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Executive Summary 

The goal of this technical review was to evaluate 1) the potential impacts of boat generated 

waves on shoreline stability and attendant ecosystem properties, and 2) policy options to 

minimize any adverse effects.  We reviewed available literature, examined relevant data and 

information from Chesapeake Bay, discussed modeling approaches and highlighted data gaps to 

further quantify effects on shorelines and ecosystems, and detailed available management and 

policy actions to minimize potential boat wake impacts.  The major findings are:  

 

1) The literature review indicates an unequivocal connection between boat wake energy and 

shoreline erosion, sediment resuspension and nearshore turbidity.  

2) There is not currently enough data to determine the extent (spatially and in magnitude) to 

which boat wakes are contributing to erosion or turbidity of the Chesapeake Bay. 

3) Recommended next steps are to identify highly vulnerable waterways and implement 

management or policy actions to minimize adverse effects. 

 

The Chesapeake Bay Commission (CBC) requested that the Scientific and Technical Advisory 

Committee (STAC) of the Chesapeake Bay Program (CBP) conduct a technical review that 

addresses five focal areas:  (i) State of the science of known effects of boat generated waves on 

shoreline stability and ecosystem structure and function; (ii) Specific implications and concerns 

for Chesapeake Bay restoration and shoreline management, including an analysis of continuous 

turbidity data in relation to boating activity; (iii) Modeling approaches and data requirements for 

assessing boat wake wave effects on shorelines; (iv) Data gaps and research needs to quantify 

effects on shorelines and ecosystems; and (v) Relevant management and policy actions in 

Chesapeake Bay that could be adopted to minimize potential boat wake impacts to shorelines and 

Bay resources.   

 

Boat wakes have been shown to have erosive effects on shorelines (e.g., Castillo et al. 2000, 

Bauer et al. 2002), scour the bottom of the shoreface, and temporarily decrease water clarity 

(e.g., U.S. Army Corps of Engineers (USACE) 1994, Asplund 1996).  In addition to shoreline 

erosion, boat wake impacts include vegetative damage and disruption of faunal communities 

(Parnell and Koefoed-Hansen 2001).  Boat wake energy is event-dependent and is influenced by 

the vessel length, water depth, channel shape, and boat speed (Sorensen 1973, Glamore 2008).  

Wakes are most destructive in shallow and narrow waterways because wake energy does not 

have the opportunity to dissipate over distance (FitzGerald et al. 2011).  Although boat wakes are 

periodic disturbances, in comparison to wind waves, they can be a significant source of erosive 

wave force due to their longer wave period and greater wave height, even when they represent 
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only a small portion of the total wave energy (Houser 2010).  Our review of the literature 

demonstrated that even small recreational vessels within 150 m (~500 ft.) of the shoreline are 

capable of producing wakes that can cause shoreline erosion and increased turbidity (e.g., 

Zabawa and Ostrom 1980).  Vegetated shorelines can effectively attenuate waves in certain 

settings; however, there is a limit to this capacity particularly if there is frequent exposure to boat 

wakes.   

 

 

 
Figure 1. Diagram showing potential impacts from boat wakes to some different aquatic 

resources. Adapted from Liddle and Scorgie 1980.  Blue boxes are drivers of change.  Yellow 

boxes are changes in ecosystem structures and functions. Green boxes are impacts on living 

resources. 

 

In the Chesapeake Bay, our analysis of long-term (~3 year) turbidity data indicate that there is a 

likely nexus between turbidity of small waterways, shoreline erosion, and boating activity.  

However, the relationships between these factors were weak due the lack of direct information 

and the need to use proxy measures of boating (i.e., number of piers in an area), past erosion 

experience (i.e., shoreline armoring) and boat wake experience (i.e., distance to the 1-m contour).  

These results, in combination with past studies that controlled for boat wake activity, are an 

indication that boat wake activity could significantly contribute to shoreline erosion and poor 

water clarity in some Bay creeks and tributaries.   

 

In addition, boating activity likely contributes to the desire to armor shorelines (CCRM 2017), 

reducing and fragmenting the natural Bay habitats.  In each of the three tidal creek systems with 
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relatively high boating activity that were examined for this review (Lafayette River, Sarah Creek, 

and Lynnhaven River), approximately 25% of the low energy shoreline (i.e., shoreline not 

expected to have active erosion from wind-waves) has been armored, suggesting another source 

of erosion - possibly boating.  In turn, armored shorelines can also contribute to erosion of 

adjacent downdrift shorelines.  Living shorelines, more beneficial from a habitat perspective than 

armor (Bilkovic et al. 2016), could be considered a more palatable alternative than hard shoreline 

armor in cases in which no degree of erosion can be tolerated.  Management strategies to 

minimize adverse impacts by addressing boating behavior (e.g., speed limits) rather than 

shoreline modifications are preferred to be most protective of the environment. 

 

Policy makers who are concerned about boat wakes may want to use existing models of boat 

wake erosive potential (e.g., BoMo, Decision Support Tool) to inform decisions on where to put 

no-wake zones or other boat policies.  However, at this time, we do not have sufficient data to 

run either model for the Chesapeake Bay.  Concerns about the impacts of boat wakes on Bay 

shorelines have been voiced for at least 30 years (e.g., Zabawa and Ostrum 1980), leading to 

some regulation of boat wakes through reduced speed requirements in certain water bodies.  

Virginia, Maryland and Delaware localities have demonstrated authority and willingness to 

establish wake restrictions, but have not done so comprehensively nor with Bay-wide 

coordination.  Evidence suggests that boat wake erosion impacts achievement of three of the 

CBP Restoration Goals:  preservation/restoration of tidal marshes (through enhanced shoreline 

erosion), preservation/restoration of seagrass beds (through enhanced bottom erosion and 

increased local turbidity), and water clarity improvements (through increased local turbidity). 

 

We recommend that this issue be addressed by two means:   

 

1) First, because we have enough evidence to suggest an impact of boat wakes, protective 

policy measures should be adopted in highly vulnerable systems to reduce current boat 

wake energy.   

2) Second, data should be collected that allow a more thorough analysis of the extent of the 

problem throughout the Bay.   

 

These two processes need not be consecutive, but may need to occur concurrently.  In locations 

where shoreline erosion has been attributed to boating activity with a resultant significant 

adverse effect on resources and property, policy actions need not wait on new data. 
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Recommended science, management, and policy actions include: 

 

● Develop predictive models to quantify the relative contribution of boat wake induced 

erosion to overall shoreline erosion to inform water quality, habitat restoration, and 

shoreline protection management strategies.  

 

● Collect needed data to identify shores vulnerable to erosion from boating (specific data 

needs defined below), and to calibrate and validate predictive models. Then, develop a 

definition for, and classification scheme of, small tidal waterways with the greatest 

likelihood for significant boat wake wave shoreline erosion.   

 

● Incorporate boat wake induced turbidity and erosion when siting Bay Restoration 

activities (e.g., wetland/submerged aquatic vegetation (SAV) restoration).  

 

● Investigate the opportunities within the Bay states to implement no-wake zones or other 

wake reduction strategies (navigation buffers from shore, speed limits, boat size 

restrictions, boat bans) for addressing shoreline erosion where public safety is not also a 

concern.  In Virginia, current implementation of no-wake zone requires a finding of 

public safety concern and erosion is a second consideration.  Empanel an expert group 

from the appropriate Bay jurisdictions to develop and recommend a uniform boat wake 

policy in the Chesapeake Bay.  

 

Recommended data needs include: 

 

● High resolution recreational boating intensity information (the number of vessels that 

pass by on an average day, vessel types, vessel speeds, vessel traffic patterns). 

 

● Information on recreational boating trends in small waterways. 

 

● Information on the location, extent and level of enforcement of no-wake zones 

throughout the Bay. 

 

● Data on grain size of bottom sediments in all the Bay tributaries and small creeks; even a 

simple categorization of sand and fines would be useful. 

 

● Data on wave height (measure for wave energy) and suspended sediment concentration (a 



 

10 

 

measure for potential erosion). 

 

● High resolution shallow water bathymetry is needed throughout the Bay.  If data even 

exist, most are 50-100 years old in these areas. 

 

This review found that boat generated waves, particularly in shallow and narrow waterways, can 

increase turbidity, erode shorelines, compromise coastal habitats, and disrupt ecosystems.  This 

has the potential to impede progress towards several Bay restoration goals, particularly habitat 

restoration and water quality improvement.  Not accounting for potential boat wake effects 

during the planning and implementation of Bay restoration activities may compromise the 

attainment of Bay Program goals.  Further, incorporating the boating effects into the Bay Model 

may help to reduce uncertainty and ensure that restoration projects are sited in the most favorable 

settings. 
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Background and scope of the review 

The Chesapeake Bay Commission (CBC) requested that the Scientific and Technical Advisory 

Committee (STAC) of the Chesapeake Bay Program (CBP) conduct a technical review of the 

relevant information on the potential impacts of boat generated waves on shoreline stability and 

attendant ecosystem properties, and provide advice on available policy actions to minimize any 

adverse effects.  This request was made in January 2016; the request was approved by the STAC 

in March 2016, and the review was initiated in June 2016.  The request to the STAC (see 

Appendix I) from the CBC was that the review be focused on the following topics: 

 

1. Evaluate the state of the science of known effects of boat generated waves on shoreline 

stability and other ecosystem components (e.g., vegetative habitat, faunal community 

composition), 

2. Identify data requirements to effectively model the potential effect of boat wake waves 

on shorelines, 

3. Identify data gaps and research needs, and 

4. Determine existing and potential policy actions to reduce adverse effects of boat wake 

waves on shorelines.  Describe political and legal challenges for designating no-wake 

zones in Chesapeake Bay.  Are there case studies of no-wake zone designation and/or 

evaluation of response from management action in the Bay that can be learned from? 

 

STAC was also asked to address several questions related to (i) erosion and sediment inputs 

caused by boat wake waves, (ii) existing and needed data to develop best management practices 

to minimize shoreline erosion from boat wake waves, and (iii) political and legal challenges 

associated with policy actions to reduce boat wakes. 

 

Questions of Interest: 

1. What is the relative contribution of sediment inputs from boat wake-induced shoreline 

erosion in Chesapeake Bay? 

2. Are these types of sediment inputs currently represented in the Bay Watershed Model? 

3. Would expanding no-wake zones be beneficial to the Bay? 

4. Are there other policy options besides no-wake zones to consider? 

 

To be responsive to the CBC request, the STAC assembled a team of 9 professionals with 

backgrounds in sediment dynamics, shoreline erosion, coastal management and policy, 

environmental engineering, coastal engineering, estuarine shoreline systems, and estuarine 

ecology to assimilate relevant information in the form of a technical white paper.  The document 
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was then reviewed by additional external reviewers for further input to ensure critical areas of 

expertise were well-represented. 

 

The body of the review is organized into the following 6 sections: 

1. Evaluation of the state of the science of known effects of boat generated waves on 

shoreline stability and other ecosystem components  

2. Specific Chesapeake Bay implications and concerns   

a. Examination of continuous data for evidence of elevated turbidity from boating 

activity 

b. Case study that describes boat-wake induced erosion implications for city-

managed property in the Lafayette River, VA 

3. Modeling approaches and data requirements to assess the potential effect of boat wake 

waves on shorelines 

4. Data gaps and research needs 

5. Management and policy in Chesapeake Bay  

6. Summary and Recommendations 

 

Section 1:  State of the Science  

 

Shoreline erosion is a natural process that can be exacerbated by human activities.  Natural 

drivers of shoreline erosion include wind waves, currents, and sea level rise (SLR).  Human 

activities that exacerbate erosion include shoreline hardening (armoring) and boat wake impacts.  

It is not possible to visually distinguish between the natural and human-induced components of 

erosion; these must be deduced from measure of human use of an area combined with wind wave 

erosion models.  

This report focused on boat wake-induced erosion, but this should not be interpreted to mean that 

the other drivers of erosion are unimportant in the Chesapeake Bay.  Historic Virginia shoreline 

erosion rates can be found at the Shoreline Studies, VIMS website (http://vims-

wm.maps.arcgis.com/apps/webappviewer/index.html?id=cd5cf9b788d0407fb9ba5ffb494e9bae).  

Historic Maryland shoreline erosion rates can be found at Maryland Department of Natural 

Resources (http://www.mgs.md.gov/publications/maps.html). 

Boat wake dynamics  

As a boat travels through the water, it displaces water, effectively pushing it to the side and 

creating a pressure gradient that radiates outward in a wave form.  Forward movement of the 

http://vims-wm.maps.arcgis.com/apps/webappviewer/index.html?id=cd5cf9b788d0407fb9ba5ffb494e9bae
http://vims-wm.maps.arcgis.com/apps/webappviewer/index.html?id=cd5cf9b788d0407fb9ba5ffb494e9bae
http://www.mgs.md.gov/publications/maps.html


 

13 

 

bow creates a series of symmetrical waves that propagate away from the bow at oblique angles, 

while the stern generates a single transverse wave that travels in the same direction as the vessel 

(Sorenson 1973).  The point at which bow and stern waves interact (known as the cusp), is the 

region of maximum wave height (Maynord 2001, Figure 2).  Waves that fall between the cusp 

points are smaller than the maximum height.  The cumulative result is that each boat passage 

generates a complex series of waves known as a wave train, which propagate away from the 

sailing line at an angle that is dictated by hull shape and vessel speed.  The specific 

characteristics of the waves generated by each passage are dependent on a multitude of factors 

including water depth, vessel length and speed, displacement (loading), hull shape, and the 

presence of natural waves and currents, among others (Maynord 2001).  Given the complexity of 

predicting waves in a natural system, it is valuable to understand the basic traits of idealized 

waves.  

 

Figure 2. Pattern of vessel-generated waves in deep water. Diagram from Sorenson 1973. 

Photo by Edmont - Own work, CC BY-SA 3.0, 

https://commons.wikimedia.org/w/index.php?curid=6920796 

 

Waves that travel in water that is deeper than 1/2 of their wavelength (the distance between two 

successive wave crests) are referred to as deep water waves.  The motion of deep water waves do 

not penetrate the full depth of the water column, thus these waves have little impact on the 

bottom sediments (Sorenson 1997, Hill et al. 2002).  As a deep water wave travels away from the 

sailing line, wave height will decrease with distance traveled as wave energy spreads out along 

the wave crest.  Given a long enough transit in deep water, much of the wave energy will 

distribute over a wide area before reaching a shoreline.  In deep water, the speed at which a wave 

moves away from its point of generation is largely a function of wavelength; waves with longer 

wavelengths travel faster than those with shorter wavelengths.  As faster waves overtake slower 

ones, waves produced by one boat may merge with those produced by a different boat (Figure 3), 

https://commons.wikimedia.org/w/index.php?curid=6920796
https://commons.wikimedia.org/w/index.php?curid=6920796
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or with wind waves.  Merging of waves from different sources can be constructive (resulting in 

higher wave heights) or destructive (resulting in decreased wave heights) depending on whether 

they merge crest to crest, or crest to trough.  In most cases, the interaction of waves from a 

variety of sources results in a water surface that appears highly disordered.  

 

Figure 3. Boat wakes from different boats interact, changing wake patterns. Photo by 

Arpingstone, https://commons.wikimedia.org/w/index.php?curid=5957943 

 

Waves that travel through water depths that are less than 1/20 of their wavelength are referred to 

as ‘shallow water waves’.  Waves that fall between deep and shallow water wave categories 

(when water depth is greater than 1/20 but less than 1/2 of wavelength) fall into the “transitional” 

category.  The movement of both transitional and shallow water waves is influenced by water 

column depth because the energy associated with both types reaches all the way to the sea floor.  

Deep water waves traveling toward a shoreline will therefore eventually become transitional and 

shallow water waves due to changes in water column depth.  Shallow water waves can influence 

the seafloor by causing sediment resuspension and, conversely, the friction created by wave 

motion interacting with the seafloor can influence waveform.  As a wave travels into shallow 

water, interaction with the seafloor causes a decrease in the forward speed of the wave train and 

a concomitant increase in wave height (shoaling) until the wave eventually breaks (Parnell and 

Kofoed-Hansen 2001).  As a result, waves of low amplitude and long wave-length that seem 

trivial in deep water, may result in large plunging breakers when they reach the shoreline. 

 

The size and shape of boat wakes are strongly influenced by hull type and speed.  Planing hulls 

are designed to ride on top of the water.  Displacement hulls (e.g., sailboats, trawlers and large 

ships) are not capable of planing but rather, ride in the water, pushing it to the side as they move 

forward.  The amount of water displaced is equivalent to the weight of the vessel, thus very large 

https://commons.wikimedia.org/w/index.php?curid=5957943
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displacement hulls like tanker ships displace large volumes of water, resulting in the creation of 

wakes with large wave heights.  The shape of a hull further influences its wake characteristics.   

A catamaran, a single-hulled vessel, and a jet ski will all produce different wakes.  Previous 

investigators have shown that a boat towing a water skier will produce a wake with greater wave 

energy than the same boat when not towing (Baldwin 2008).  All other factors being equal, a 

positive correlation exists between the size of a vessel and the size of its wake (Hill et al. 2002, 

Fonseca and Malhotra 2012).   

 

The single best predictor of the size of the wake that any given boat will produce is the speed at 

which the vessel is traveling (Sorenson 1973, Zabawa and Ostrom 1980, Fonseca and Malhotra 

2012), although this relationship is not linear for planing hulls.  When planing vessels are 

operating in displacement mode (such that the bow of the boat is fully supported by the water), 

wake size increases with speed.  The maximum wake is produced at the point just before a vessel 

transitions to planing mode (this range of speeds is commonly referred to as transition mode).  

When speed is increased enough that the vessel is fully “on plane”, wake sizes begin to decrease 

as less of the boat is in the water.  This relationship between speed and wake size is illustrated in 

Figure 4.  It is important to note that while all planing vessels will produce a curve with this 

same general pattern, the curve is slightly different for each boat and each set of operating 

conditions (Stumbo et al. 1999).   

 

 
Figure 4. Wave height as a function of speed in planing hull vessels.  Adapted from 

Maynord 2001. 
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Efforts to quantify the impacts of boat wakes on shorelines are complicated by the fact that each 

boat passage produces waves with a unique set of characteristics (McConchie and Toleman 

2003).  As a result, many previous efforts to establish wake management strategies have used 

wave height, or wave energy based criteria (Stumbo et al. 1999, Glamore 2008). 

Wave energy, given as: 

E = 1/8 p g H2 L 

 

(where p = water density, g = gravity, H = wave height, and L = wavelength) is proportional to 

both the height and length of a wave.  As wave energy increases with wave height squared, wave 

height provides a reasonable proxy for erosive force.  Wave height is also more easily estimated 

by the casual observer than wave energy (Nanson et al. 1994).  Wave energy dissipates with 

distance from the boat thus, the smaller a wave is at the onset, and the farther from the shoreline 

it is generated, the less energy it will contain when it reaches the shoreline and the less likely it is 

to cause erosion.   

 

Site specific factors that control impact of boat wakes on shoreline erosion       

Local vessel usage 

The amount of boat wake energy impacting a given shoreline is a function of not only the size 

and speed of vessels passing that shoreline, but also the frequency of vessels (Zabawa and 

Ostrom 1980, Glamore 2008).  Highly traveled waterways are more likely to experience boat 

wake-induced shoreline erosion than less frequently travelled waterways.  Further, because wave 

energy decays with distance from the boat, narrow waterways in which boats must pass closer to 

shore are more likely to experience wake-induced erosion from both direct wave impact, and 

wave energy reflected from the opposite shoreline, than wider channels (Nanson et al. 1994, 

FitzGerald et al. 2011; Table 1).  

 

It should be noted that shallow draft vessels (like personal watercraft) with the ability to run at 

high speed in shallow nearshore water may play a disproportionate role in shoreline erosion 

simply by virtue of their ability to operate close to shore where waves have little chance to 

dissipate.  However, when run in a manner similar to that of a small boat (i.e., in a straight line) 

personal watercraft were found to generate smaller lower energy waves than boats (McConchie 

and Toleman 2003).    
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Table 1. Published values of measured wave heights vs. vessel speed at varying distances from 

the sailing line:  * indicates planing hull, ** indicates displacement hull.  These data are excerpts 

from the larger data sets published by a) Zabawa and Ostrum 1980, Chesapeake Bay and b) 

Sorenson 1973.  For context, waves as small as 10 cm result in erosion of sediments from 

vegetated shorelines (Coops et al. 1996), and marsh survival is compromised when waves exceed 

30 cm, even 5% of the time  (Schafer et al. 2003, Roland and Douglas 2005). 

Boat 

 

Distance From 

Sailing Line  (m) 

Speed of Boat Travel 

(knots ((km hr-1)) 

Max wave 

height (m) 

26’ (8 m) Uniflight* 100 10 (19) 0.41 

 100 26 (48) 0.29 

 150 10 (19) 0.37 

 150 27 (50) 0.21 

16’ (5 m) Boston Whaler* 50 10 (19) 0.22 

 50 24 (44) 0.13 

 150 12 (22) 0.14 

 150 27 (50) 0.07 

45’ (14 m) Tugboat** 30 6 (11) 0.2 

 30 10 (19) 0.5 

 150 6 (11) 0.1 

 150 10 (19) 0.3 

263’ (80 m) Barge** 150 10 (19) 0.2 

 300 10 (19) 0.1 
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Wave energy at site 

In many instances, the cumulative impact of boat wakes is often small relative to that of wind 

waves (Laderoute and Bauer 2013).  In a study of boat wake versus wind-wave energy at 

multiple sites within Chesapeake Bay, Zabawa and Ostrom (1980) determined that <5% of total 

annual shoreline wave energy was attributable to boats.  The sites included in this study were 

along either the mainstem of the South and Severn Rivers, or on smaller creeks and coves near 

each river.  All sites were selected based on being popular areas for boating/water skiing and 

being relatively sheltered from wind.  Several more recent studies have found similar results with 

respect to the total amount of wave energy attributable to wind vs. boating activity (Knutson et 

al. 1990, Houser 2010, Fonseca and Malhotra 2012).   

 

While total cumulative wave energy associated with boating impacts is often less than that of 

wind waves, the height of the largest boat generated waves can substantially exceed that of the 

largest wind waves.  Winds represent an almost constant source of low to moderate wave energy 

while large boat wakes represent a comparatively rare but high energy event that may be 

responsible for significant damage to some shorelines.  Houser (2010) estimated that while 

cumulative boat wake energy accounts for less than 5% of total wave energy on the Savannah 

River, they account for more than 30% of total wave force acting on shorelines.  The 

disproportionately high wave force relative to total wave energy associated with boat wakes in 

this study was attributed to the fact that the Savannah River is heavily trafficked by large 

displacement hull vessels that generate large amplitude, long period waves.  Further, the relative 

amount of wave energy attributable to boats vs. wind has been shown to change throughout the 

year due to seasonal changes in boat usage (Zabawa and Ostrom 1980, Maynord et al. 2008).   

Shoreline characteristics 

Shoreline profiles influence erosion rates with ramped (gently sloping) and scarped (vertical 

shore profile) marsh shorelines experiencing greater wave thrust and consequently higher erosion 

than terraced shorelines (characterized by a step-like profile) under the same wave conditions 

(Tonelli et al. 2010).  In Boston Harbor, the highest rates of shoreline retreat were shown to 

occur along high elevation shorelines (bluffs of >10 m; FitzGerald et al. 2011).  In this case, the 

high erosion was attributed to wave-induced undercutting of the shoreline that eventually led to 

slumping of large sections of the bank. 

 

As waves come into contact with a shoreline they may either shoal and break, or be refracted, 

thus further contributing to the wave energy of nearshore waters.  The amount of wave energy 
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that is reflected along a given stretch is heavily influenced by the amount of shoreline 

modification.  Hard, vertical structures like bulkheads and seawalls are purported to reflect much 

of the incoming wave energy, thus resulting in an overall increase in nearshore energy (NRC 

2007).  Shoreline geometry further influences wave energy as headlands are impacted by wave 

energy from a variety of directions while embayed shorelines may experience greater influences 

from refracted wave energy (Priestas et al. 2015).  

Water Levels 

The impact of waves is even more challenging to predict along tidally influenced shores, as 

water levels and tidal flow interact to determine the effect of incoming wave energy on a 

shoreline (Tonelli et al. 2010).  Along shorelines that are fronted by extensive tidal flats, much of 

the incoming wave energy will be dissipated over the tidal flats, effectively buffering the 

shoreline from wave attack.  The lower the water level, the more influence a tidal flat exerts on 

water column dynamics.  River stage plays a similar role.  In the Kenai River, Alaska, Maynord 

et al. (2008) demonstrated higher shoreline erosion rates when peak boating conditions 

corresponded to times of high river flow and decreased erosion, despite high boat activity, during 

lower flow conditions.  They noted that during low flow conditions, much of the wave energy 

was lost due to contact with gravel sediments near the river margins.  Tonelli et al. (2010) have 

modeled the impacts of waves along salt marsh shorelines and showed that wave thrust on a 

shoreline increases with rising tide levels until the tide is just above the marsh surface elevation, 

at which point, wave thrust on the shoreline decreases sharply. Houser (2010) demonstrated this 

effect with wave sensors in the Savannah River. The importance of tidal stage is further 

supported by Marani et al. (2011) who demonstrated a strong relationship between wind wave 

energy and measured marsh edge retreat by considering wind data only from periods when marsh 

was not flooded.  

 

Tidal flows may further influence the ultimate fate of eroded sediments by providing a 

mechanism for their dispersal.  Bauer et al. (2002) used back-scatter sensors to measure the 

concentration of suspended solids in the water column after individual boat passages.  Their data 

indicated that suspended solid concentrations (SSC) returned to background values within a few 

minutes of each boat passage, despite much longer calculated settling times.  These data suggest 

that once suspended, the particles are carried downflow by currents, thus representing a net loss 

of sediment from the site. 
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Vegetation 

Whether waves of a given size will result in significant levels 

of sediment resuspension and/or shoreline erosion is further 

influenced by sediment characteristics and the presence or 

absence of shoreline vegetation.  Soils with a high sand 

content have been shown to be more easily eroded than finer-

grained sediments (Feagin et al. 2009).  Shorelines that are 

vegetated tend to have finer-grained sediments than non-

vegetated shorelines due to the incorporation of decaying 

organic matter (Craft et al. 2002).  As a result, the presence of 

living root material in shoreline soils results in a stronger soil 

that is less easily eroded (van Eerdt 1985, Francalanci et al. 

2013).  Additionally, shoreline vegetation like marsh plants 

combats erosion by attenuating wave energy (Yang et al. 

2012, Mӧller et al. 2014; Figure 5) and this response is 

proportional to both the height and density of the vegetation 

(Mӧller 2006).  The presence of even a narrow band (on the 

order of 1 m wide) of marsh vegetation in front of the shoreline has been shown to result in 

decreased rates of shoreline erosion (Currin et al. 2015).  Vegetated shorelines and marshes in 

particular are limited to regions of relatively low wave energy, thus their geographic extent limits 

the opportunity to minimize the impacts of incoming wave energy.  Recent wave tank modeling 

results show that marsh vegetation is adapted to short period, high frequency wind waves, but 

may not be as resilient to long-period ship-generated waves (Silinksi et al. 2015).  

 

Boat wakes and shoreline stability 

Shoreline change may include shoreline erosion and resuspension in the foreshore environment, 

although sediment can be transported landward as well.  The balance of transport (whether the 

shoreline erodes or accretes) depends on the size of the wake (Osborne and Boak 1999, Houser 

2011).  Most studies found the effects of boat wakes on the shoreline are dependent on many 

factors.  Site-specific conditions such as water depth, bank profile, type, size and supply of 

sediment and bank resistance can control suspended-sediment concentrations (McConchie and 

Toleman 2003, Hughes et al. 2007).  In coastal areas subject to significant wave action, boat 

wakes may have a negligible effect on shoreline stability.  However, in sheltered coastal, 

estuarine, and river environments, boat wakes may be the leading cause of shoreline erosion 

Figure 5. Marsh vegetation helps attenuate 

wave energy and binds the sediment, 

reducing erosion. Photo from 

NOAA/NCCOS. 
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(Gourlay 2011; Figure 6).    

Shoreline erosion 

There are many anecdotal accounts of boating activity leading to shoreline erosion; however, 

documenting the role that boat wakes play in the rate of shoreline change is complicated by the 

fact that any single boat passage (aside from the case of very large displacement vessels) will not 

produce a measureable change in shoreline position.  It is, rather, the cumulative effect of many 

boat passages that result in shoreline change and these effects can be difficult to discern from 

those of wind waves.  To further complicate matters, in narrow channels boat wakes may reflect 

off one shore, cross the channel, hit the opposite shore and return to the original shore for a 

second impact.  In suspected cases of boat-wake induced shoreline erosion, often few data exist 

regarding the shoreline position and natural rate of shoreline change before the impact of boats 

was suspected.  This lack of “control” data makes it challenging to quantify the amount of 

shoreline change that is attributable to boat wakes alone. 

 

Many studies of boat wake-induced shoreline erosion have focused on the effects of large 

shipping vessels and high-speed passenger ferries (Kirkegaard et al. 1998, Parnell and Kofoed-

Hansen 2001, Soomere et al. 2005, Schroevers et al. 2011). While fewer efforts have focused on 

the cumulative impacts of recreational boating (Cox and Macfarlane 2004), there is a developing 

body of literature that demonstrates the negative impacts of small boats on shoreline stability. 

Among the current published literature relating recreational boat traffic to shoreline erosion, 

most take the approach of relating boat passages to changes in water column turbidity (Bauer et 

al. 2002, Cox and Macfarlane 2004, Baldwin 2008, Laderoute and Bauer 2013).  While increased 

turbidity is not a direct measure of erosion (i.e., it is possible for suspended sediments to settle 

back into their original location) most water bodies experience some level of flow, and settling 

times for small particles are long, making it likely for suspended sediments to be carried away 

from their original location.  In the Sacramento River, a series of current meters and backscatter 

profilers were installed on a shallow bank on the river margin in a shoreline-perpendicular 

transect (Bauer et al. 2002).  This instrumentation allowed researchers to evaluate the wave 

characteristics and amount of sediment suspension associated with individual boat passages.  The 

data were used to model erosion rates on a per-boat basis.  The results indicated that each boat 

passage resulted in 0.01 - 0.22 mm of erosion at a given location on the shoreline.  These rates 

were well-supported by measured rates of cumulative shoreline erosion after multiple (hundreds 

of) boat passages.  The variability in erosion potential of shorelines makes it unlikely that these 

specific rates will apply to shorelines in other regions; however, they demonstrate that the 

additive effect of multiple boat passages can lead to measurable erosion.  
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When boat frequency and/or speed are reduced, measured rates of bank retreat have been shown 

to decline dramatically (Nanson et al. 1994). On the Gordon River, Tasmania, Nanson et al. 

(1994) documented an average erosion rate of 1 m yr-1 on a stretch of the river without speed 

restrictions.  Erosion rates along that same stretch decreased to 0.3 m yr-1 when boat speeds were 

restricted to 17 km h-1. Erosion rates decreased further (to 0.06 myr-1) when boat passages along 

that same stretch were limited to 1 per day.   

 

 
Figure 6. Marsh erosion reportedly induced by boat generated waves on Lynnhaven 

River, Virginia.  Photo by Bill Fleming. 

Resuspension 

Observation and research regarding the effects of boat wakes on sediment movement have been 

ongoing for decades (e.g., Nanson et al. 1994, Osborne and Boak 1999, Gourlay, 2011). 

Resuspension of bottom sediments in shallow water may occur in the foreshore, in shallow 

waters, and adjacent to channels after boat passage (Figure 7).  Increased turbidity varies in its 

persistence.  In river systems, suspension events may be short-lived, even with very fine 

sediments, because the suspension plumes are carried downstream (Bauer et al. 2002).  In other 

settings, such as Venice Lagoon, Italy, elevated concentrations persisted for nearly an hour 

(Rapaglia et al. 2011). The popularization of personal watercraft, with their exceptionally 
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shallow drafts, has brought boating activity to regions of water bodies which have historically 

seen little boating traffic.  Turbulent prop or jet wash have the ability to resuspend bottom 

sediments.  In field studies, boat speed, size, and water depth were the critical factors affecting 

resuspension on an unnamed lake bed (Beachler and Hill 2003).   

 

 

Figure 7. Imagery capture of boating-induced resuspended sediment along shoreline 

(upper left of image).  

 

Boat wake impacts to specific resources 

Commercial and recreational boating can have a wide-array of adverse effects on aquatic 

resources, including direct physical impacts from boat contact with the bottom, noise 

disturbance, as well as those effects resulting from physical disturbances to the bottom 

sediments, nearshore habitats and shorelines from boat generated waves.  The latter is often 

understudied and thus less well-understood.  Though other boating impacts on a resource may be 

significant, the primary focus of this report is on boat generated wave impacts.  
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Oyster reefs 

The distribution of intertidal oyster reefs is strongly shaped by wave energy, such that natural 

intertidal reefs do not occur in high wave energy settings.  In Pamlico and Core sounds, North 

Carolina, Theuerkauf et al. (2016) found that the distribution of intertidal oyster reefs was 

limited to a fairly narrow range of wave energies, but that wave energy did not limit the 

occurrence of oysters on hard substrates like rock jetties and seawalls.  In Chesapeake Bay, 

intertidal reefs were once prevalent; for over 100 years oysters supported one of the Bay’s most 

valuable fisheries with tens of millions of bushels of oysters removed each year.  This massive 

shell removal led to the flattening of reefs, with oyster reefs now largely subtidal in the Bay 

(Hargis and Haven 1999).  While there have been many anecdotal accounts of boating-related 

impacts on oyster reefs, empirical data are limited.  In the Indian River Lagoon, Florida, Grizzle 

et al. (2002) described a pattern of dead margins (evidenced by piles of shells that had apparently 

originated as living oysters dislodged off of the reef, pushed above high tide line by subsequent 

wakes, and then perished due to exposure) on the seaward side of oyster reefs that faced 

navigation channels and hypothesized that boat wakes were responsible.  Survival of oyster spat 

on these same reefs was later found to be significantly lower than on reefs that were not 

impacted by boat traffic (Wall et al. 2005).  Experimental evidence from this same system 

indicates that waves as small as 2 cm can result in the movement of both individual oysters and 

small clusters of oysters (Campbell 2015).  

Salt marshes and beaches 

As previously described, salt marsh vegetation can help to stabilize sediments and dissipate wave 

energy.  Both of these functions can result in decreased erosion rates relative to those of 

unvegetated shorelines.  The benefit of shoreline vegetation does have limits however, as marsh 

vegetation only exists along relatively low energy shorelines.  Efforts to establish the wave 

energy threshold for marsh survival suggest that marshes will not exist naturally along a coast 

line where incident wind-generated waves exceed 0.3 m, even 5% of the time (Schafer et al. 

2003, Roland and Douglas 2005).  Previous efforts to quantify the impact of boat wakes on 

shorelines suggest that waves of 0.3 m are likely when navigation channels are within 150 m of 

the shoreline (Table 1, Figure 8).  As 0.3 m may represent the threshold of survival, there is 

likely to be a gradient of wave heights beneath this threshold which span the range from 

conditions where marshes thrive, to those where chronic erosion occurs.  Evidence from wave 

tank experiments suggests that waves as small as 10 cm result in erosion of sediments from 

vegetated shorelines (Coops et al. 1996).  Furthermore, several researchers have demonstrated 

positive correlations between wind-wave power along a shoreline and measured rates of 
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shoreline retreat (Schwimmer 2001, Marani et al. 2011).  

 

Studies have shown a direct impact of boat wakes on tidal marsh stability (e.g., Castillo et al. 

2001, Allison 2005, Houser 2010) although not all of the studies concluded that boat wakes were 

the primary source of annual erosion.  Boat wakes seem to contribute significantly to shoreline 

change where boat activity is regular, concentrated, close to the shore and in small tidal creeks, 

but may be less important than wind waves in other systems.  Although the impacts are generally 

framed as tidal marsh loss, a study of vegetative community change in San Francisco marshes 

attributes a shift from intertidal Schoenoplectus californicus to submerged aquatic vegetation to 

shoreline erosion caused by recreational boating (Watson and Byrne 2012).  Personal watercraft 

(Jet skis) have the ability to operate in very shallow water including marsh channels.  Within 

three National Estuarine Research Reserve (NERR) marshes (North Carolina, South Carolina, 

and New Hampshire), a significant change in turbidity from personal watercraft passages was 

demonstrated; in addition, the speed and the weight of passengers created higher waves and more 

turbidity (Anderson 2002).  Much less research has been directed to the question of the effects of 

boat wakes on non-vegetated shores (beaches), but sand entrainment and movement offshore was 

attributed to jet boat wakes in a controlled experiment on the Snake River (Mussetter et al. 

2007).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Waves generated by boat passages along the Atlantic Intracoastal Waterway, NC. 

Photo from NOAA/NCCOS. 

Submerged Aquatic Vegetation 

Boat wakes and wash can cause erosion of submerged aquatic plant roots in freshwater and 

marine waters.  The susceptibility of freshwater aquatic plants to erosion can be variable and 
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may be related to the petiole cross-sectional area (Liddle and Scorgie 1980). Direct damage to 

seagrasses from contact with propellers, anchors, and moorings has been well-documented (e.g., 

Williams 1988, Walker et al. 1989, Dawes et al. 1997, Hallac et al. 2012).  However, boat wake 

wave impacts are less understood for seagrasses. Boat generated waves can have indirect impacts 

on seagrasses through increased suspended sediments that lead to reduced light availability and 

elevated nutrients (Koch 2002, Koch et al. 2006).  Seagrasses have relatively high minimum 

light requirements (11-20% of surface light) in order to thrive (Durante 1991, Dennison et al. 

1993); therefore, wave-induced increases in water turbidity can be detrimental to seagrasses.  

Unfortunately, there is limited quantitative information regarding this impact.  Research from a 

shallow sandy bay in Massachusetts suggests that turbidity may be sufficiently elevated 

(reducing light by more than 60%) in areas with heavy boating, particularly at low tide, to be 

detrimental to eelgrass; however, the sandy sediment resuspended from boating resettled within 

1-2 hours, much quicker than wind-driven events (Crawford 2002).  A single study from 

Chesapeake Bay observed a minimal negative impact of boat generated waves on seagrass light 

availability likely because at the study site (Hopkins Cove, MD) boat waves were very small 

compared with naturally occurring waves (Koch 2002).  Additional study is needed on 

seagrasses in other systems to more fully estimate the potential effect of boat generated waves.  

Estuarine fauna 

Boat generated waves can have direct and indirect effects on fish.  Direct effects may include 

temporary increases in water turbidity or wave energy that physically disrupt fish assemblages 

(Whitfield and Becker 2014).  Indirect effects may result because of physical disturbances to the 

bottom sediments (resuspension) and nearshore habitats (seagrasses, wetlands) from boat 

generated waves.  Frequent and intense boating activity may enhance seagrass blade movement 

(‘flapping’) that can cause reduction in the abundance and diversity of invertebrate prey 

resources (Bishop 2008).  Experimental studies in the littoral zone of freshwater have 

demonstrated that wave velocities corresponding to waves generated by small recreational boats 

caused  ~10% of benthic invertebrates (e.g., amphipods) to dislodge and become more 

vulnerable to predation as well as a reduction in foraging success for certain littoral fish species 

(Gabel et al. 2011).  Beyond immediate habitat and prey disruptions, long term damage and 

fragmentation to structural habitat such as seagrasses and salt marshes from regular exposure to 

elevated turbidity and/or physical stress from waves has the potential to change fish assemblages 

and productivity (Fagherazzi et al. 2013).  Boat generated waves may erode the essential habitats 

of diamondback terrapin (Malaclemys terrapin) – marshes and nesting beaches (Schwimmer 

2001).   
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Birds 

There are few studies on the effect of boating on birds and little effort to tease the effect of boat 

wakes from the suite of possible disturbances (noise, visual, proximity, etc.).  Exposure to rapid 

and repeated movement of personal watercraft significantly increased flushing of least terns 

(Sternula antillarum) on a marsh island in New Jersey.  Motorboats prompted a similar, though 

significantly smaller, response.  Terns relocated nesting sites opposite the boating channel and 

experienced greater rates of nest loss due to flooding (Burger 2003).  Of 6 wading birds species 

(great egret (Ardea alba), tri-colored heron (Egretta tricolor), snowy egret (Egretta thula), great-

blue heron (Ardea herodias), yellow-crowned night heron (Nyctanassa violacea), and green 

heron (Butorides virescens), all but the snowy egret displayed boat-induced flushing response 

and lower numbers of birds post-disturbance.  Environmental factors (weather, wind speed, time 

of day, air temperature) and prey availability have documented effects of avian habitat use and 

behavior, potentially masking disturbance effects (Peters and Otis 2006).  Colonial nesting 

grebes construct over-water nests which are subject to both wind and boat generated wave-

induced failure (Allen et al 2008).  Nests with adequate vegetative protection are three times 

more likely to hatch eggs than unprotected nests.  A loss of endangered California light-footed 

clapper rail nesting habitat (Spartina foliosa, low marsh) is attributed to personal watercraft and 

boat wake erosion (Dayton and Levin 1996).  Anecdotal linkages between boat wakes and a 

decline in common tern and black skimmer populations have been made by the Maryland 

Coastal Bays Program and the Program has initiated a “no-wake” sign program (Holloway 

2015). 

 

Section 2:  Specific Chesapeake Bay implications and concerns 

Recreational boating 

Recreational boating is a highly prevalent and an economically important water-related activity 

in Chesapeake Bay (Lipton 2007, Murray et al. 2009).  In Virginia, there are nearly 250,000 

registered boats (Virginia Department of Game and Inland Fisheries, data from 1997-2012).  In 

Maryland, there are nearly 200,000 registered boats, and an additional 57,000 non-registered 

vessels (Environmental Finance Center, University of Maryland 2013).  The majority of the 

boats are small, trailered vessels, the trend however is for boat owners to ‘trade up’ for larger 

boats (Maryland’s Recreational Boating and Infrastructure Plan 2004).  According to the US 

Coast Guard National Recreational Boating Survey (2012), the annual number of days spent 

boating is 2,547,000 for Marylanders and 5,600,000 for Virginians; these numbers include boat 
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days spent on non-power boats.  The economic downturn from 2008 to about 2013 showed a 

decrease in boat registrations in Maryland while the last several years have shown an uptick in 

sales and registrations.  Moreover, as coastal populations grow, more development is occurring 

along shallow tidal creeks which has increased boating traffic from shallow creeks to main water 

bodies (CCRM 2010).  From 2002 to 2009 in Virginia, increases in pier construction were 

highest in new residential areas (increased housing density and low-intensity development) near 

small creeks (Isdell 2014).  These low energy tidal creeks with relatively little wind-driven 

waves are sheltered environments that tend to allow for the proliferation of marsh and 

seagrasses.  Furthermore, these shallow creek habitats may be particularly sensitive to sediment 

resuspension and shoreline erosion from boat wake waves. 

 

The Chesapeake Watershed Agreement (2014) designates a goal to “Expand public access to the 

Bay and its tributaries through existing and new local, state and federal parks, refuges, reserves, 

trails and partner sites”.  To accomplish that goal, a defined outcome is to add 300 new public 

access sites, by 2025, with a strong emphasis on providing opportunities for boating, swimming 

and fishing, where feasible.  The intent of the goal is to, in part, increase stewardship and local 

economies; however, this goal may be in conflict with other water quality and habitat restoration 

Bay goals in some areas. 

Is there evidence of elevated turbidity induced by recreational boating in Chesapeake Bay? 

Recreational boating has been shown to induce an elevation in turbidity above ambient 

conditions in lake systems because of shore erosion and/or resuspension of sediments from boat 

wave wakes, resulting in temporally low water clarity on weekends and holidays (e.g., USACE 

1994, Asplund 1996).  We hypothesized that this trend might be seen in the Chesapeake Bay 

because there are generally higher levels of recreational boating intensity during the weekend 

and during major warm-weather holidays (i.e., Memorial Day, July 4th, Labor Day) than during 

the week.  Water quality monitoring in the Chesapeake Bay includes programs that capture 

continuous measurements of water quality (e.g., dissolved oxygen, turbidity) taken from fixed, 

shallow water monitoring stations (www.vecos.org, www.eyesonthebay.net).  We tested the 

hypothesis that turbidity was affected by recreational boating at 26 sites at which continuous 

monitoring data were available in the Chesapeake Bay (Virginia N=14; Maryland N=12 stations; 

Figure 9-map of stations, Table S1).  These stations are typically affixed to a pier near the shore 

(most stations are within 50 meters of the shore).  

 

To minimize the likelihood of commercial vessel traffic and the opportunity for wind waves as 

significant influencing factors on nearshore turbidity patterns, monitoring stations with moderate 

http://www.vecos.org/
http://www.eyesonthebay.net/
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to high exposure to commercial vessel traffic and/or located on the mainstem of major tributaries 

were not considered for the analysis.  Using data on ship traffic patterns collected by the U.S. 

Coast Guard through the Automatic Identification System (AIS) and summarized for Chesapeake 

Bay at 1 km x 1 km grid cells for the interval 2009 through 2014 (spatial data source:  Bilkovic 

et al. 2016; and the Marine Cadastre http://marinecadastre.gov/ais), the total number of pings 

recorded in the vicinity of the monitoring station was determined (Figure 9).  AIS is an onboard 

navigation safety device that transmits and monitors the location and characteristics of large 

vessels in U.S. and international waters in real time.  The Marine Cadastre provides AIS data 

filtered and summarized into one-minute intervals, with each record representing a ship’s 

location every minute.  All monitoring stations used in the analysis were in reaches with low or 

no commercial traffic; half of the stations were in reaches with no pings, 11 stations had < 500 

pings, and 2 sites had less than 2000 pings for the entire 6-year record.  

 
Figure 9. Distribution of long-term water quality monitoring stations in Chesapeake Bay 

used in analysis of turbidity patterns (L).  Commercial vessel traffic density in relation to 

monitoring stations.  All stations were in low or no commercial traffic reaches (R). 

 

Turbidity data included in the analysis were from May through September when recreational 

http://marinecadastre.gov/ais
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boating is expected to be prevalent in certain periods (e.g., weekends and holidays) and allow for 

comparison with other periods in which boating is less prevalent (e.g., weekdays).  Most stations 

had 3 years of data with the exception of 4 MD sites that had 2 years of available data.  For 

stations with more than 3 years of data, we extracted the 3 most recent years.  Raw turbidity data 

were nearly continuous over the 3-year time period (readings every hour).  To summarize the 

information, weekend/holiday and weekday turbidity was averaged across each year from May-

Sept, excluding data flagged as suspect when they were greater than 10% of the data.  The three 

years of data were then averaged together for a single weekend/holiday and weekday measure for 

each site.  Due to the fact that monitoring activities were not explicitly designed to evaluate boat 

wake impacts on shoreline erosion or elevated turbidity, we developed a turbidity index to 

capture relative change in turbidity between weekends and weekdays averaged over the entire 

time period examined.  This approach was taken to remove all other environmental variables 

(sediment sources, storms, tidal flow, etc.) out of the measured response, as these variables were 

assumed to be the same for a station over weekend and weekdays (Figure 10). 

 

Turbidity Index = (mean weekend turbidity - mean weekday turbidity) ÷ mean weekday turbidity 

 
 

Figure 10. Elevated turbidity associated weekends and July 4th, 2007 in Pohick Creek, 

Virginia. TUwkday shows the mean turbidity on weekdays in May through September of 

2007-2009, and TUwkend is the mean turbidity on weekends and holidays in the same time 

frame. 
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We considered four site-specific factors that may influence the magnitude of change in turbidity 

that recreational boating could elicit at each station, including:  distance to navigational depth 

(m), maximum fetch (m), shoreline armoring (bulkhead, seawall, or riprap revetment), and 

boating intensity.  Analyses of the effect on turbidity of the various factors for each station 

location were conducted in ArcGIS 10.1 as follows: 

 

 Distance to navigational depth was estimated as the distance (m) from the station to the 

1-m depth contour.  The 1-m depth contour was chosen as the cut-off for navigable depth 

to be inclusive of small watercraft (e.g., jet-ski).   

 Relative boating intensity was estimated by summing the number of piers and marinas 

upriver of the monitoring station on both sides of the tidal creek.  The number of marinas 

was multiplied by a factor of 5 to account for the heavy boat use associated with these 

facilities relative to that of private piers.  The Mobjack Bay station was an exception; the 

waterway was so wide that piers and marinas only on the northern shore (where the 

station is located) and those upriver tributaries on the northern shore were counted.  

Information on piers and marinas was extracted from Chesapeake Bay Shoreline 

Inventory:  CCRM-VIMS; 

http://ccrm.vims.edu/gis_data_maps/shoreline_inventories/index.html).   

 Fetch (distance over water that the wind blows in a single direction) was estimated for 16 

directions (N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW, 

NNW) originating from each shoreline location and the maximum fetch value was 

extracted.   

 The presence of shoreline armoring at the location of the monitoring station was 

determined using aerial imagery and the Chesapeake Bay Shoreline Inventory, noted 

above.   

 The effect of the four site-specific factors (boating intensity, maximum fetch, distance to 

1-m depth, and presence of armoring) on the relative difference in turbidity over 

weekends/holidays compared to weekdays was examined using a General Linear Model 

(GLM).  Boating intensity, maximum fetch, and distance to 1-m depth were log-

transformed prior to the analysis to meet test assumptions.  

 

Water quality monitoring station characteristics used in the analysis are shown in Table S1.  The 

majority of the stations examined (n=19; 73%) possessed elevated turbidity on the weekends in 

comparison to weekdays; however the percent difference was low for many of these stations 

(<5% turbidity difference, 42% of stations with a positive turbidity index).  Of the 7 stations that 

possessed a negative turbidity index (higher turbidity during the week), only 2 stations were 

https://webmail.vims.edu/owa/redir.aspx?SURL=h7_LY0ziBwZwEs9DKp8u3U5GEhITFtwz-71yhkY77B-uML3fBPXTCGgAdAB0AHAAOgAvAC8AYwBjAHIAbQAuAHYAaQBtAHMALgBlAGQAdQAvAGcAaQBzAF8AZABhAHQAYQBfAG0AYQBwAHMALwBzAGgAbwByAGUAbABpAG4AZQBfAGkAbgB2AGUAbgB0AG8AcgBpAGUAcwAvAGkAbgBkAGUAeAAuAGgAdABtAGwA&URL=http%3a%2f%2fccrm.vims.edu%2fgis_data_maps%2fshoreline_inventories%2findex.html
https://webmail.vims.edu/owa/redir.aspx?SURL=h7_LY0ziBwZwEs9DKp8u3U5GEhITFtwz-71yhkY77B-uML3fBPXTCGgAdAB0AHAAOgAvAC8AYwBjAHIAbQAuAHYAaQBtAHMALgBlAGQAdQAvAGcAaQBzAF8AZABhAHQAYQBfAG0AYQBwAHMALwBzAGgAbwByAGUAbABpAG4AZQBfAGkAbgB2AGUAbgB0AG8AcgBpAGUAcwAvAGkAbgBkAGUAeAAuAGgAdABtAGwA&URL=http%3a%2f%2fccrm.vims.edu%2fgis_data_maps%2fshoreline_inventories%2findex.html
https://webmail.vims.edu/owa/redir.aspx?SURL=h7_LY0ziBwZwEs9DKp8u3U5GEhITFtwz-71yhkY77B-uML3fBPXTCGgAdAB0AHAAOgAvAC8AYwBjAHIAbQAuAHYAaQBtAHMALgBlAGQAdQAvAGcAaQBzAF8AZABhAHQAYQBfAG0AYQBwAHMALwBzAGgAbwByAGUAbABpAG4AZQBfAGkAbgB2AGUAbgB0AG8AcgBpAGUAcwAvAGkAbgBkAGUAeAAuAGgAdABtAGwA&URL=http%3a%2f%2fccrm.vims.edu%2fgis_data_maps%2fshoreline_inventories%2findex.html
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more than 5% higher during the week (Figure 11, Table S1).  None of the site-specific factors 

examined were statistically significantly associated with the turbidity index (GLM: X2 = 3.14; 

p=0.53).  On unarmored shores, the turbidity index was higher on average during the weekend 

than weekday (TI=10.5% ± 15.1%) in comparison to armored shores (TI=4.5% ± 11.3), though 

this pattern was not significant likely due to high variability between stations. 

 

 
 

Figure 11. Comparison of weekend turbidity measures in comparison to weekday 

measures.  Positive values indicate relatively higher turbidity during the weekend than the 

week possibly because of increased recreational boating intensity during the weekend.  

Negative values indicate relatively higher turbidity during the week than weekend. 

 

The analysis provides support for the hypothesis (shown in previous studies) that boating activity 

is correlated with increased turbidity in local waterways.  However, some waterways did not 

show an uptick in turbidity on the weekends and holidays.  There are four potential explanations 

for this, and it is possible that more than one explanation is relevant to a given station.  First, our 

measure of boating intensity was imprecise as we have no data on the actual number of boats and 
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personal watercraft that pass by a given station.  Some of the small creeks with few piers may 

actually experience heavy recreational traffic.  Second, the turbidity sensor may be located too 

far offshore to be influenced by shoreline erosion and resuspension so it is missing the signal.  

Third, all data were not from the same set of years.  Since there are many more weekdays than 

weekends, a storm is statistically more likely to occur on a weekday.  In years with multiple 

storm events, the storm-induced turbidity may be dampening out a weekend-weekday signal.  

Last, effective shoreline armoring reduces shoreline erosion, dampening the turbidity signal (see 

Figures 12 and 13).  It is likely that in areas with heavy boat traffic, at least a portion of the 

shoreline has been armored in response to boat wake erosion, creating a circular issue where 

heavy boat traffic is driving armoring which is dampening the erosion signal, making it appear 

that boat influence in the waterway is low.  

 
Figure 12. The presence of armoring may be influencing the variability in turbidity 

measures.  Armoring prevents bank erosion, reducing the turbidity signal and is likely a 

result of a combination of high boat activity and long fetches (see Fig. 13).  Armoring 

potentially can increase bottom resuspension through wave reflection, but this was not 

apparent in our analysis.   

 

Resolution of the first three issues mentioned above would require intensely detailed data 

analysis or the collection of new data.  However, we have attempted to address the fourth issue 

in a separate analysis, below. 
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Figure 13. While boating intensity was not significantly related to observed differences in 

weekend-weekday turbidity, there is some suggestion along unarmored shores that boating 

may be elevating local turbidity within some waterways. There is uncertainty as to whether 

armoring is a response to boat wake-induced shoreline erosion, particularly in low wind-

wave energy waterways.  

Shoreline armoring in response to erosion from boat wakes 

Anecdotally, people cite boat wake erosion as a reason for armoring their shorelines.  However, 

it is very difficult to disentangle the effects of boat wakes versus wind waves on shoreline 

erosion; both shorelines with a long maximum fetch (potential for high wind-wave energy) and 

high boating intensity (potential for frequent boat wake energy) seem to be armored (Figure 14) 

which is one indication of active shoreline erosion.  One-way ANOVAs of maximum fetch and 

high boating intensity by shoreline armoring were both significant (p=0.05 and 0.03, 

respectively).  Maximum fetch and boating intensity are somewhat correlated with each other, 

likely because people build more piers on wide creeks and open shorelines.  However, this 

correlation complicates the analysis and a different approach is necessary to try to apportion 

erosion causes. 
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Figure 14. Shorelines with either high boating intensity or high maximum fetch are 

significantly more likely to be armored.  This suggests that both sources of wave energy 

(one natural and one anthropogenic) are associated with shoreline erosion. 

 

The comparison of recommended shoreline management options on the basis of physical 

conditions (e.g., fetch, bathymetry) with the ‘actual’ management approach applied (e.g., 

bulkhead, riprap, create marsh) can provide some insight into whether shores were armored in 

areas which are not anticipated to have active erosion.  We used a Shoreline Management Model 

(SMM) that identifies appropriate shoreline management activities on the basis of local physical 

conditions including fetch, bathymetry, intertidal habitats (e.g., marsh, beach, etc.), riparian 

condition, and bank condition/height along Virginia’s tidal shores (CCRM 2015).  The model 

does not account for boat activity since it is difficult to quantify remotely.  If areas that were 

anticipated to have low erosion are being heavily armored, this is a potential indication of heavy 

boating activity and boat wake energy.  As an example, we compared the recommended 

shoreline management approaches to existing armoring (bulkhead, riprap revetment) for two 

tidal creek systems in Virginia known to have relatively high recreational boating (Figures 15 

and 16).  In both instances, armoring occurred along approximately a quarter of the shorelines 

with physical conditions conducive to using marsh enhancement/maintenance alone as a means 
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to secure shorelines.  This suggests another source of shore erosion, possibly boating, or some 

concern or interest other than erosion, has resulted in armoring of shores (along with the 

attendant adverse effects of armoring) in physical settings where it should not be necessary based 

on physical conditions. 

 
Figure 15. Sarah Creek, VA is a rapidly developing tidal creek with relatively low wind 

wave energy and relatively high boating pressure including the presence of several 

marinas.  On the basis of physical conditions, the recommended shoreline protection 

approach is to maintain or enhance marsh for 83% of the shoreline.  Of that shoreline, 

28% has armoring (revetment, bulkhead) currently. 
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Figure 16. Lynnhaven River, Virginia Beach, Virginia is an example of a shallow-water 

tidal system under intense development pressure.  In this system, very shallow creeks have 

been dredged to provide residential boat access and there continues to be pressure to 

dredge additional creeks (Bilkovic 2011).  On the basis of physical conditions, the 

recommended shoreline protection approach is to maintain or enhance marsh for 74% of 

the shoreline.  Of that shoreline, 22% has armoring (revetment, bulkhead) currently. 

What is the relative contribution of sediment inputs from boat wake induced shoreline erosion 

in Chesapeake Bay? 

 

Patterns of elevated weekend turbidity compared to weekday turbidity may be evidence of boat 

wake wave-induced elevated turbidity.  However, there are two potential sources of sediment 

that may influence nearshore turbidity measures.  New sediment may be added to a system from 

shoreline (bank) erosion or existing sediment may be temporarily resuspended.  It can be very 

challenging to precisely quantify the sediment inputs from shoreline erosion.  For example, sand 

that is resuspended settles more quickly than fines (e.g., mud).  Sites with elevated turbidity may 
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be from nearby shoreline erosion of fines, or advection of fines from resuspension or shoreline 

erosion elsewhere.  With sufficient data, the relative significance of each source may be inferred 

from the sediment composition (grain-size) on the shore and nearshore bottom, tidal excursion, 

and the presence of armoring.  Periodic elevated turbidity along extensively armored shorelines 

is likely the result of resuspension.  

Erosion effects from boat wakes 

Case study of Lafayette River, VA 

Tidal marsh extent in the Lafayette River, VA has 

declined over time, concurrent with population 

expansion.  Tidal wetland loss from 1944-1977 

was quantified as 588.76 acres (or a 55% loss) and 

was attributed to the urbanization of the watershed 

(Priest 1999; Figure 17).  Most of the losses are 

attributed to direct human action (filling or 

dredging of wetlands, etc.); the Lafayette River 

was significantly altered during the study period 

for both residential and commercial purposes.  

However, the cause of other losses are harder to 

directly define, but in some instances anecdotal 

observations suggest that shore erosion and marsh 

loss can be attributed to boating. 

 

As previously noted, in situ shoreline change due to boat wake induced erosion is difficult to 

assess and quantify.  Nevertheless, coastal managers and shoreline property owners are 

reasonably certain that boat wakes play a role in shoreline erosion, in some cases significantly, 

especially in narrow, shallow waterways.  As one example, Justin Schafer, a lifelong resident and 

employee of the City of Norfolk, has been observing the shoreline of the Lafayette River his 

whole life and has spent the last 20 years rowing on the river out of the Norfolk Rowing Center 

at Lakewood Park (northeast of the East Haven area shown in Figure 18).  The club has boats on 

the water 7 days a week for 9 months of the year and 2-3 times a week in the winter.  The club 

uses jon boats as chase boats and they frequently travel close to shore creating a wash on the 

fringing marsh and causing an increase in observable turbidity.  Mr. Schafer has noticed that the 

fringe marsh that was about 15 feet wide in the 1990’s is now about 2-3 feet wide.  The boat 

operations, observed turbidity, and loss of marsh fringe has all led Mr. Schafer to question the 

Figure 17. Changes in tidal marshes in the 

Lafayette River between 1944 and 1977.  

Map from Priest 1999. 
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role of boat wakes in shoreline erosion along this reach of the River.  As the club is located near 

the head of navigable tidal waters and has a fetch less than 1/4 mile, there is little opportunity for 

the generation of wind-driven waves.  While other factors including tidal (ebb/flood) erosion and 

sea level rise have a likely role in the changes that have been seen on the River, Mr. Schafer is 

convinced that erosion from power boat waves have contributed to the erosion of the shoreline 

(Justin Shafer, personal communication, September 2016).  This observation is further supported 

in that 31% of the Lafayette River low-energy shoreline has been armored where physical 

conditions suggest that marsh vegetation alone would be protective (Figure 18). 

 

Figure 18. Lafayette River, 

Virginia. On the basis of 

physical conditions, the 

recommended shoreline 

protection approach is to 

maintain or enhance marsh 

for 78% of the shoreline.  Of 

that shoreline, 31% has 

armoring (revetment, 

bulkhead) currently. 
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Section 3:  Modeling approaches and data requirements to effectively model 

the potential effect of boat wake waves on shorelines 

 

The first step in determining the impact of boat wakes on shoreline erosion is to evaluate the boat 

wake energy occurring along the shoreline and the stability of the shoreline.  To determine the 

appropriate management action, it may be helpful to compare the boat wake energy to the 

background wind-wave energy (Glamore 2008).  In areas where the wave energy attributable to 

boat wake waves is significantly less than that of wind waves, management actions directed at 

boat wakes may have limited utility.  However, scale of the waves matters as much as the 

persistence of the impact; a few large boat wake waves can do a great deal of damage compared 

to persistent small wind generated waves. 

 

There are a number of different measures which have been used for determining the erosive 

potential of boat wakes for management purposes.  Some examples include:  wave energy (e.g., 

Decision Support Tool, Glamore 2008), maximum wave height within the wave train (e.g., 

Nanson et al. 1994, Parnell and Kofoed-Hansen 2001), and wave speed (e.g., Australian 

Maritime College 2003).  Deciding on an appropriate measure is complicated since every 

measure is, in some sense, a proxy for the actual impact of the boat wake on the shore.  Total 

wave train energy is a cumulative combination of wave height and wave period for all waves 

generated by the wake, so it may be the best measure to use, even if it does not entirely capture 

the erosive force of the waves.  Total wave train energy can be estimated from maximum wave 

height using a derived equation (Glamore 2008).  The energy of the total wave train can be 

modeled for boats based on their size (using Froude Numbers for various boat types), speed and 

distance from the shore (both measured in areas of interest) following the methods of Glamore 

(2008) or Świerkowski et al. (2009).    

 

One potential approach to understanding shoreline energetics is through the deployment of wave 

sensors.  This results in an unambiguous determination of wave climate but the results are highly 

site-specific and it can be challenging to tease apart the impact of wind vs. boats.  The most 

accurate predictive method to estimate shoreline erosion is the application of high-fidelity 

hydrodynamic models that account for waves, currents, and morphological changes under these 

effects.  Site-specific wave, current, and bathymetric data, if available, can be used to initialize 

the models and erosion data can be used for calibration and validation.  The validated model can 

then be applied to a large domain.  Another approach, perhaps preferable (depending on 

available expertise), is to estimate values of wave energy based on empirically derived 

relationships between wind, boat activity and wave climate.  Cumulative wind-wave energy can 
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currently be calculated across the entire Chesapeake Bay using either a fetch-based model (such 

as Wave Exposure Model, or WEMo) or a hydrodynamic model (such as SLOSH, Sea, lake, and 

overland surges from hurricanes).  These models are highly dependent on the quality of available 

bathymetric data and these data are currently limited for small creeks where the potential for 

boat-induced erosion is greatest.  Such models also require high quality wind data.  Sources for 

wind data include local airports, buoys, and other weather stations.  

 

To estimate boat wake energy experienced at a given location, it is critical to know:  1) the 

number of boats that pass by on an average day; 2) how big the boats are; 3) how far they are 

from the shore; 4) how fast each boat is going; and 5) shoreline bathymetry.  There is no 

repository of this information for the Chesapeake Bay; therefore, modeling shoreline boat wake 

energy over large spatial scales requires making broad assumptions.   

 

Shoreline susceptibility to erosion is difficult to measure on a large scale.  There are several 

proxies which can be used in combination, although this approach has its difficulties.  Spatial 

analysis of shoreline type (hardened, forested, emergent wetland, sand bank, etc.) and shoreline 

topography can provide a general overview of susceptibility to erosion (Cowart et al. 2011, 

Currin et al. 2015).  There are databases of shoreline armoring for the Chesapeake Bay in the 

CCRM inventories (http://ccrm.vims.edu/gis_data_maps/shoreline_inventories/index.html) and 

armored areas can be considered to be stable.  Shoreline type is available through the USGS 

National Land Use Land Cover database but the spatial resolution (30 m) doesn’t allow for 

determination of changes over small spatial scales (Chesapeake Bay Conservancy is currently 

working to produce a similar product with 1 m resolution).  Lidar data resources for VA are 

available at http://virginialidar.com/index.html and for MD at 

http://imap.maryland.gov/Pages/lidar.aspx.  By mapping areas of concern based on shoreline 

characteristics (unvegetated shores with high vertical relief would rank highest for erosion 

concern) against proximity to frequently travelled navigation channels, it may be possible to rank 

areas in terms of their general susceptibility to erosion.   

 

In an effort to determine the relative importance of boat wakes to erosion on the Atlantic 

Intracoastal Waterway in NC, Fonseca and Malhotra (2012) applied a dual modeling approach 

using the freely available WEMo in conjunction with a prototype boat wake model (BoMo).  The 

output of both models include representative wave energy, significant wave height, and shear 

stress at the seafloor.  The value of this approach is that it allows for direct comparisons of wind 

and boat wake energy (assuming that one has the necessary data concerning number, size and 

speed of passing boats) and because it provides shear stress values, which can be used to 

http://ccrm.vims.edu/gis_data_maps/shoreline_inventories/index.html
http://virginialidar.com/index.html
http://imap.maryland.gov/Pages/lidar.aspx
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estimate the degree of sediment movement (as a proxy of erosion).  However, in order to make 

this estimation, it is necessary to know sediment grain size and that data is not available on a 

wide scale.  At this time, BoMo is still in the prototype stage and not publicly available. 

 

The most accurate predictive tools for shoreline erosion due to wind- or boat generated waves 

are hydrodynamic models that account for wave generation, currents, sediment transport, and 

bed level change (e.g., Delft 3D).  Hydrodynamic models require detailed data on bathymetry, 

wind, tides, and sediment properties. 

 

Section 4:  Data gaps and research needs  

 

The dearth of quantified information on the effects of boat wakes and wash on Chesapeake Bay 

shoreline erosion limits accounting within the Bay Model for contributions of boat-induced 

erosion to the sediment loads in the Bay.  At the same time, any efforts to develop new policies, 

or enforce existing ones, are hampered by a lack of specific evidence of the extent and 

magnitude of the adverse effects of boating on shoreline erosion, private property, water quality, 

habitat or other ecosystem services.  

 

Specific data needs include: 

● High-resolution recreational boating intensity information (e.g., the number of vessels 

that pass by on an average day, vessels types, vessel speeds, vessel traffic patterns). 

● Information on trends of recreational boating in small waterways. 

● Information on the location, extent and level of enforcement of no-wake zones 

throughout the Bay. 

● Measurements of waves and suspended sediment concentration (SSC); such data, 

acquired in representative shorelines with high boat activity, can provide insight into the 

dependency of erosion on wave climate. 

● Data on grain size of bottom sediments in all the Bay tributaries and small creeks.  Even a 

simple categorization of sand and fines would be useful. 

● High resolution shallow water bathymetry is needed throughout the Bay.  If data even 

exist, most are 50-100 years old in these areas. 

 

 

 

 



 

43 

 

Section 5:  Management and Policy in Chesapeake Bay  
Editor’s Note:  Citations for this section can be found at the end of this report in Endnote citations: 

Management and Policy in Chesapeake Bay [1] 

Existing and Potential Policy Actions to Reduce Adverse Effects of Boat Wake Waves on 

Shorelines in the Chesapeake Bay 

Cooperation of three states is required to successfully implement a Bay-wide boat wake policy.  

Virginia, Delaware, and Maryland border the Bay and have the authority to govern boating 

activity along their shorelines.  Localities in each of these states have adopted policies regarding 

boat wake restrictions.  Virginia, a state that follows the “Dillon Rule” of strict construction [2], 

has expressly delegated authority to the Virginia Department of Game and Inland Fisheries to 

administer the Commonwealth’s boating laws and also has authorized localities to implement 

boat wake restrictions. Virginia has not established no-wake zones for specific water bodies in its 

code or regulations. Maryland has established boat speed limits for three water bodies in its state 

code and granted authority to the Maryland Department of Natural Resources to regulate the 

operation of vessels, which they did in agency regulations. Some localities also have enacted 

their own wake restrictions.  The Delaware State Code delegates regulatory authority to the 

Department of Natural Resources and Environmental Control regarding the operating 

requirements of vessels, and some localities also have enacted their own restrictions. Like 

Virginia, Delaware has not established no-wake zones for specific water bodies in its code or 

regulations.  In both Maryland and Delaware, localities are permitted to adopt local restrictions 

on the subject, but only if such restrictions conform to state law. Thus, within each of the three 

coastal states, some localities have implemented their own boat wake policy, with only Virginia 

broadly authorizing localities to adopt ordinances to establish no-wake zones based on public 

safety and erosion concerns.  A uniform boat wake policy in the Chesapeake Bay therefore is 

achievable if each coastal locality were to agree to adopt the same requirements.  Cooperation 

between the states via the Chesapeake Bay Program is an option for them to come to agreement 

to achieve that, even though the water quality model for the Chesapeake Bay total maximum 

daily load (TMDL) currently does not distinguish sediment erosion caused by boat wakes when 

it accounts for sediment from shoreline erosion. 

The Regulatory Framework in Virginia, Maryland, Delaware, and Pennsylvania 

In Virginia, “any county, city or town may, by ordinance, establish ‘no-wake’ zones along 

waterways within the locality in order to protect public safety and prevent erosion damage to 

adjacent property,” with notice to the Virginia Department of Game and Inland Fisheries 
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(VDGIF) [3].  Although the term “property” is not defined, the context of “erosion damage” 

indicates that the statute is intended to prevent shoreline erosion, in addition to protecting public 

safety.  However, the VDGIF requires that both public safety concerns and erosion damage 

concerns be met for a ‘no-wake’ zone to be established [4].  In other words, erosion concerns 

alone are not a sufficient basis to seek imposition of a ‘no-wake’ zone.  Several localities have 

implemented such ordinances for specific areas within their jurisdiction [5].  In addition, the 

VDGIF’s regulations require that motorboats must slacken their speed when approaching or 

passing vessels, piers, docks, boathouses, and persons in the water or using water skis or 

surfboards “to the extent necessary to avoid endangering persons or property by the effect of the 

motorboat's wake.” [6] 

 

Additionally, an individual or business in Virginia may apply to their local county board of 

supervisors to request the placement of a regulatory waterway marker such as a ‘no-wake’ zone 

using an application provided by VDGIF [7].  The process is that a county board of supervisors 

or city council hears the request at a public meeting and decides whether to approve, approve 

with modifications, or disapprove the request.  Once the governing body makes a 

recommendation, the application is forwarded to VDGIF, which must reach the same decision in 

order for the ‘no-wake’ zone to be approved.  A law enforcement officer will visually inspect the 

proposed location to determine whether the position is accurate and report back.  The state then 

makes its final decision, which can be different than the county’s decision but rarely is [8]. 

  

It is also of interest to note that in Virginia, the federal government has imposed a no-wake zone 

in Back Bay, just outside the Chesapeake Bay watershed.  The no-wake zone is in effect within 

150 yards (137 meters) of the shoreline within the Back Bay Wildlife Refuge.  The regulation 

was promulgated by the US Army Corps of Engineers in an effort to protect the environment and 

increase boating safety (Glass 2006) [9]. 

 

Maryland has implemented boat wake and/or speed restrictions by statute (Maryland State 

Code), state-wide regulation (Maryland Department of Natural Resources’ (DNR) regulations), 

and local regulation (municipal ordinances such as for the cities of Annapolis and Cambridge).  

The Maryland State Code itself sets speed limits for the Severn River, Seneca Creek, and 

Monocacy River [10].  The State Code also delegates the regulation of the operation of water 

vessels to the DNR [11], and clarifies that municipalities may not establish any local regulation 

which does not conform with DNR’s regulations [12].   

 

The DNR defines various speed limits in the Code of Maryland Regulations, including 
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“[r]estricted 6 knots . . . ,” which prohibits a person from operating a vessel more than 17 feet in 

length “[a]t a boat speed in excess of 6 knots . . . ; or [t]o cause an objectionable or excessive 

wake” [13].  Additionally, a “[m]inimum wake zone” prohibits a person from “operat[ing] a 

vessel in excess of the slowest possible boat speed necessary to maintain steerage under 

prevailing wind and sea conditions not to exceed 3 knots . . .” [14].  The DNR regulations apply 

these definitions to various areas designated by the regulations, which include regions of the 

eastern and western shore of the Chesapeake Bay [15].  Some of the restrictions only apply to 

certain times of the year, such as during boating season, or only on Saturdays, Sundays, and state 

holidays [16].  DNR cites to provisions of the State Code as authority for adopting the various 

speed limits [17].  In addition to the Maryland state-imposed speed limits and the DNR’s 

definitions and restricted areas, municipalities such as Annapolis and Cambridge also have 

exercised authority to implement speed limits. The Cambridge municipal code states that “[a] 

person may not propel or navigate any motor-driven watercraft in any of the waters of the city, 

except the Choptank River, at a speed greater than six miles per hour, nor create a wash which 

endangers persons or property” [18].  Annapolis imposes broader language that merely requires 

vessel operators to proceed “in a safe manner with due regard for the safety of persons and 

property” and includes considerations of “traffic conditions, proximity to other vessels, weather, 

speed, wake size, size of vessel, condition of the vessel and its equipment, and presence or 

absence of required safety equipment” [19]. 

 

Similarly, the State Code of Delaware delegates regulatory authority to the Department of 

Natural Resources and Environmental Control (DNREC) with respect to, among other things, the 

operating requirements of vessels [20]. The DNREC regulations define “slow-no-wake” to 

“mean as slow as possible without losing steerage way and so as to make the least possible 

wakes” [21]. The DNREC regulations limit vessel speed to “slow-no-wake” within 100 feet of 

various structures such as docks and launching ramps, as well as swimmers [22]. Additionally, 

the City of Dover ordinance similarly restricts speeds under the Silver Lake Bridge and at 

specified hours [23].  For example, the Town of Smyrna ordinance states, “Power boats shall be 

operated on Lake Como at ‘no-wake’ speed which shall mean as slow as possible without losing 

steerage and so as to make the least possible wake [24].  This will almost always mean speeds of 

less than five miles per hour.”  The City of Dover ordinances similarly restrict speeds around the 

Silver Lake Bridge and during specified hours [25]. 

 

While Pennsylvania territory does not front directly on the Bay itself, it is worth noting their 

policies on boat wakes on the Susquehanna River, since it runs into the upper Bay at the 

Susquehanna flats near Havre de Grace, Maryland.  The Consolidated Statutes of Pennsylvania 
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authorize the Fish and Boat Commission (FBC) to administer and enforce rules and regulations 

regarding the operation of boats [26]. Among other things [27], FBC regulations define “slow, 

no wake speed” as the “slowest possible speed of a motor boat required to maintain 

maneuverability so that wake . . . created . . . is minimal” [28] and establish special regulations 

by county [29]. The special regulations for Lancaster County establish slow, no-wake speeds for 

areas in Lake Aldred and the Susquehanna River [30].  

 

In summary, Virginia specifically authorized the adoption of and delegated the implementation 

of boat speed restrictions to localities.  Maryland and Delaware address boat speed restrictions in 

various authorities – state code, state agency regulations, and localities’ ordinances, but specify 

that local ordinances must conform to state law.  Virginia is the only state to expressly recognize 

shore erosion as a factor to consider in restricting wakes/boat speed, but localities in Maryland 

and Delaware presumably have the authority to implement restrictions to address both safety and 

shore erosion concerns since their laws reference “property”.  Since the Bay states take different 

approaches to regulating boat wakes and speeds, it would be beneficial to empanel an expert 

group with representation from the appropriate Bay jurisdictions to develop a recommended 

uniform boat wake policy for the Chesapeake Bay in order to achieve consistent shoreline 

protection.   

Boat Wake Policies Established For Other Shallow Estuaries 

Comparing the management strategy for other shallow water estuaries may be helpful when 

considering options for establishing a boat wake restriction policy in the Chesapeake Bay.  Some 

examples of similar estuaries are Biloxi Bay in Mississippi, Narragansett Bay in Rhode Island, 

and Pamlico Sound in North Carolina. 

 

Mississippi State Code designates that the Commission on Marine Resources, through the 

Department of Marine Resources, shall exercise the duties and responsibilities of the Mississippi 

Boat and Safety Commission with respect to marine waters [31]. DMR regulations under this 

authority include the designation of no wake zones generally [32], specific no wake zones [33], 

and temporary specific no wake zones [34]. Examples of coastal Mississippi localities with boat 

wake restrictions include the cities of Gautier [35] and Gulfport [36]. 

 

The General Laws of Rhode Island authorize the Department of Environmental Management 

(DEM) to “establish maximum speeds for boats in the public harbors in the state of Rhode Island 

at five (5) miles per hour, no-wake” [37].  Additionally, the General Laws specifically state that 

the adoption of an ordinance or local law identical to state laws and regulation is not prohibited 
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[38], and that subdivisions of the state may make formal application to DEM, after public notice, 

for special rules and regulations regarding the operation of vessels within the subdivision’s 

territorial limits [39]. As a result, many coastal localities have adopted wake restrictions [40]. 

 

The North Carolina State Code authorizes the North Carolina Wildlife Resources Commission, a 

state agency, to implement wake zone policies [41].  This strategy is part of the Boating Safety 

Act, the purpose of which is “to promote safety for persons and property in and connected with 

the use, operation, and equipment of vessels, and to promote uniformity of laws relating thereto” 

[42].  The Commission is specifically authorized to adopt rules “to prohibit entry of vessels into 

public swimming areas and to establish speed zones at public vessel launching ramps, marinas, 

or vessel service areas and on other congested water areas where there are demonstrated water 

safety hazards” [43]. In addition, a locality can petition the Commission for wake rules for 

waters within the locality's territorial limits. [44].  The Commission may adopt rules applicable 

to local areas of water that it finds to be “heavily used for water recreation purposes by persons 

from other areas of the State and as to which there is not coordinated local interest in regulation” 

[45]. As a result, almost every coastal county of North Carolina has speed/wake restrictions for 

specified areas [46]. 

 

North Carolina utilizes a state agency to promote uniformity in coastal regulations.  This strategy 

has resulted in boat wake restrictions, set forth in agency regulation, for almost all coastal 

counties.  Capturing such restrictions within the agency’s regulations ensures consistent language 

between the restrictions and increases the public’s access to the information. With the goal of 

reaching similar uniformity across the Chesapeake Bay, oversight and coordination at the state 

agency level could be a useful tool.  A panel of experts from the appropriate Bay jurisdictions 

could develop a recommended uniform policy for boat wake restrictions that could be used by all 

of the states surrounding the Bay.  Another option would be to pursue an amendment to the 

Chesapeake Bay Watershed Agreement or an interstate compact between the three states to 

achieve uniform requirements throughout the Bay.  These options are more difficult because 

there likely will be an unwillingness to undertake amendments to the Chesapeake Bay Watershed 

Agreement in the near future due to the difficult and time-consuming nature of the agreement 

process, and a formal interstate compact requires Congressional approval.  

Alternative Strategies to Combat Wake-Induced Shoreline Erosion 

One alternative strategy to regulating boat wakes and speeds is to impose a ban on motorboats 

altogether in the Bay.  Motorboat bans have been successfully implemented in small lakes and 

ponds that are isolated waterbodies and are particularly environmentally sensitive.  One example 
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of this is Quimby Pond in Maine, where motorboats were banned after excess phosphorous from 

soil erosion was found to be partially responsible for the deteriorating water quality and algal 

bloom in the pond [47].  However, despite these successes in small, isolated lakes and ponds, 

imposing a Bay-wide ban on motorboats is likely not a feasible option, as it would present both a 

daunting and unpopular task that would be difficult to enforce.  This strategy is unlikely to gain 

support across Virginia, Maryland, and Delaware because these coastal states’ economies rely 

heavily on both recreational and commercial boating – two activities that would be greatly 

restricted by a motorboat ban. 

 

In addition to motorboat bans and boat wake restrictions, various shoreline armoring strategies 

also may be used to combat erosion caused by boat wakes.  Hard armoring is the use of physical 

barrier structures in a fixed location to stop wakes and contain the shoreline sediment [48].  

These structures include bulkheads, riprap, seawalls, groins, and revetments.  Although these 

structures effectively reduce erosion from boat wakes for that property protected, they also 

decrease natural habitat and water quality [49] and can lead to erosion of adjoining downdrift 

shorelines due to deflected wave energy or lack of sediment supplies to maintain the shorelines.  

Other forms of armoring utilize living shoreline strategies, which are preferred because they 

strengthen the endurance of the shoreline and build resilience to boat wakes by using natural 

sediment and vegetation [50]. 

 

The Code of Virginia encourages the use of living shorelines as a stabilization strategy and 

provides for a general permit for localities to use to authorize living shoreline projects [51].  

Specifically, the Code designates living shorelines "as the preferred alternative for stabilizing 

tidal shorelines in the Commonwealth" [52].  The Code calls for the Virginia Marine Resources 

Commission, in cooperation with the Virginia Department of Conservation and Recreation, the 

Virginia Department of Environmental Quality, local wetlands boards, and the Virginia Institute 

of Marine Science to establish the authorization process and create guidance for the permit 

implementation [53].  Additionally, in 2016 the Virginia legislature provided an exemption from 

local taxation for approved living shoreline projects [54] and in 2015 they authorized the State 

Water Control Board to provide loans from the Virginia Water Facilities Revolving Fund to local 

governments to establish living shorelines or to provide low-interest loans or other incentives to 

individuals to assist in establishing living shorelines [55]. 

 

Similar to Virginia, Maryland also has designated nonstructural strategies as its primary form of 

shoreline stabilization [56].  Any structural shoreline stabilization measure will only be approved 

by the Department of the Environment with a showing that nonstructural strategies are not 
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feasible [57].  As a result, Maryland mandates the use of nonstructural strategies such as living 

shorelines to prevent erosion over any other structural measure.  To assist with erosion 

prevention projects, the state established the Shore Erosion Control Construction Loan Fund, 

which may be administered to persons, municipalities, or counties to design and construct beach 

protection projects [58].  Delaware delegated “authority to enhance, preserve, and protect public 

and private beaches” to the Department of Natural Resources and Environmental Control [59].  

This authority includes the responsibility to “prevent and repair damages from erosion of public 

beaches,” which includes constructing and repairing armoring structures [60].  The Department 

of Natural Resources and Environmental Control regulates all beach protection measures through 

a permit system [61].  Although the Delaware Code does not specifically address “living 

shorelines”, the Department’s regulations state that efforts must be made to use “shoreline 

erosion control methods that best provide for the conservation of aquatic nearshore habitat, 

maintain water quality, and avoid other adverse environmental effects,” including but not limited 

to vegetation, revetments and gabions [62].  Structural erosion control measures are allowed 

where it can be shown that nonstructural measures would be ineffective in controlling erosion; 

and “[w]hen engineering feasibility and effectiveness considerations are equal” the shoreline 

erosion control method used must be the one with the least adverse environmental impact [63].  

Nonstructural measures also are preferred for shoreline stabilization work in low wave energy 

areas with wetlands or no significant shoreline erosion, and eroding areas where combinations of 

structural and nonstructural measures would be a practicable and effective method to control 

erosion [64].  The regulations for siting and designing new marinas also discourage the 

installation of bulkheads by requiring evidence that no practicable alternative is available [65].  

Furthermore, the regulation also states that any shoreline protection structure must be designed to 

have minimal adverse effects on the aquatic resources [66].  Discouraging the use of bulkheads 

and focusing on minimal adverse effects suggest that living shorelines are preferred. The 

Delaware Living Shoreline Committee has implemented several significant living shoreline 

projects in the state.  The Living Shoreline Committee is a “voluntary group of state, private, and 

non-profit professionals coordinating research, funding and opportunities for living shoreline 

projects in Delaware” [67].  Furthermore, funding for shoreline preservation and protection is 

available through the state’s Beach Preservation Fund, which provides bonds for shore 

stabilization projects [68].  Pennsylvania, by contrast to Virginia, Maryland, and Delaware, has 

no statute or regulations related to living shorelines. 
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Summary and Recommendations 

Studies outside the Chesapeake Bay and anecdotal evidence along the Bay waterways indicate 

that boat wakes and wash can cause shoreline erosion and adverse impacts on aquatic fauna and 

their habitats.  Published values generally indicate that recreational vessels within 150 m (~500 

ft) of the shoreline can produce waves large enough to result in significant shoreline erosion.  It 

should be noted that vessels traveling further offshore can still produce erosive boat wakes; the 

magnitude of a vessels’ impact is a function of vessel size and speed.  A 150 m setback may help 

to reduce erosion in a channel that is frequented by smaller recreational vessels while a much 

larger setback may be necessary to combat erosion along waterways used by large commercial 

vessels. It is also notable that whether, and to what extent, boat wakes will lead to shoreline 

erosion is dependent on site-specific bathymetry.  Vegetated shorelines can effectively attenuate 

waves in certain settings; however, there is a limit to this capacity particularly if there is frequent 

exposure to boat wakes.  For marsh shorelines, it has been shown that waves as small as 10 cm 

result in erosion of sediments (Coops et al. 1996), and marsh survival is compromised when 

waves exceed 30 cm, even 5% of the time (Schafer et al. 2003, Roland and Douglas 2005). 

 

Virginia, Maryland, and Delaware localities have demonstrated authority and willingness to 

establish wake restrictions, but have not done so comprehensively nor with Bay-wide 

coordination.  North Carolina has an effective approach that provides authority to a state agency 

to establish wake restrictions and that has resulted in wake restriction policies for almost all of its 

coastal localities set forth in state regulations.  Coordination of wake restrictions between the 

Chesapeake Bay states, based on the assessment of wake damage in this STAC review, could be 

achieved via a multi-state agreement or program, and would result in greater policy consistency 

Bay-wide. 

 Are boat wake induced sediment inputs currently represented in the Bay Watershed 

Model?  

No, the water quality model for the Chesapeake Bay total maximum daily load (TMDL) 

currently does not distinguish sediment erosion caused by boat wakes when it accounts for 

sediment from shoreline erosion.  Although it could be an important factor, because we do not 

have comprehensive data throughout the Bay to accurately distinguish boat wake induced 

erosion, it is premature to include this factor in the model. 
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 Would expanding no-wake zones directed at reducing boat wake impacts be beneficial 

to the Bay?  

 

It is likely that in narrow, low energy waterways or along extremely sensitive shorelines with 

relatively high boating activity, establishing additional no-wake zones would reduce shoreline 

erosion and related ecosystem impacts.  However, there may be challenges to enforcement of 

additional areas and/or expanded existing no-wake zones.  This strategy also involves tradeoffs 

as no-wake zones result in increased travel times (Fonseca and Malhotra, 2012).  An alternative 

approach to no-wake zones could involve establishing a minimum distance that navigation 

channels must pass from the shoreline where possible.  

 What other management options might mitigate shoreline erosion from recreational 

boating? 

 

In addition to the establishment of no-wake zones, other management options to ameliorate boat 

wake impacts fall into two categories:  1) shoreline management and 2) management of 

recreational boating activities. 

 

Shoreline erosion is a natural and necessary process supporting the persistence and resilience of 

coastal wetlands and in many cases, the best and most ecologically appropriate shoreline 

management solution is to maintain natural shorelines.  In areas where shoreline management 

treatments become necessary, for instance to decrease erosion and the resulting landward 

migration of the shoreline and reduce adverse impacts to infrastructure, treatments to protect the 

shoreline from boat wakes are no different than protection of the shoreline from wind waves.  

Both Maryland and Virginia encourage ‘living shorelines’ or nonstructural shoreline stabilization 

measures as the preferable method for shoreline erosion control, with Maryland requiring them 

unless they can be proved to be infeasible, and both states providing loan assistance to support 

their installation.  Virginia has a streamlined General Permit process to encourage living 

shoreline use.  In Delaware structural erosion control measures are allowed where it can be 

shown that nonstructural measures would be ineffective in controlling erosion.  

 

Management of boating activities could include the placement of restrictions on boat size in 

small bays, creeks, and estuaries (an approach recommended by Glamore (2008), speed limits, 

navigation buffers from the shore, or motorboat bans.  Historically, many narrow creeks have 

been dredged to allow larger boats into the waterway.  Since boat wake energy is positively 

correlated with boat size, this increases the boat wake energy in these narrow systems.  In 

addition, in narrow waterways boats are passing very close to the shoreline by default.  
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Minimizing boat size in small waterways would help minimize boat wake exposure.  However, 

anecdotally, small waterway wake-induced erosion is frequently blamed on personal watercraft.  

There are no data to verify this claim, but if true, limiting boat size in small waterways may not 

successfully prevent erosion and turbidity.  Speed limits have been implemented in Maryland 

and Delaware primarily due to safety concerns, but the limits functionally reduce boat wake 

energy and thereby associated erosion.  In areas of great environmental sensitivity, motorboat 

bans, or limits on motor size, have been implemented to eliminate adverse impacts on natural 

resources. 

Primary Recommendations 

 

● Develop predictive models to quantify the relative contribution of boat wake induced 

erosion to overall shoreline erosion to inform water quality, habitat restoration, and 

shoreline protection management strategies.  

 

● Collect data necessary to identify shores vulnerable to erosion from boating, and to 

calibrate and validate predictive models.  Data needs identified in this report include 

recreational boating usage patterns, boat generated wave energy and currents, shallow-

water bathymetry, shoreline slope and vegetation characteristics, suspended sediment 

concentration as a measure of potential erosion, and shoreline erosion rates.  Then, 

develop a definition for, and classification scheme of, small tidal waterways with the 

greatest likelihood for significant boat wave shoreline erosion.   

 

● Incorporate boat wake induced turbidity and erosion when siting Bay Restoration 

activities (e.g., wetland/submerged aquatic vegetation (SAV) restoration).  

 

● Investigate the opportunities within the Bay states to implement no-wake zones or other 

wake reduction strategies (navigation buffers from shore, speed limits, boat size 

restrictions, boat bans) for addressing shoreline erosion where public safety is not also a 

concern.  In Virginia, current implementation of a no-wake zone requires a finding of a 

public safety concern and erosion is a second consideration.  Empanel an expert group 

from the appropriate Bay jurisdictions to develop and recommend a uniform boat wake 

policy in the Chesapeake Bay.  
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Appendix I:  STAC Technical Review Request 

 

Evaluating boat wake wave impacts on shoreline erosion and potential policy 
solutions 

The Chesapeake Bay Commission (CBC) requested that STAC conduct a technical review of the 
relevant information on the potential impacts of boat generated waves on shoreline stability 
and attendant ecosystem properties, and provide advice on available policy actions to minimize 
any adverse effects.  

STAC was also asked to address several questions related to (i) erosion and sediment inputs 
caused by boat wake waves, (ii) existing and needed data to develop best management 
practices to minimize shoreline erosion from boat wake waves, and (iii) political and legal 
challenges associated with policy actions to reduce boat wakes. 

Background: 
Salt marshes have weak resistance to wave action (Fagherazzi et al. 2013) and boat wakes have 
been shown to negatively impact shoreline stability in salt marshes (Castillo et al. 2001). Boat 
wake impacts include shoreline erosion, vegetative damage, and impacts to the faunal 
communities (Parnell and Koefoed-Hansen 2001). Although periodic disturbances (compared to 
wind waves) boat wakes can be a significant source of erosive energy. In one study, it was 
discovered that although boat wakes only accounted for about 5% of the wave energy at a site, 
due to their longer height and period, they accounted for 25% of the cumulative wave force 
(Houser 2010). 

Shoreline erosion due to boat wakes is related to the number of boats passing (frequency of the 
disturbance) and the energy of the total wave disturbance (calculated by speed, vessel size and 
distance from channel; Glamore 2008). Wake effects are particularly significant in areas of 
restricted depth and width (FitzGerald et al 2011), such as tidal creeks. In these systems, they 
can undercut banks and have significant impact to marshes, especially in areas where 
synergistic impacts may have reduced marsh soil strength. 

Review focus areas: 
1. Evaluate the state of the science of known effects of boat generated waves on shoreline 

stability and other ecosystem components (e.g., vegetative habitat, faunal community 
composition, nearshore TSS concentration).  

2. Identify data requirements to effectively model the potential effect of boat wake waves 
on shorelines 

3. Identify data gaps and research needs 
4. Determine existing and potential policy actions to reduce adverse effects of boat wake 
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waves on shorelines. Describe political and legal challenges for designating no-wake 
zones in Chesapeake Bay. Are there case studies that can be learned from in the bay of 
no-wake zone designation and/or evaluation of response from management action? 
 

Questions of interest:  

1. What is the relative contribution of sediment inputs from boat wake induced shoreline 
erosion in Chesapeake Bay? 

2. Are these types of sediment inputs currently represented in the Bay Watershed Model?  
3. Would expanding no-wake zones be beneficial to the Bay? 
4. Are there other policy options besides no-wake zones to consider?  

 
Overview of review approach: 
To be responsive to the CBC request, we are proposing to form a core review panel to 
assimilate relevant information in the form of a white paper. Once a draft technical review is 
complete, the document will be disseminated to additional external reviewers for further input 
to ensure critical areas of expertise are well-represented.  

Proposed Timeline 
June 1 2016  Begin technical review 
Sept 30 2016    Draft review document completed by core team  
October 2016   External review 
December 2016  Core Team synthesizes external reviewer comments into final document 
January 2017  Internal document review by STAC 
February 2017  Final Report released 
Spring 2017  Report to Chesapeake Bay Commission 
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