GEOPROBE) tripod as well as the benthic acoustic 
stress sensor (BASS) [Cacchione and Drake, 1990; 
Cacchione et al., 1984, 1987b; Grant et al., 1984]. 
The results showed u* and z' values of 0.5-1.0 cm s -• c Oc 

and approximately 1 cm, respectively. The higher than 
expected Z;c values were attributed to wave-current 
interactions [Grant et al., 1984; Drake et al., 1992]. 
Results of comparisons between GEOPROBE and 
BASS data show very good agreement for storm- 
driven flows [Cacchione and Drake, 1990]. More re- 
cently, BASS systems have been deployed at 130 m 
and 90 m at the STRESS site for a 2.5-month experi- 
ment; analyses of these data sets are in progress [Wil- 
liams, 1992; Williams et al., 1991]. 

Techniques for applying the inertial dissipation 
method to field data obtained from electromagnetic 
current meters in wave-current boundary layers on the 
shelf have been developed by Huntley [1988]. Green et 
al. [1992] show improved results from the dissipation 
method by applying a frequency-dependent gain cor- 
rection to the current spectra. Huntley and Hazen 
[1988] applied the dissipation method to estimate bed 
shear stresses at 25 m and 45 m on the Nova Scotian 

shelf and showed that wave-current interactions sig- 
nificantly enhanced the mean current shear stresses in 
accordance with model predictions. Similar conclu- 
sions were reached by Green et al. [1990] for tidal 
currents in the North Sea (24-m depth) off the British 
coast. Electromagnetic current meters also were used 
to obtain velocity profiles on the inner shelf (7- to 13-m 
depth) of the Middle Atlantic Bight under fair weather, 
swell-dominated, post-hurricane, and storm condi- 
tions [Wright et al., 1991b; Wright, 1993] and during 
a severe storm [Madsen et al., 1993]. The results 
showed that the highest Z;c values occurred during the 
swell-dominated conditions owing to the coexistence 
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of a thick wave boundary layer and subtle ripples. 
Ripples were completely washed out during the storm, 
yielding a smoother bed with a movable plane bed 
roughness length k n of about 15 times the particle 
diameter [Madsen et al., 1993]. Similar observations 
were made for the U.S. west coast by Drake and 
Cacchione [1992]. 

Bed Micromorphology 
In addition to determining z0 and influencing z[•, 

the small-scale relief (roughness) of the seafloor can 
profoundly affect the across-shelf direction of sus- 
pended sediment transport near the bed. For example, 
Nielsen [1979, 1981, 1989, 1992], among others, has 
demonstrated that wave-induced ripples can cause 
suspended sediment to migrate in a direction opposite 
to that of net near-bottom flows. Field observations 

over the inner shelf show that suspended sediment 
concentrations and bed stresses are out of phase when 
ripples are present [Wright et al., 1991a]. Hence 
modeling of across-shelf particle transport within and 
just above wave-current boundary layers requires pre- 
diction of the time-varying geometry for wave-gener- 
ated ripples. 

Existing models predict ripple height (Xlr) and spac- 
ing (Xr) in terms of sediment grain size, the orbital 
semiexcursion of wave-induced flows at the bed, and 
the amount by which the skin friction shear stress (or 
Shields parameter) exceeds the critical value neces- 
sary for sediment entrainment. The models most 
widely used are those of Grant and Madsen [ 1982] and 
Nielsen [1981], both of which utilize laboratory data 
from the same sources. Nielsen [1981] also offers a 
separate set of predictors based on field data that 
generally give more realistic results. In most cases the 
Grant and Madsen [1982] model overpredicts the rip- 
ple roughnesses observed in the field. Although the 
model of Nielsen [1981] gives results closer to ripple 
dimensions observed in the field, Wright [1993] found 
that model to overpredict fair weather ripple heights 
and underpredict the dimensions during moderate- to 
high-energy conditions. This was attributed, in part at 
least, to the effects of grain size variability within the 
upper few centimeters of the sediment column 
[Wright, 1993]. 

Ongoing investigations, many of which are being 
carried out in connection with the STRESS program, 
are focusing on better predictions and parameteriza- 
tions of bed micromorphology. Wiberg [1992], Harris 
and Wiberg [1991], and Wiberg and Nelson [1992] 
have improved wave-ripple predictability consider- 
ably. They show that much variability can be ex- 
plained in terms of the Rouse number (ratio of settling 
velocity to shear velocity) and the wave boundary 
layer thickness. Nowell and Wheatcroft [1992] also 
conducted field studies of bed roughness including the 
combined effects of ripples, biogenic roughness, and 
scour-induced bottom irregularities. The importance 

of biogenic roughness generally increases seaward 
over the middle shelf. The interaction of benthos with 

hydrodynamic and sedimentary characteristics has 
been well demonstrated [Rhoads, 1974; Eckman et al., 
1981; Grant et al., 1982; Nowell et al., 1989; Jumars, 
1993]. 

Sediment Resuspension and Transport 
Transport of particles within the bottom boundary 

layer takes place in two modes: suspended load and 
bed load. Krause and Horikawa [1990] consider sheet 
flow (highly energetic transport of a carpet of particles 
above a plane, unrippled bed) to constitute a third 
mode, although most investigators consider sheet flow 
to be a form of bed load transport. A fundamental 
difference between suspended load and bed load is 
this: in suspended load transport, particles are sup- 
ported by turbulence, whereas in bed load transport 
the particles are supported at least intermittently by 
grain-to-grain contact (e.g., rolling or bouncing sand 
grains). Estimation of suspended load fluxes involves 
the integration over depth and time of the local, in- 
stantaneous product of across-shelf velocity u and 
particle concentration C. Therefore after the near- 
bottom velocity profile is measured or modeled, the 
problem becomes one of measuring or modeling the 
vertical concentration profile C(z). 

By Rouse-type formulations, the time-averaged 
(i.e., over several wave cycles) elevation-dependent 
suspended sediment concentration C(z) is predicted 
following Vincent and Green [1990] in terms of the 
reference concentration Co at elevation Zo by 

C( z) = Co( z/zo) -• z < gcw (7a) 

or 

C(z) = Ca•w(Z/gcw) -• z > gcw (7b) 

where the Rouse number a is 

• = [3w•/nU,•w z < gcw (8a) 

or 

• = [3w•/nu,• z > gcw (8b) 

where W s is particle settling velocity, which in the 
simple case is assumed to be the same for all particles 
(single grain size), [3 is a "constant" in the neighbor- 
hood of 1, and Cacw is concentration at the top of the 
wave boundary layer. Vincent and Green [1990] con- 
cluded, in agreement with Glenn and Grant [1987], 
that [3 is --•0.74 in the region very close to the bed. 
However, Vincent and Green [1990] also found [3 to 
increase to about 1 away from the bed. Smith and 
McLean [1977], Glenn and Grant [1987], and Kachel 
and Smith [1989] employed the relationship 
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'YO0' 
C 0: C b (9) 

1 + •/00' 

where Cb is sediment concentration in the bed and •/0 
is an empirically determined resuspension coefficient. 
The excess skin friction shear stress 0' is obtained by 
averaging, over several wave cycles, the instanta- 
neous value 0' (t) given by 

Iw(t)l- 'r[r 
0'(t) = (10) ! 

'r cr 

where 'r•w is the instantaneous skin friction shear 
stress induced by combined wave and current flows 
and 'r•r is the critical skin friction shear stress required 
for sediment movement. 

Direct field measurements of C(z, t) in recent years 
have been made using optical backscatterance (OBS) 
turbidity sensors [Downing et al., 1981; Sternberg et 
al., 1986; Wright et al., 1991a; Green et al., 1992], 
acoustic sensors [Vincent and Green, 1990; Hanes et 
al., 1988; Sherwood et al., 1991], and laser diffraction 
devices that also permit in situ determination of parti- 
cle size and ws [Lynch et al., 1991; Agrawal, 1991]. 
Field observations of C(z) have been used to obtain 
estimates of the resuspension coefficient •/0, which has 
been shown to vary from 1.6 x 10 -5 to 5.4 x 10 -3 
[Wiberg and Smith, 1983; Kachel and Smith, 1989; 
Drake and Cacchione, 1989; Vincent and Green, 1990] 
although Smith and McLean [1977] assigned •/0 a con- 
stant value of 2.4 x 10 -3. Utilizing data from the inner 
shelf off Duck, North Carolina, Kim [1990] concluded 
that the Smith and McLean [1977] value of 2.4 x 10 -3 
was appropriate but also observed a tendency for •/0 to 
decrease with increasing 'rcw. This latter tendency is 
consistent with the results of Drake and Cacchione 

[1989], who attributed the effect to bed armoring. 
A major source of uncertainty in the modeling of 

sediment resuspension by flows that exceed the criti- 
cal threshold shear stress 'r•r by only a small or mod- 
erate amount is the selection of appropriate values for 
'r•r. Where sediments consist of mixtures of many 
sizes, include cohesive fines, or are modified by 
benthic biology, 'r•r may deviate appreciably from lab- 
oratory values. Techniques for obtaining in situ field 
measurements of 'r•r using various types of seabed 
flumes have recently proven successful. A recirculat- 
ing flume, Seaduct, was developed for use in the High 
Energy Benthic Boundary Layer Experiment (HEB- 
BLE) [Nowell et al., 1985] following the earlier Seaf- 
lume concept of Young and Southard [1978]. Most 
recently, smaller and more readily deployable annular 
flumes have been developed and used effectively in 
shelf and coastal waters [Amos et al., 1992; Maa et al., 
1991]. Applications of the Maa et al. [1991] flume 
demonstrate the importance of benthic biota in causing 
significant seasonal variability of 'r•r in some coastal 
environments [e.g., Wright et al., 1992]. 

Direct field measurement of bed load transport on 
the shelf is extremely difficult, and although promising 
new techniques are under development [e.g., Lowe et 
al., 1991] there is a lack of agreement as to whether or 
not this can be done with acceptable accuracy. There- 
fore bed load transport models are typically calibrated 
with laboratory data. A recent model developed by 
Wiberg and Smith [1989] utilizes the fundamental me- 
chanics of individual saltating (hopping) sand grains to 
yield transport predictions without reliance on empir- 
ically determined constants. The model shows a good 
fit to data and offers insights into bed load transport by 
unidirectional flows. On the shelf, transport is most 
often the result of combined waves and currents. The 

bed load model of Madsen [1991] utilizes a generalized 
form of the Meyer-Peter and Muller bed load transport 
relationship and is appropriate to the situation of com- 
bined wave and current flows. Madsen's model con- 

siders the instantaneous bed load transport rate to be 
proportional to 'r•w(t)('r[v(t))1/2. Models such as that of 
Madsen [1991] as well as the earlier energetics-type 
models [e.g., Bailard, 1981; Bailard and Inman, 1981] 
implicitly allow for orbital velocity asymmetries to be 
taken into account. However, Conley and Inman 
[1992] recently obtained an impressive set of photo- 
graphic time series of bed layer behavior under near- 
breaking waves that shows an additional source of 
transport asymmetry that is not observable in the 
laboratory. They found that roiling and pluming de- 
velop in the sediment-laden bed layer under the wave 
crest but not under the wave trough. They attribute 
this effect to ventilation of the permeable bed by the 
pressure differentials associated with the shoaling, 
shallow-water waves. This process is probably opera- 
tive only in the region just outside the surf zone. 

Over the middle regions of many continental 
shelves, sediments are muddy and cohesive. Off the 
mouths of large rivers, larger portions of the shelf can 
be covered with muddy sediments (e.g., the Amazon 
shelf [Nittrouer et al., 1986]). Cohesive sediments re- 
spond differently than sands in that the 'r•r is often 
higher and deposition occurs at much lower levels of 
skin friction shear stress. The problems of cohesive 
sediment transport have been the subject of several 
recent reviews [Nichols and Biggs, 1985; Mehta, 1986; 
Uncles, 1987; Mehta and Hayter, 1989]. 

GEOLOGICAL MANIFESTATIONS OF 

ACROSS-SHELF TRANSPORT 

Over time scales longer than the typical observation 
periods of instrumented systems (i.e., greater than 
about a month), evidence for across-shelf transport of 
particulate material can be recognized in characteris- 
tics of sedimentary deposits (e.g., shelf morphology, 
sediment composition, and accumulation rates). These 
characteristics can be used to investigate net patterns 
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of transport and the time-integrated effects of pro- 
cesses as well as to compare with short-term predic- 
tions and observations. 

Bed Load Transport 
Observations of sediment convergence and diver- 

gence (parting) have been made for sandy areas dom- 
inated by bed load transport, usually driven by tidal 
currents. Kenyon and Stride [1970] clearly demon- 
strated transport through the seas surrounding the 
British Isles. Estuary-shelf exchanges between Bristol 
Channel and the Celtic Sea also have been recognized 
[Stride, 1963], although subsequent studies have been 
contradictory [Harris and Collins, 1985, 1988, 1991; 
Stride and Belderson, 1990, 1991]. The fundamental 
question associated with these tidal currents is 
whether net transport or nearly balanced reversing 
flow occurs. In this area, grain size reveals a progres- 
sive decrease westward into the Celtic Sea and sug- 
gests seaward transport. A budget for the system in- 
dicates a total of 64 x 105 t yr -• of sediment in 
movement but fails to recognize the net seaward flux 
[Harris and Collins, 1988]. 

Sand movement associated with shelf sand ridges 
generally reveals across-shelf transport (depending on 
the orientation of the tidal ellipse), but particulate flux 
is a circulating transport around the ridge [e.g., Smith, 
1969; Malikides et al., 1989]. Net transport can be 
inferred from asymmetries in ridge morphology, but 
fields of tidal sand ridges demonstrate significant spa- 
tial variability in the direction of net transport (e.g., in 
Torres Strait between Australia and New Guinea 

[Harris, 1988]). Net transport is possible during 
storms, when currents interact with the ridge morphol- 
ogy. This mechanism has been suggested to transport 
sand particles 100 km seaward over the Norfolk 
Banks, in the North Sea (Figure 8 [Stride, 1988]. The 
superposition of storm and tidal flows (without the 
need for morphologic effects) has been recognized as 
an important across-shelf transport mechanism for the 
sandy shelves of eastern Canada [Amos and Judge, 
1991]. 

Across-shelf sediment transport in the shore face 
(concave upward region, seaward of the beach) simi- 
larly suggests bidirectional fluxes and little or no net 
transport. The flux associated with oscillatory wave 
flow is landward. However, the mean current flux 
(undertow) is offshore [Osborne and Greenwood, 
1992a], and the net effect is presumed to be a balance 
with little net flux. This situation becomes more com- 

plex for barred coastal areas, where transport is spa- 
tially dependent on the location relative to the bar 
[Osborne and Greenwood, 1992b]. Temporal variabil- 
ity also is observed where storm and nonstorm trans- 
port are contrasted. Over the shore face of Long Is- 
land, landward transport was inferred during fair 
weather conditions; seaward transport prevailed dur- 
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Figure 8. Norfolk sand banks on the east coast of the United 
Kingdom. The solid lines show the axes of banks, and the 
ticks indicate the steeper side (direction of migration). The 
direction of tidal currents is shown by the arrow and is only 
slightly oblique to the ridges. During storms, sediment is 
swept seaward from one bank to another. Fine-grained sed- 
iment typically is transported along the path indicated as 
maximum turbidity. From Stride [1988]. 

ing a "northeaster" storm [Niedoroda and Swift, 
1981; Niedoroda et al., 1984]. 

Sandy sediment transported landward by surface 
wave activity is recognized on numerous beaches, 
where material is observed with the only potential 
source found seaward, for example, oolites in north- 
eastern Florida and phosphorites in North Carolina 
(Figure 9 [Pilkey and Field, 1972]) or quartz sand in 
southwestern Florida [Parkinson, 1991]. This sort of 
landward transport probably reflects fair weather con- 
ditions, whereas evidence of seaward transport is ob- 
served in association with storms. The passage of 
hurricane Carla across the Texas coast resulted in the 

seaward transport of beach and nearshore sediment to 
form a graded sand layer ---4 cm thick (Figure 10 
[Morton, 1981; Snedden et al., 1988; Snedden and 
Nummedal, 1991]). Nelson [1982] observed similar 
storm layers on the Bering Sea shelf, where the thick- 
nesses of some layers reached 10-20 cm. Bedforms 
found on the inner continental shelf of northern Cali- 

fornia suggest seaward transport, and Cacchione et al. 
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Figure 9. Distribution of oolitic sediment and its sources 
along the eastern Florida shelf. Rock outcrops are the source 
and are found at several locations in the midshelf region. 
Oolitic sediment eroded from the source areas is found on 

the surrounding shelf and is also found in the foreshore 
beach locations along the coast. From Pilkey and Field 
[1972, reprinted by permission]. 

[1984, 1987a] and Cacchione and Drake [1990] con- 
clude that the transport is driven by storm-generated 
coastal downwelling. Field and Roy [ 1984] suggest that 
downwelling storm flows are responsible for transport- 
ing sands to the inn, er shelf along southeastern Austra- 
lia and that long-term operation of this process has 
created thick (10-30 m) sand bodies. In contrast to 
these other observations, storm deposits (from cy- 
clone Winifred) on the northeastern Australian shelf 
indicate erosion and landward transport of fine-grained 
sediment from the midshelf to the inner shelf [Gagan 
et al., 1990]. 

Suspended Load Transport 
Observational studies that have measured sus- 

pended sediment transport rates on continental 
shelves routinely document strong along-shelf and 
weak across-shelf flows. Sediment emanating from the 
Ebro River of Spain is transported alongshelf (south- 
ward) under both fair weather and storm conditions 
with a slight offshore component [Cacchione et al., 
1990]. On the U.S. shelf near New Jersey, Butman et 
al. [1979] document sediment resuspension primarily 
during storms, with particle excursions of 20-30 km 
along shelf (southwestward) and 5-10 km across shelf. 
Similar observations were made by Lyne et al. 
[1990b] for a study area farther northeast (off Cape 
Cod). Drake and Cacchione [ 1985] demonstrate for the 
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Figure 10. The seaward transport of sand by hurricane Carla (in 1961) to form a sand bed on the continental 
shelf of Texas. The left figure shows the path of the hurricane (dotted line) and the near-bottom currents 
that resulted (arrows). These currents coupled with the effects of surface gravity waves produced a distinct 
sand deposit on the inner and middle shelf, as shown in the fight figure. From $nedden and Nummedal 
[1991]. 
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Figure 11. An intermediate-depth nephe- 
loid (turbid) layer is produced during 
storms on the Washington continental 
shelf. The layer (and its particulate con- 
tent) is advected northward along shelf, 
but also across shelf. This figure shows 
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northern California shelf that most particulate trans- 
port is northward along shelf during storms, but with a 
significant offshore component (up to 45ø). 

A more subtle pattern of across-shelf transport oc- 
curs in association with seaward displacement of the 
shelf-slope front. This feature is well developed on the 
U.S. east coast and demonstrates a high-turbidity 
layer at its base. Turbid water is advected seaward 
when physical conditions cause frontal motion in that 
direction [Churchill et al., 1988; Palanques and Bis- 
caye, 1992]. 

High concentrations of suspended particles are 
found as discrete layers near the seabed and at inter- 
mediate water depths. On the Texas shelf the turbid 
layers (nepheloid layers) are formed nearshore by flu- 
vial discharge and are transported along shelf and 
seaward by ambient currents [Sahl et al., 1987; Halper 
and McGrail, 1988]. This seaward advection supplies 
sediment for accumulation on the midshelf region, and 
also leads to formation of intermediate-depth nephe- 
loid layers as the bottom nepheloid layer becomes 
detached from the seabed. Seaward transport is inten- 
sified during storms on the Texas shelf [McGrail and 
Carnes, 1983]. Formation of intermediate nepheloid 
layers is particularly well developed on the Washing- 
ton shelf during storms (Figure 11), when surface wave 
and current stresses resuspend sediment that is then 
advected along shelf as a bottom nepheloid layer 
[Hickey et al., 1986]. This layer becomes an interme- 
diate-depth nepheloid layer where it passes over the 
heads of submarine canyons (indenting the shelf) or 
where it diffuses seaward toward the continental slope 
[Baker and Hickey, 1986]. Particles settling from the 
nepheloid layer complete the process of seaward 
transport. 

Surface wave resuspension is generally observed to 
be an important process for seabed erosion, with sub- 
sequent advection dependent on local currents. In 

addition to the storm processes described above, swell 
conditions also can lead to seaward transport. On the 
San Pedro shelf (off southern California) low-ampli- 
tude (height <1 m), long-period (>10 s) swell resus- 
pends sediment, which is carried seaward by a weak 
mean flow [Drake et al., 1985]. In deeper areas of the 
shelf (middle and outer), where resuspension by sur- 
face waves is less effective, the results of human fish- 
ing activities can significantly impact seaward sedi- 
ment transport. Churchill [1989] concluded that 
trawling activities in the U.S. Middle Atlantic Bight 
resuspend significant amounts of bottom sediment that 
are subsequently advected seaward by across-shelf 
water motions. 

Dispersal of Fluvial Sediments 
Rivers that empty onto epicontinental shelves or 

quiescent seas (e.g., the Gulf of Mexico or Mediterra- 
nean Sea) typically have less energetic dispersal sys- 
tems, allowing particulate material to accumulate near 
the river mouth. In many cases, this causes deltaic 
progradation with subsequent sediment accumulating 
on the shelf farther seaward (e.g., Mississippi [Cole- 
man, 1976], Po [Boldrin et al., 1988; Frignani and 
Langone, 1991], Ebro [Palanques and Drake, 1990], 
and Adige river [Boldrin et al., 1992]). Fluvial sedi- 
ment discharge can be displaced much farther seaward 
(to hundreds of kilometers) in more energetic shelves, 
forming subaqueous deltaic features that prograde sea- 
ward (e.g., the Amazon [Nittrouer et al., 1986], 
Ganges-Brahmaputra [Kuehl et al., 1989], and Fly 
rivers [Harris et al., 1993]). 

Within an epicontinental shelf setting, across-shelf 
particle dispersal is difficult to define; however, fol- 
lowing dispersal systems toward deeper water is one 
approach. Within the Yellow Sea, studies of grain size 
(Figure 12 [Niino and Emery, 1961; Lee and Chough, 
1989]) and mineralogy [Chough and Kim, 1981; Milli- 
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Figure 12. The distribution of Holocene sedi- 
ment thickness and grain size in the Yellow Sea 
epicontinental shelf. The primary sediment 
source is the Huanghe (Yellow River), which 
has emptied into the Gulf of Bohai for most of 
the Holocene (Figure 12a, inset). A tongue of 
Huanghe sediment is observed to extend sea- 
ward along the axis of the Yellow Sea. Sediment 
thickness (Figure 12a) generally thins in that 
direction, and grain size (Figure 12b) and min- 
eralogy reflect this dispersal pathway. From Al- 
exander et al. [1991]; based partially on data 
from Milliman et al. [1987]. 

man et al., 1985; Park et al., 1986; Park and Khim, 
1992] clearly demonstrate the displacement of sedi- 
ment from the Huanghe and from Korean rivers south- 
ward toward the deeper Pacific Ocean. Within peri- 
continental shelf settings, across-shelf transport from 
source to sink is more simply delineated. For example, 
Pujos and Javelaud [1991] 'can trace the seaward dis- 
persal of modern sediment from Colombian rivers by 
specific mineralogic assemblages (rich in chlorite and 
illite), and Segall and Kuehl [ 1992] can follow chlorite- 
rich sediments from the Himalayas across the Bang- 
ladesh shelf and into a submarine canyon. 

The mineralogy and organic composition of sus- 
pended sediment on the U.S. east coast indicate the 
presence of particles from adjacent rivers to be signif- 
icant only in nearshore waters (<35 m) [Meade et al., 

1975]. However, in other areas the composition of 
suspended and bottom sediments clearly indicates 
land-derived material reaching the middle and outer 
shelf and even the continental slope. Along the Wash- 
ington coast, the Columbia River supplies a unique 
montmorillonite signal, which can be recognized in 
sediments of the adjacent water column and modern 
shelf-slope deposits [Knebel et al., 1968; Baker, 
1973, 1976; Karlin, 1980]. The coniferous vegetation of 
the Columbia drainage basin similarly puts a finger- 
print on the organic fraction of modern shelf-slope 
deposits [Hedges and Mann, 1979; Prahl, 1985]. A 
unique tracer of Columbia River sediment is ash de- 
livered by the Mount Saint Helens eruption in 1980. 
Ridge and Carson [1987] traced the ash through the 
Columbia River dispersal system and, within 17 
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months of its release to the ocean, observed it at least 
125 km along shelf and 40 km across shelf from the 
river mouth (Figure 13). The seaward component of 
flow is explained by turning of the current, due to 
frictional interaction with the seabed [Kachel and 
Smith, 1986]. 

In the case of the Ebro River the sediment is muddy 
and its character is sufficiently cohesive to inhibit 
erosion and rapid dispersal. Ultimately, storms carry 
the sediment southward [Cacchione et al., 1990]. 
Some accumulates on the shelf as a midshelf mud 

deposit [Maldonado et al., 1983; Nittrouer et al., 
1988], and other sediment is transported off the shelf 
near the Columbretes Islands [Palanques and Drake, 
1990]. 

Anthropogenic input of various materials provides 
good tracers for across-shelf transport of particles. 
Particle-reactive chemical species are especially good 
tracers because they are adsorbed to the surface of the 
particles. The seaward dispersal of trace and heavy 
metals has been documented in many areas (e.g., the 
western Mediterranean [Palanques et al., 1990] and 
Adriatic Sea [Boldrin et al., 1988]). Man-made radio- 
isotopes provide an identifiable tracer as well as an 
internal clock. The nuclear reactor in Hanford, Wash- 
ington, supplied the Columbia River with an interest- 
ing assortment of isotopes. These were used to trace 
the oceanic dispersal of Columbia River sediment and 
to estimate its rate of transport [Gross and Nelson, 
1966; Cutshall et al., 1986]. 

Sediment Budgets 
Perhaps the best quantitative support for across- 

shelf transport comes from fluvial sediment budgets. 
These budgets contrast the mass of a particulate 
source with the oceanic sinks and are produced from 
spatial distributions of accumulation rates. Rates are 
calculated with a range of tools (e.g., radioisotopes, 
varves, and sediment traps) and represent time scales 
of months to millennia. Across-shelf transport is dem- 
onstrated where significant amounts of sediment are 
accumulating on the continental shelf or slope, and 
compositional studies (e.g., mineralogy or organic 
content) require a source landward or seaward. 

The southern California continental borderland 

contains numerous basins, which have accumulated a 
combined total of 14 x 10 •ø t of sediment [Schwalbach 
and Gorsline, 1985]. Most of this material (>80%) is 
from fluvial sources on land. The sediment accumu- 

lates in the basins, which represent about 20% of the 
areal extent for the borderland, and 2•øpb accumula- 
tion rates reach 1 mm yr -• (about 100 mg cm -2 yr -•) 
[Bruland et al., 1981; Malouta et al., 1981]. Particulate 
deposition rates observed from sediment traps are 
consistent with the 2•øpb rates and indicate a distinct 

seaward decrease, supporting lateral transport from 
shore [Huh et al., 1990]. 

Most continental shelves have a smoother surface 

than the shelf off southern California, and fluvial sed- 
iment typically forms continuous tongues of accumu- 
lation emanating from river mouths. The Columbia 
River discharges approximately 107 t yr-• of sediment, 
and approximately two thirds accumulates on the 
Washington shelf north of the river mouth [Nittrouer, 
1978; Nittrouer et al., 1979]. The particle size and 
mineralogy clearly identify a Columbia River source 
for the sediment. The axis of highest accumulation 
rates is found on the midshelf (water depth of 50-!50 
m), as a tongue extending predominantly along shelf 
but also crossing isobaths seaward (Figure 14). Accu- 
mulation rates along the axis decrease from about 7 to 
3 mm yr -• (1.0-0.4 g cm -2 yr -•) with distance from 
the river mouth and also decrease landward and sea- 

ward. Some of the Columbia River sediment escapes 
to the continental slope, but accumulation rates are 
significantly lower there than on the shelf [Carpenter 
et al., 1982; Thorbjarnarson et al., 1986]. 

Budgets also have been developed for larger fluvial 
systems. The Fly River (Papua New 6uinea) dis- 
charges nearly l0 s t yr -• of sediment. About half of 
this accumulates as a seaward prograding deposit near 
the river mouth, and the other half is transported into 
the 6ulf of Papua with a significant across-isobath 
component (Figure 15 [Harris et al., 1993]). The 
Changjiang (Yangtze River, China) discharges more 
than 10 s t yr-• of sediment. Approximately 40% accu- 
mulates as a seaward prograding deposit near the river 
mouth, and much of the remainder is transported 
southward, forming a sedimentary deposit that ex- 
tends to about the 60-m isobath [DeMaster et al., 
1985]. An important observation near the mouth of the 
Changjiang is the significance of timescale. The bud- 
gets for areas described above were obtained from 
2•øpb geochronology (half-life, 22.3 years) in sediment 
cores, which therefore integrate accumulation rates 
over decades. McKee et al. [1984] observed that the 
2•øpb accumulation rates near the mouth of the 

Changjiang (about 5 cm yr-•) were significantly slower 
than short-term (integrated over several months) sum- 
mer deposition rates (about 5 cm month-•) from 234Th 
analyses (half-life, 24 days). The difference represents 
erosion of sediment during winter storms and its trans- 
port across and along shelf away from the river mouth. 

Budgets for the Huanghe (China) and Amazon flu- 
vial systems each examine the fate of more than 10 9 t 
yr- • of sediment. Approximately 85-90% of the Huang- 
he discharge accumulates near the river mouth in the 
Gulf of Bohai [Bornhold et al., 1986; Alexander et al., 
1991]. The remaining 10-15% (representing >108 t 
yr -•) extends southward down the axis of the Yellow 
Sea as a tongue toward deeper water. In contrast to 
the epicontinental shelf setting for the Huanghe dis- 
charge, the Amazon enters a pericontinental shelf. 
More than half of the sediment accumulates on the 

adjacent shelf, with the highest rates (> 10 cm yr-•; >7 
g cm -2 yr -•) found in the midshelf (40- to 60-m water 
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Figure 13. Observations of volcanic ash originating from 
Mount Saint Helens (eruption of May 1980) and dis- 
charged to the Washington shelf by the Columbia River. 
Ten stations were sampled along the path of sediment 
transport (Figure 13a), and the arrival times at each are 
shown in Figure 13 b. Seventeen months after the erup- 
tion, volcanic ash had traveled at least 125 km along 
shelf and 40 km across shelf. From Ridge and Carson 
[1987]. 
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Figure 14. Sediment accumulation rates deter- 
mined by 2'øpb geochronology for the Wash- 
ington continental shelf. The axis of highest 
accumulation rates is found on the middle shelf 

as a tongue extending predominantly along 
shelf but also crossing isobaths. From Nit- 
trouer [ 1978]. 

depth; Figure 16) region [Kuehl et al., 1986]. Much of 
the remainder is transported northwestward farther 
along the shelf. 

The midshelf region is recognized worldwide as a 
location where modern sediment accumulates, usually 
muddy sediment [McCave, 1972; Nittrouer and 
Sternberg, 1981]. In some cases, such as the Washing- 
ton continental shelf, the transition from inner shelf to 
midshelf occurs in the presence of moderate sediment 
supply, where accumulation rates are millimeters per 
year. In other cases, such as the Amazon shelf, the 
transition occurs in a realm of much greater sediment 
supply, and accumulation rates are centimeters per 
year. The transition from the inner shelf to midshelf 

can be from sand to mud or from mud to mud. Accu- 

mulation rates can increase abruptly or gradually. The 
transition can occur on narrow, steep margins or 
broad, gently sloping margins. But as a general rule, 
across-shelf transects of sediment accumulation rate 

reveal values that increase significantly just seaward of 
the inner shelf-midshelf boundary and reach greatest 
values on the midshelf (Figures 14 and 16). Because 
much of the sediment accumulating there has a terres- 
trial origin, across-shelf transport is demonstrated by 
the presence of a midshelf deposit. However, because 
much material accumulates there, the midshelf region 
is also the dead end for many of the particles trans- 
ported across continental shelves. 
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Figure 15. Schematic budget for sediment 
discharged by the Fly River, Papua New 
Guinea. Approximately half of the dis- 
charge (equal to about 40 x 106 yr -•) is 
accumulated as part of a seaward prograd- 
ing subaqueous delta. Most of the remaining 
sediment is transported seaward into the 
Gulf of Papua. From Harris et al. [1993]. 

PROJECTIONS FOR FUTURE RESEARCH 

Across-shelf transport controls the fate of diverse 
and important particles. Many organisms develop 
through planktonic larval stages, whose successful dis- 
persal depends on across-shelf transport. Many parti- 
cle-reactive chemical species (natural and man-made) 
have terrestrial sources, and their fates depend on 
across-shelf transport. Even global CO2 budgets are 
affected by the transport of particulate carbon synthe- 
sized in highly productive shelf waters. As concern for 
coastal waters increases, continued attention should 
be given to the topic of particulate transport across 
continental shelves. Both basic and applied research 
studies are needed. Work to date, as outlined in this 
review, represents a preliminary contribution toward a 
comprehensive understanding of across-shelf trans- 
port. No coordinated effort has been undertaken to 
address the range of driving processes nor their results 
over a diversity of timescales. 

Future work should continue to evaluate the 

operation of oceanic processes and their tie to parti- 
cle transport. Many of the most successful projects 
have attempted to isolate one or two dominant pro- 
cesses (e.g., wind-driven flows or buoyant plumes). 
This approach should continue so that fundamental 
knowledge of each process can further develop. How- 

ever, the ocean is a complex milieu, and many shelves 
are strongly influenced by two or more processes. 
Where several processes influence particle transport, 
their coupling can be distinctly nonlinear (e.g., effects 
from combined surface gravity waves and steady cur- 
rents). Future studies also should address complex 
study areas with a variety of energetic processes, 
including diverse biological and geological character- 
istics. 

A strong message from this review is that across- 
shelf particulate transport is bidirectional. Most of the 
driving processes are capable of reversing direction, 
and field observations verify the reversals. Although 
the present theoretical base is able to predict particle 
transport rates, the associated confidence limits com- 
monly prevent identification of net transport when two 
large transport rates are contrasted for systems with 
reversing flows. Empirical observations seldom cover 
a period sufficient to resolve this problem. Theoretical 
and technological advances should be encouraged in 
order to improve this situation. However, longer sam- 
pling periods (i.e., monitoring of shelf environments) 
also should be encouraged. This will improve knowl- 
edge of bidirectional particulate transport and also will 
provide valuable insight regarding the integrated ef- 
fects of processes spanning different time scales. 
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