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[1] Offshore tropical river plumes are associated with areas
of high N2 fixation (diazotrophy) and biological carbon draw-
down. Episodic blooms of the diatomHemiaulus hauckii and its
diazotrophic cyanobacterial symbiont Richelia intracellularis
are believed to dominate that carbon drawdown, but the
mechanism is not well understood. We report primary pro-
ductivity associated with blooms of these diatom-diazotroph
assemblages (DDAs) in the offshore plume of the Amazon
River using simultaneous measurements of O2/Ar ratios and
the triple-isotope composition of dissolved O2. In these
blooms, we observe peaks in net community productivity,
but relatively small changes in gross primary productivity,
suggesting that DDA blooms increase the ecosystem carbon
export ratio more than twofold. These events of enhanced
export efficiency lead to biological uptake of dissolved
inorganic carbon and silicate, whose longer mixed-layer
residence times otherwise obscure the differential impact
of DDAs. The shorter-term rate estimates presented here
are consistent with the results derived from longer-term
geochemical tracers, confirming that DDAs drive a significant
biological CO2 pump in tropical oceans.Citation: Yeung, L. Y.,
et al. (2012), Impact of diatom-diazotroph associations on carbon
export in the Amazon River plume, Geophys. Res. Lett., 39, L18609,
doi:10.1029/2012GL053356.

1. Introduction

[2] The freshwater outflow of the Amazon River reaches
thousands of kilometers from the river mouth, influencing

biogeochemistry in the otherwise nutrient-starved western
tropical North Atlantic (WTNA). The resulting surface
plume is characterized by a significant undersaturation
in CO2 and dissolved inorganic carbon (DIC) linked to
new production [Ternon et al., 2000; Körtzinger, 2003;
Cooley and Yager, 2006]. Previous estimates of net
production in the seasonal Amazon plume suggest that up to
1.7 Tmol C yr�1 is sequestered from the atmosphere [Cooley
et al., 2007; Subramaniam et al., 2008], reversing the
WTNA’s expected role as a net carbon source of �2.5 Tmol
C yr�1 were the plume’s effects to be excluded [Takahashi
et al., 2002; Mikaloff-Fletcher et al., 2007].
[3] A key hypothesis put forth by Subramaniam et al.

[2008] is that diatom-diazotroph associations (DDAs) drive
an efficient biological pump in tropical river plumes. On or
near the continental shelf, N derived from inland sources is
rapidly consumed, leaving a large area (�106 km2) of lower-
salinity, iron-rich surface waters in the WTNA that has
excess dissolved Si and P relative to Redfield-Brzezinski
stoichiometry (vs. C:Si:N:P = 106:15:16:1) [Brzezinski,
1985; Shipe et al., 2007; Subramaniam et al., 2008]. This
N-depleted region in the outer plume (30 < Salinity (S) < 35)
may be an ecological niche for diazotrophs and their diatom
symbionts. The diazotroph Richelia intracellularis fixes N2

to support its diatom hosts Hemiaulus spp. or Rhizosolenia
spp. [Foster et al., 2011], which may drive carbon seques-
tration in this region [Carpenter et al., 1999; Foster et al.,
2007; Subramaniam et al., 2008]. A quantitative link
between the ecology, primary production, and carbon export
in the Hemiaulus-dominated region has not yet been estab-
lished, however, due to variations in geochemical, biologi-
cal, and physical processes occurring on timescales from
hours to weeks. Instantaneous measurements of primary
productivity and export rarely represent time-averaged areal
productivity, and geochemical tracers integrate biogeochem-
ical cycling over a range of time periods. Here, we report the
results of a primary productivity study using dissolved O2

and DIC, which integrate the surface ecosystem productivity
signal on timescales ranging from several days to one month
[Bender and Grande, 1987; Emerson, 1987; Luz and
Barkan, 2000; Cooley and Yager, 2006]. We confirm the
efficient export of carbon during DDA blooms in the outer
Amazon plume.

2. Methods

[4] Carbon and nutrient cycling and ecology of the
Amazon plume’s mixed layer was studied during the period
of maximum river discharge in 2010 (May-June) onboard the
R/V Knorr.During this time, the plume is carried North-West
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from the river mouth by the North Brazil Current. It is
characterized by a spatially variable enhancement in
chlorophyll-a (Figure 1a) and a reduction in sea surface
salinity (Figure 1b) in the WTNA.
[5] We report net-community and gross productivity at six

cruise stations (12.5�N/45.0�E – 4.3�N/56.8�E; 26 < S < 36).
At each station, multiple casts of the CTD-rosette system
were used to obtain depth profiles for key variables. Mixed-
layer depths, which ranged from 5 – 40 m at these stations
(Table 1), were determined as the depth at which the
potential density (sq) had decreased by 0.2 from the value at
2 m. We typically sampled 2 – 4 depths in the mixed layer
and 6 – 8 depths within the upper 100 m.
[6] DDAs and Synechococcus spp. were enumerated

by gravity-filtering cells from a 10-L Niskin bottle onto
Nuclepore filters and counting transects under green excita-
tion (see auxiliary material).1 Phytoplankton counts were

depth-integrated and an average count per liter for the mixed
layer is reported except at Station 9, where only the surface
value is reported. The average DDA abundance in the mixed
layer was typically consistent with the abundance at the
surface within �25%.
[7] Seawater samples for oxygen triple isotopes (17D), O2/

Ar, DIC, dissolved Si, and water-d18O analyses were
obtained from Niskin bottles at 2 – 4 depths in the mixed
layer and at least one depth just below the pycnocline. DIC
samples (500 mL) were collected and preserved according
to standard protocols, and analyzed at the University of
Georgia (precision < 1 umol kg�1 [Cooley and Yager, 2006]).
Seawater for simultaneous O2/Ar and 17D analysis
(�270 mL) was siphoned into pre-evacuated (<1 mTorr) and
pre-poisoned (100 mL saturated HgCl2 solution) 500-mL
flasks equipped with a vacuum valve [Emerson et al., 1999].
Dissolved O2 and Ar were analyzed at UCLA using an
isotope ratio mass spectrometer (see auxiliary material).
Silicate samples were run at sea using a LaChat autoanalyzer

Figure 1. (a) Cruise track and sampling locations superimposed on the average sea surface chlorophyll-a concentration
during 12–15 June 2010 (MODIS Aqua satellite; NASA). (b) Sea surface salinity measured while underway, with sea-floor
bathymetry in gray.

Table 1. Mixed-Layer Chemical and Biological Inventories and In Situ Productivities at Each Stationa

Waters Salinityb Date Station

Mixed-
layer Depth

(m)

Plume
Thickness

(m)

DDA
counts
(L�1)

Si
(mM)

DDICBIO

(mmol C m�2)
NOP

(mmol O2 m
�2 d�1)

GOP
(mmol O2 m

�2 d�1) NOP/GOPd

Low-Salinity 26.5 6/17/10 23 9 9 1,927 25.1 32 � 6 �4.8 � 0.2 101 � 43 �0.06 � 0.02
27.2b 6/4/10 9 5 5 161 21.4 ndc 13.3 � 0.9 101 � 1 0.13 � 0.01

Outer plume 31.9 6/18/10 25 14 20 259,838 2.8 774 � 16 84.5 � 2.1 245 � 21 0.35 � 0.02
32.1b 5/24/10 2 17 21 416,806 5.1 495 � 13 72.4 � 1.3 167 � 29 0.47 � 0.07

Oceanic 35.9 5/31/10 7 37 - 38 0.8 308 � 58 10.6 � 2.3 134 � 46 0.09 � 0.01
36.0 6/21/10 27 19 - 128 1.2 156 � 24 19.2 � 0.9 169 � 14 0.12 � 0.01

aUncertainties reflect �1 s.e. of replicates. Gas-exchange uncertainties for NOP and GOP are likely �20% for the wind speeds observed in this study (2–
11 m s�1) [Ho et al., 2011]. Shipboard 24-h wind averages agreed with satellite wind-field averages within 0.5 m s�1 (RMSD). See the auxiliary material
for data from individual replicates.

bSalinities correspond to Niskin bottle values for Si/DIC samples. These values were identical to those for diatom and O2 samples except at Stations 9 and
2, where S = 29.6 and 33.1, respectively, for diatom samples, and S = 30.4 and 32.8, respectively, for O2 samples (see Figure 2).

cProfiles for DIC taken on CTD casts with significantly different surface salinities (i.e., S = 32.7 at Station 9).
dNOP/GOP is insensitive to gas exchange uncertainties; NOP/GOP values reflect average of replicates, not the mean NOP and GOP values in this table.

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GL053356.

YEUNG ET AL.: DDA IMPACT ON AMAZON PLUME CARBON EXPORT L18609L18609

2 of 6



(QuickChem 8000) and standard colorimetric protocols
[Strickland and Parsons, 1972].
[8] We used several productivity proxies: the 17D method

for gross O2 productivity (GOP) [Luz and Barkan, 2000;
Prokopenko et al., 2011], O2/Ar ratios for net O2 produc-
tivity (NOP) [Emerson, 1987; Hamme et al., 2012], and
biological DIC drawdown for net community production
(DDICBIO) [Cooley and Yager, 2006]. Gross O2 productiv-
ity was calculated from 17D data using the method of
Prokopenko et al. [2011]. Gas-exchange velocities, calcu-
lated from ASCAT wind histories of the 30 days prior to
sample collection [Ho et al., 2006; Reuer et al., 2007],
yielded O2 residence times of 3 – 9 days in the mixed layer.
Mixing through the surface halocline was calculated to be
negligible (see auxiliary material). The estimated DIC resi-
dence time in the mixed layer is 22 – 30 days [Cooley and
Yager, 2006], but it is poorly constrained because it
depends on the kinetics of the carbonate system, the air-sea
exchange rate, and the mixed-layer depth.
[9] Productivity is presented along the plume salinity

gradient because salinity is a conserved tracer for river-
ocean mixing [Salisbury et al., 2011]; this assertion was
validated against the d18O of H2O, performed at the UC-

Davis Stable Isotope Facility using laser spectrometry (see
Figure 2). Mixed-layer salinity also reflects the extent of river
influence on the surface ocean community [Subramaniam
et al., 2008].

3. Results and Discussion

[10] Phytoplankton communities varied along the salinity
gradient, and net community productivity co-varied, in par-
ticular, with the abundance of Richelia heterocysts that were
associated with Hemiaulus hauckii (1 – 2 heterocysts per
diatom frustrule; Figure 2a and Table 1). Net O2 productivity
ranged from slightly heterotrophic at Station 23 (�4.8 mmol
O2 m

�2 d�1; S = 26.5) to highly autotrophic at Stations 2 and
25 in the outer plume (72.4 and 84.5 mmol O2 m�2 d�1,
respectively; S = 32 – 33). Depth-integrated DDICBIO also
co-varied with NOP, ranging from 32 to 774 mmol C m�2.
At outer-plume stations, NOP increased fivefold, and
DDICBIO increased threefold, relative to their average
values at high-salinity (S = 36) oceanic stations. These
increases coincided with a high abundance of H. hauckii-R.
intracellularis DDAs, which varied a thousand-fold between
outer-plume stations and oceanic stations. The abundance of

Figure 2. Effect of DDA blooms on dissolved chemical budgets, using salinity as a conserved tracer of physical mixing.
(a) R. intracellularis-H. hauckii DDA abundance, NOP, and DDICBIO, which are all elevated in DDA blooms; (b) GOP,
which is relatively invariant; (c) ecosystem export ratio (NOP/GOP), which is elevated more than twofold in blooms;
(d) d18O of mixed-layer water, which reflects two-endmember mixing between the WTNA and the Amazon river.
The regression line shown implies that d18O = �4.8‰ at S = 0, whereas d18O of Amazon River water has d18O � �5‰
[Richey et al., 1989]; (e) Si, whose major non-mixing deficits probably reflect diatom blooms. Error bars reflect 1 s.e. except
in Figure 2d, where they are 1 s.d. of each analysis.
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Synechococcus and other phytoplankton, in contrast, did not
vary with net community productivity (see auxiliary
material). We therefore refer to the outer-plume stations,
characterized by high DDA abundance, NOP, andDDICBIO,
as DDA bloom stations.
[11] The fraction of primary production available for

export from the surface layer is represented by the NOP/
GOP ratio [Bender, 2000]. This ratio constrains the mecha-
nism behind increased net community productivity in DDA
blooms by distinguishing between increases in gross pro-
ductivity versus the export ratio. Comparing NOP/GOP
ratios with GOP (Figures 2b and 2c and Table 1), we find
that the high NOP at DDA bloom stations is due mainly
to an increased export ratio. GOP varied less than NOP,
averaging 134 � 33 mmol O2 m

�2 d�1 (1s s.d.) across all
stations except bloom Station 25, where it was 245 �
21 mmol O2 m

�2 d�1 (1 s.e., n = 4). Resulting community
export ratios were �0.1 for oceanic stations and �0.4 in
the DDA blooms, which is a value approaching the physio-
logical upper limit [Halsey et al., 2010]. These export ratios
are 3 – 4 times higher than those presumed for the Amazon
plume in previous studies [Carpenter et al., 1999; Cooley
and Yager, 2006; Cooley et al., 2007]. Similar export ratios
were observed for diatoms during a bloom in the Bering Sea
[Prokopenko et al., 2011] and in N-depleted mesocosm
experiments [Engel et al., 2002]; they likely reflect spatio-
temporal decoupling of primary production and upper-ocean
heterotrophy on timescales of days to a week [Riemann et al.,
2000; Yager et al., 2001].
[12] Quantitative comparison of these short-term NOP

results with DDICBIO offers further insight to relevant time
scales and impacts of DDA blooms on the longer-term DIC
budget in the WTNA. Our measured DDICBIO at oceanic
stations ranged from 156 – 308 mmol C m�2. Thus, the
implied mean net community productivity over a 30-day
residence time for DIC in this region [Cooley and Yager,
2006] ranges from 5 – 14 mmol C m�2 d�1. This range
is similar to the range of NOP-based net community pro-
ductivity at oceanic stations (12.4 – 14.9 mmol C m�2

d�1) calculated using the average NOP at Stations 7 and
27 (14.9 mmol O2 m

�2 d�1) and a photosynthetic quotient
of 1 – 1.2 for growth supported by N2 fixation [Cox, 1966;
Stal and Walsby, 1998]. High-salinity waters on the edges of
the plume, which are only slightly undersaturated in DIC,
nonetheless appear to be net autotrophic [Cooley and Yager,
2006; Cooley et al., 2007].
[13] Accounting for the large DDICBIO at DDA bloom

stations (495 – 774 mmol C m�2) requires an average net
community productivity of 16.5 – 25.8 mmol C m�2 d�1

over �30 days [Hu et al., 2004]. Some periods of high
productivity in excess of that at oceanic or low-salinity
stations (3.5 – 4.3 mmol C m�2, derived from the average
NOP at Stations 9 and 23) are therefore required. At a rate
of 1 division day�1 observed in the field for H. hauckii
communities in oligotrophic waters [Furnas, 1991], the
thousand-fold DDA population increase at DDA bloom
stations relative to oceanic populations would occur in
ten days. Similarly, about 7 – 10 days of bloom-like net
community productivity (65.4 – 78.5 mmol C m�2 d�1)
during a 30-day interval can explain the DDICBIO values at
DDA bloom stations.
[14] Nearly all of the measured DDICBIO at DDA bloom

stations could be attributed to net community productivity

supported by diazotrophy in DDA blooms. However,
coastal diatoms growing on river-borne nitrate could also
contribute to the measured DDICBIO. A bloom of coastal
diatoms dominated by, e.g., Pseudo-nitzschia spp. and
Skeletonoma costatum (106 cells L�1) was indeed observed
on the cruise (S = 22 – 23), and the net community pro-
duction therein was high: DDICBIO ≈ 1400 mmol C m�2

and NOP ≈ 140 mmol O2 m
�2 d�1, enough to exhaust the

riverine nitrate supply of 12 – 23 mmol N L�1 [DeMaster
and Pope, 1996]. Our NOP measurements, however, place
a lower limit on the DIC drawdown by DDAs because the
short mixed-layer residence time of O2 renders O2-based
methods insensitive to productivity more than �5 days prior
to sampling at the DDA bloom stations. In 5 days, we
calculate that DDAs alone account for 73% of DDICBIO at
Station 2 (362 mmol C m�2) and 55% of DDICBIO at
Station 25 (423 mmol C m�2).
[15] The dissolved Si budget of plume waters is also

consistent with diatoms playing the primary role in the
observed carbon drawdown. Silicate deficits, relative to
conservative mixing of fresher, high-Si plume waters and
salty, low-Si TNA waters, were observed in the areas of
highest DDA abundance (Figure 2e and Table 1). We inter-
pret these deficits as biological uptake during diatom growth
between 26 < S < 36. Diatom blooms should consume Si at
rates significantly faster than that of plume-ocean mixing
(days vs. a month), so departures from the ideal mixing line
allow one to estimate the biological uptake of Si. The Si vs.
salinity river-ocean mixing line was calculated by using the
mean Si concentration in the freshwater plume at low-salinity
stations, and in the mixed layer at oceanic stations, as mixing
endmembers (see Table 1). Si inventories were obtained by
integrating Si depth profiles. We use the depth of the fresh-
water plume rather than the sq -defined mixed-layer depth at
plume stations because conservative mixing preserves Si and
salt inventories in the low-salinity layer.
[16] From the Si deficits at stations 2 and 25, carbon uptake

inventories of 440 and 750 mmol C m�2, respectively, were
calculated using a C:Si ratio of 4.5 for H. hauckii (presumed
to be similar to that forH. sinensis [Brzezinski, 1985] because
of similar morphology). These proxy-derived carbon uptake
values are in remarkable agreement with DDICBIO at those
stations (495 and 774 mmol C m�2). While this analysis does
not distinguish between DDAs and coastal diatoms, the Si
uptake calculated here is expected to be supported primarily
by diazotrophy. Coastal diatoms can exhaust the riverine
nitrate supply before plume waters reach the salinity range of
the Si uptake calculation (e.g., S = 22 vs. 26 < S < 36).
Therefore, calculated Si uptake values likely represent Si
uptake in regions where surface nitrate concentrations are
negligible. There is some uncertainty in the mixing end-
members used in this analysis due to natural variability and
limited spatial coverage, so the near-quantitative agreement
between dissolved Si and DDICBIO could be serendipitous;
more measurements are needed to validate this comparison.
Underway Si measurements rarely achieve the full mixing-
line value in this region, suggesting that diatom-driven,
diazotroph-supported biological uptake of Si was widespread
(see Figure 2) [DeMaster and Pope, 1996; DeMaster et al.,
1996; Shipe et al., 2006]. These data, taken together with
the GOP, NOP, and DDICBIO data, support a coupling
between DDA biomass growth, carbon and silica drawdown,
and export efficiency.
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[17] The 15N composition of organic matter in collected
in sediment traps at 150 m suggests that at least some of this
DDA-driven surface export reaches deeper waters. Organic
matter containing recently fixed nitrogen has d15N = �1‰,
whereas deep-water nitrate and riverine nitrate have higher
d15N ≈ +5‰ [Karl et al., 1997; Sigman et al., 2000;
Aufdenkampe et al., 2007]. Therefore, export of particulate
organic carbon supported by recent N2 fixation yields low
d15N values in sediment-trap organic matter. At Stations 25
and 27, the particulate organic matter collected had d15N =
2.9‰ and 2.7‰, respectively; Hemiaulus frustrules and
Trichodesmium trichomes were identified in those traps. In
contrast, sediment traps at lower-salinity stations had higher
d15N values (4.3‰ and 4.8‰ at stations 9 and 23, respec-
tively) and no evidence for DDAs or other diazotrophs.
While these d15N measurements do not distinguish between
diazotrophs, the predominance of Hemiaulus-Richelia
DDAs in the outer Amazon plume suggests that N2 fixation
by Richelia plays an important role in carbon export
(see estimate in the auxiliary material).
[18] DDA blooms have also been found in other tropical

river systems [Zeev et al., 2008; Foster et al., 2009; Grosse
et al., 2010], yet the factors controlling their development
in freshwater plumes are not well understood. Estimates of
total carbon export by DDAs are therefore poorly con-
strained. Satellite-based detection of DDA blooms is difficult
because they do not always increase surface chlorophyll
above typical threshold values [Villareal et al., 2011].
Localized upwelling due to anticyclonic mesoscale eddies
could play a role in DDA bloom formation [Martin and
Richards, 2001; Hu et al., 2004], so physical and biogeo-
chemical modeling efforts incorporating DDAs are also
needed. As drivers of N2 fixation and carbon drawdown in
river plumes and oligotrophic waters [Karl et al., 2012;
Villareal et al., 2011], DDAs likely have a global impact that
is sensitive to both climatic and anthropogenic influences.
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