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Abstract

A mathematical model describing the competition between two con-
sumer products in the market is constructed based on the Bass
Diffusion Model and the competitive Lotka-Volterra model. Using
this proposed model, the long-term behaviors of the two competing
products can be forecasted. The model is analyzed and categorized
into eight different cases with different settings of parameters, and
under any of those cases, the two products are proved to co-exist

in the long term.
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Chapter 1

Introduction

1.1 Background

In today’s fast-pacing world we are always surrounded by newly emerged products: mobile
phones, personal computers, tablets, etc. It is crucial for the companies to successfully
forecast the behaviors of their products in the market so that they can make right decisions
for their supply chain and marketing managements. More specifically, an accurate forest
of demand that has accounted for the competition in the potential market will greatly

benefit the companies’ decision-making processes and ultimately maximize the profits.

Evidence-based forecasting methods have proved to be useful [2], but in the context of
newly emerged products, historical data and empirical evidences are absent, even though
historical data of similar products can be used. Thus, many researchers have extended
the Bass Diffusion Model, which does not require historical information, to study market

demands.



1.2 The Bass Diffusion Model

The Bass Diffusion Model is one of the most widely studied model in management science
and marketing: in 2004, it has been selected as one of the ten most influential papers
of Management Science’s first fifty years (from 1954 to 2003) by the journal’s editorial
board as well as the members of INFORMS [8].

In 1969, Bass proposed the growth model for consumer durables, which was later
known as the Bass Diffusion Model, in [4]. This growth model for newly emerged products
has been cited 8522 times in Google Scholar as of 19 November 2018. An important
premise for this model is that the growth for new products is not always exponential;
rather, the number of sales would reach a peak at some time, and then decreases to a

lower level, as shown in Figure 1.1.

SALES

TIME

Figure 1.1: Growth of a new product [4]

The primitive version of the Bass Diffusion Model was proposed by Bass earlier in
1963 in [3]. In the 1963 paper, he constructed an imitation model, which has set up the

relationship between the market sizes and the behaviors of innovators and imitators. The
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innovators were defined as the consumers that would purchase a durable good regardless
of others’ actions, and thus they would tend to buy the products in the earlier stage;
the imitators, on the other hand, would purchase the products based on the number of
existing buyers of this durable good, and thus they would tend to enter the market in a
later stage [3]. This primitive model was developed through a more theoretical approach,
without any empirical support with historical market data fittings.

In the 1969 paper, Bass kept the definitions of innovators and imitators unchanged,
and the growth model is expressed in the following non-linear differential equation [4]:

f(t) q

1——F(t) Zp‘i‘a[y(t)]? (1.1)

where f(t) represents the percentage of the potential market that adopts the product
at time ¢, F(t) represents the percentage of the potential market that has adopted the
product at time ¢, m is the size of the market, or the population, Y (¢) represents the
cumulative number of adopters of the product at time ¢, p is the innovation parameter
and ¢ is the imitation parameter. In plain terms, p represents the probability of initial
purchases for innovators, and ¢ represents the influence of existing adopters of the product
on imitators.

Based on the definitions of the variables, the following relationships were also defined

[4]:

_ar
ft)=—— 12)
Y () = mF(t).

Now, if we apply (1.2) to (1.1), we can rewrite the Bass Diffusion Model in terms of
a more classic representation of differential equations:

dz_f) = (1= FO)p+ LmF (1))

=p—pF(t) + qF(t) — qF(t)? (1.3)

= p(1 = F(t) +qF(t)(1 - F(t)).



The model has worked quite well in predicting the growth curves, and one major
advantage is that F(t) can be easily solved from (1.3). However, one limitation in the
Bass Model is that it measures the future performance on only one product (for example,
televisions) as a whole, but does not consider the growth of different brands of that one
product. It is always desirable to know how multiple brands will interact in the market

for one type of product.

Lee et al. [6] extended the Bass Model with patent citations and web search traffic of
hybrid cars and industrial robots to forecast the long-term sales in the U.S. market. Niu [9]
develops a stochastic version of the Bass Model in order to further simulate the real-world
situations. While these attempts still focus on the growth of one product, Yu et al. [14]
first expand the model to represent the competitions of three products and later expand
it further to model n products [15], by introducing a simple emigrating flow of adopters:
adopters may abandon their particular brands, or the product in general. One limitation
with Yu et al.’s method is that it does not model the interactions between the different
products, but Dhar et al. [5], Tuli et al. [12], and Shukla et al. [11] have all brought the

mutual interactions into consideration, inspired by the competitive Lotka-Volterra Model.

1.3 The Competitive Lotka-Volterra Model

The Lotka-Volterra Model is a widely investigated ecology model proposed first by Lotka
in [7] and then by Volterra in [13] independently over 90 years ago. The initial model
describes the population dynamics of two interacting species with one being the predator
and the other one prey, but over time a family of Lotka-Volterra models were developed to
describe the different interactions between two or more species. The competitive Lotka-
Volterra model between two species is based on the logistic equation modeling population

growth derived by Belgian mathematician Pierre Franois Verhulst [10]:

4



dx T

az’l“x(l—?), (14)

where z is the population of a species, r is the growth rate, and K is the carrying capacity.
With two species, the competitive Lotka-Volterra Model is described by the following

system of differential equations [1]:

dxq T + (122

— =rz(l - ———),

dt K, (1.5)
%:r:c(l—x2+a2lxl) '
dt 242 K2 )

where 1 and x5 are two competitive populations, ays represents the effect species 2 has
on species 1, and vice versa for as,. 71 and ro are the growth rates for species 1 and 2,
and K; and K5 are the carrying capacities for the two species, respectively.

The outcome of competition depends on the strength of competition of each species—
in other words, their carrying capacities and their mutual influence rates, and possibly the
initial conditions. There are two basic types of outcomes: coexistence and competition
exclusion. In the coexistence case, both species survive and reach the equilibrium at
(x7,23). In the competition exclusion case, only one specie survives and the other one
dies such that the system will reach the equilibrium at either (z7,0) or (0,z%). In these
two cases, the outcome does not depend on the initial conditions but only depends on the
values of the parameters. However, there is also a bi-stable case where the two species will
first reach an unstable equilibrium (z7, z%), and then depending on the initial conditions,
it eventually becomes either (z7,0) or (0, x3) so that only one specie survives. Figure 1.2
demonstrates the simulations of possible outcomes of the Competitive Lotka-Volterra

Model defined in (1.5).
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Chapter 2

Mathematical Model

2.1 Model Setup

In this research, we want to model the growth of two competitive products based on the
Bass Diffusion Model. For clarification, the competitive products must belong to the same
type of products, such that they are different products within that category. Consulting
the existing modified versions of the competitive Bass Model and the Competitive Lotka-
Volterra Model, we want to form a model with no external parameters (e.g. web search
traffic in [6]) in order to maintain its generality.
Again, the Bass Diffusion Model can be expressed in the following form:
dF(t)

o = p(1 = F(0) + aF(0)(1 - (1)), (2.1)

where F'(t) represents the percentage of the potential market that has adopted the product
at time ¢, p is the innovation parameter and ¢ is the imitation parameter.
Let N(t) be the number adopters at time ¢, and m be the total population of the

potential market. Then based on definition of F(t),

o N() = mE(). (2.2)



Now, multiplying both sides of (2.1) by m we obtain

W — p(m — mF(t)) + ¢F(t)(m — mF (1)), (2.3)
WO _ pion - ¥ 0) + 4™ (o — N (1), 24)

In the modified Bass Diffusion Model (2.4), m — N is the number of potential buyers,
and we treat p as an external influence parameter, measuring the advertisement effect on
potential buyers, and ¢ as an internal influence parameter, representing existing buyers’

effect on the potential buyers.

With (2.4) as the base, we extended it to predict the growth of two competitive
products. We set p; and p, to be the external influence parameters, measuring the
advertisement effects, and g;; to be an internal influence parameter, representing existing
adopters’ effect. Generally speaking, ¢;; and gg2 measures the part of existing adopters of
product 1 or 2 who like their products and would actively influence the potential buyers,
while g2 and go; measures the part of existing adopters who do not like their products
and would actively influence the potential buyers. a; and as also represent the proportion
of existing adopters preferring product 1 and 2, respectively, but they demonstrate the
existing adopters’ effects on other current adopters only—this means that a; is formed

from communications between the current adopters.

We reckoned that the influences on potential adopters and current adopters should be
treated separately, thus we separated ¢;; and a;. However, these active influences on the
potential adopters may also have some involuntary effects on the current adopters. With

all of these considerations taken into account, we proposed the following system to model



the long-term behaviors of two competitive products:

dN- Ny N-
dtl =(m— Ny — NQ)(p1+kq11—+qu1—2)

N1N2

— (kqua + p2) N1 + b(kqa1 + p1)Na + (bay — as)

2.5)
dN- Ny N (
dt2 =(m — N1 — Na)(p2 + /ﬂhz— + ]ffhz—ml)

N1N2

— (k21 + p1)No + b(kqia + p2) N1 + (baz — aq)

where N; and N, represent the number of adopters of the two products in the market
respectively, m is the total population, m — N; — Ny is the number of remaining potential
adopters, k is a scale parameter for the active influences from current adopters, and b is

a scale parameter for product switching.

Further, since based on the definitions above, q;1 = 1 — ¢q2, and ¢aa = 1 — @1, the

model can be simplified as:

dN N N.
dtl =(m — Ny — Na)(p1 + k(1 — Q12)— + kQQ1—2)
N N-
— (kqu2 + p2) N1 + b(kgo1 + p1)No + (bay — as) 2 26)
2.6
dN. N- N
dt2 =(m — Ny — Na)(p2 + k(1 — Q21)—2 + kfhz—l)

Ny N-
— (kqo1 + p1)Na + b(kqgi2 + p2) N1 + (bagy — ay) : 2,

In order to more clearly demonstrate the flows between N, N5, and the remaining

potential adopters (m — Ny — Ns), a flow chart is constructed:

9



P1
kQ11Ny
bkgz¢N2 Kaz1N; Dkgs2N;
op1N2 m'N1 'N2 bp,N1

(ba1‘32]N1N2 (baz'a1)N]N2

P2
kgz2Nz

kQ12N;

Figure 2.1: Flows between adopters of product 1, product 2, and the potential adopters

The portions of adopters who quit product 1 and product 2 all-together and enter
the potential adopters group were not depicted in Figure 2.1 as they are not explicitly
expressed in the model, but it should still be remembered that not all adopters who stop
using product 1 or product 2 have switched to the other product: only b proportion of
such adopters have done so, and the remaining (1 — b) proportion of such adopters would

enter the m — N; — N, pool.

2.2 Variable and Parameter Descriptions

We define the time in years. The dimensions, units, and meanings of the variables in the

model are summarized in the following Table 2.1:

10



Variable | Dimension | Unait Meaning

t Time(T) | year time
N Number(N) / number of buyers of N;
Ny Number(N) | / number of buyers of N,
(

m Number(N) | / | total number of population

Table 2.1: Dimensions, units, and meanings of variables

The dimensions, units, and meanings of the parameters in the model are summarized

in Table 2.2:

Parameter | Dimension Unit Meaning
pi(i =1,2) 71 per year advertisement effect
k T-1 per year scale parameter
; ) / proportion of adopters converting to the
other product
o voluntary influence of existing adopters on
%’j('la] =1,2) 1 / .
potential buyers
. . proportion of existing adopters preferring
a;(i=1,2) T per year

their products

Table 2.2: Dimensions and units of variables

2.3 Non-dimensionalization

The following operations were used to non-dimensionlize the system:

- N - N
Ny =— N, =2, (2.7)
m m
Rearrange the terms in (2.7) we can get:
N1 = Nlm, N2 == sz. (28)

11



Now, we can apply the above transformation (2.7) and its corresponding results in

(2.8) on system (2.6):

dN, 1 dN;
dt  m dt
1 5 . . 5
:E(l —mNy; — mNy)(p1 + k(1 — g12)mNy + kgoymN3)

- (kQIQ +p2)mN1 + b(kQQI + pl)mNQ + (ba1 — ag)lemNg
=(1—- N, — NQ)(pl + k(1 — Q12)N1 + kQ21N2)

— (kqi2 +p2)]\71 + b(kgn +P1)N2 + (ba; — G2)N1N2,

- (2.9)
AN, _1dN,
dt  m dt
1 . . . .
Za(l — mNy — mNy)(p2 + k(1 — g21)mNa + kgiamNy)

— (kg +p1)m]\72 + b(kq12 + pg)le + (bay — al)lemNZ
=(1— Nl - NQ)(pQ + k(1 — Q21)N2 + kQ12]\71)
— (kg1 —|—p1)]\72 + b(kqi2 +P2)N1 + (bag — (11)]\71]\72,

Now for simplicity’s sake we drop the ~ on N; and N, and assume that the total

population m equals to 1 to obtain the following system:

dN
d_tl = (1 — Ny — No)(p1 + k(1 — q12) N1 + kga No)
— (kqra + p2) N1 + b(kgar + p1) N2 + (bay — ag) N1 Ny
N (2.10)
d_z€2 = (1 — Ny — No)(pa + k(1 — qo1) Ny + kqiaNy)

— (kg1 + p1)No + b(kqia + p2) N1 + (baz — a1) N1 Na,

After the above transformation, the system became dimensionless, and we from now

on will perform analysis and simulations on system (2.10).

12



Chapter 3

Analysis and Simulation of the

Model

3.1 Existence of solutions

We prove that system (2.10) is well-posed so that at least one solution exists for all time,

and that the solution always remains positive and bounded.

Theorem 3.1. Suppose that 0 < N1(0) < 1,0 < No(0) <1, and 0 < N1(0) + No(0) < 1,
then the solution (Ni(t), N2(t)) of system (2.10) always ezists for t € (0,00), and 0 <
Nl(t) S 1,0 S Ng(t) S 1 fOTt S (0,00)

Proof. The system (2.10) is defined in the following system of nonlinear ordinary differ-

ential equations:

dN-
d_tl = (1= Ny — Ny)(p1 + k(1 — q12) N1 + kg21 V)
— (kqua + p2) N1 + b(kqa1 + p1) Na + (bay — ag) N1 Ny
N, (3.1)
7 = (1 — Ny — Ny)(p2 + k(1 — g21) Ny + kqi2Nq)

— (kgo1 + p1)No + b(kqi2 + p2) N1 + (bag — a1) N1 N,

13



Let N = N; + N,, so that

AN d(N; + Ny)
dt dt
=(1— Ny — No)(p1 + p2 + k(1 — q12) N1 + kq1a N1 + kga1 Na + k(1 — g21N3))

+ (b = 1)(kqi2 + p2) N1 + (b — 1)(kgal + p1) Ny

=(1—=N)(p1 +p2+kN) — (1 =b)(kq12 + p2) N1

(
+ (b= 1)aNiNs + (b — 1)aaN;, Ny
(
— (1 =b)(kga1 + p1)No — (1 — b)(a1 + az) N1 Ny,

Now, since by definition, 0 <0 <1,0<k<1,0<¢q; <1,0<p; <1,0<N; <1, for

i,j€{1,2}, 1—b>0,kqij+pi>0,a1+a2>0

% < (1= N)(p1+p2 + kN). (3.3)

Thus, for N(0) < 1, we have N(t) < 1 so that Jim N(t) < 1. Since N(t) = Ny(t) +
— 00
Ny(t), we obtain 0 < Ny(t) < 1,0 < Ny(t) < 1 for t € (0, 00). O

We can visually interpret the boundary of the solutions (N1, N2) such that they are
trapped in the triangle region N; > 0, No > 0, and N7 + Ny = 1 as shown in Figure 3.1.

The phase space of the solutions is {(N7, No) : Ny > 0, Ny > 0, Ny + Ny < 1}, such
that the solution can never leave the region bounded by the triangle shown in Figure 3.1,

but it might lie on the boundaries of the triangle.

14



N2

-0:5

0 0.5 NI 1

Figure 3.1: phase space for the solution (N, N»)

3.2 Equilibrium analysis

Since the analytic solution of the proposed system might be hard to obtain, we are in-
terested in the existence and stability of possible equilibrium points. The system would

have 8 different scenarios, each with different selection of parameters of ¢;;, a;, and b.

The first four scenarios would have b = 1, which means that each adopter that gives
up his or her product would switch to the other product so that no current adopter would
enter the potential users’ pool. The meanings and parameter choices for the first four

cases are summarized in Table 3.1:
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Case | @i a; Meaning Section

. 0 0 advertisement influences only, no adopters 53
entering potential buyers pool
advertisement influences and users’ influence

2 0,1 | 0 on potential users, no adopters entering po- 3.4
tential buyers pool
advertisement influences and users’ influence

3 0 (0,1] on current users, no adopters entering poten- 3.5
tial buyers pool
advertisement influences and users’ influence

4 1 (0,1] | (0,1] on both potential and current users, no | 3.6
adopters entering potential buyers pool

The last four scenarios would have 0 < b < 1, which means that some of the current
adopters who give up their products would choose to not use this type of product at all,
and would thus enter the potential users group for now. Each of the last four scenarios

is complementary to its counterpart in the first four cases. The meanings and parameter

Table 3.1: Parameters and meanings for first four cases

choices for the last four cases are summarized in Table 3.2.

Case 1-4 are much simpler than Case 5-8: because b = 1, we can analytically solve for
the equilibrium solution for each case. Thus, each case will be individually analyzed in

the corresponding Sections 3.3-3.6, and case 5-8 will be analyzed together in Section 3.7.
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Case | @i a; b Meaning Section

. 0 0 0.1) advertisement influences only, some adopters 57
entering potential buyers pool
advertisement influences and users’ influence

6 (0,1] 0 [0,1) | on potential users, some adopters entering 3.7
potential buyers pool
advertisement influences and users’ influence

7 0 (0,1] | [0,1) | on current users, some adopters entering po- 3.7
tential buyers pool
advertisement influences and users’ influence

8 |(0,1] | (0,1] | [0,1) | on both potential and current users, some | 3.7
adopters entering potential buyers pool

Table 3.2: Parameters and meanings for last four cases

3.3 Case 1: Advertisement influences only

In the first case we investigated the simplest scenario by setting ¢ = ¢qo1 = a1 = as =
0,b = 1. In this setting, the percentages of the current adopters of product 1 and 2 who
do not like their products are 0, and the percentages of the current adopters of product
1 and 2 who prefer their products are also 0. In other words, all existing adopters of
both product 1 and 2 have no preferences at all, that they all have neutral feelings about
their products. Thus, there are only advertisement effects but no internal influences from
the current adopters. Also, all adopters who give up their current products must switch
to the other ones, such that no current adopters are entering the potential buyers pool.

We left the advertisement parameters p;, and the scale parameters k to be arbitrary but

positive such that 0 <p; < 1,0 < k < 1.
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Now, since qi1a = go1 = a1 = as = 0,b = 1, the system (2.10) is reduced to

dN

d_tl = (1= Ny — Na)(p1 + kN1) — paN1 + p1 N2

AN, (3.4)
L (1 = Ny — No)(p2 + kNa) — p1Na + paNy.

Adding the two equations in (3.4) together so that we have

d(Ny + N2)

o = (1— Ny — No)(p1 + p2 + kN1 + kN3). (3.5)

Again, let N = N; + N5 so that

d(Ny + Ny) AN

dt di (3.6)
= (1= N)(p1 +p2 + kN).

Since we know that p;,ps and k are positive, and N must also be non-negative, so for

N < 1,

dN
— = 1= N)(p1 +p2 + kN) > 0. (3.7)
Therefore,
tli)rgo N(t)=1. (3.8)

In order to obtain the equilibrium solution for (3.2), we need to set

dN;  dNy
L= . 3.9
dt dt (39)
Correspondingly,
dN

= (L= N)(py+ 2+ kN) =0, (3.10)

Since py,pa, k, N > 0, so for equation (3.10) to hold, we must have N = 1, and corre-

spondingly N; + Ny = 1. Now, substitute this back to system (3.4) we obtain:

—p2N1 +pi1No =0
(3.11)

—p1Nao + pa Ny = 0.

18



After rearranging the terms, (3.11) can be expressed as p; No = poN;. Now we obtain the

analytic solution of the equilibrium of system (2.10) under scenario 1:

* p1 * P2
Ny = —— N, = . 3.12
(M, ptp P p +p2) ( )

The equilibrium depends only on p; and p,, which are the advertising effects param-
eters. This intuitively makes sense: in this scenario, no adopter is buying the product
based on other adopters’ influences, therefore the scale parameter k& does not influence
the equilibrium solution. Also, since there is no one entering the potential buyers pool,
the sum of adopters of product 1 and product 2 eventually equals the total population.
Figure 3.2 demonstrates a simulation of the equilibrium solution of Case 1 with the initial
condition (0,0), and Figure 3.3 demonstrates the phase portrait of the solution of Case 1

with some solution trajectories with different initial conditions.

0.7

N1
N2

0.6 [ B

0.5

population

Figure 3.2: Graph of Ny, Ny against time for Case 1: p; = 0.3,p2 = 0.6,q12 = @21 = a1 =
a=0k=b=1
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Figure 3.3: Phase portrait for Case 1: py = 0.3,p2 =0.6,q12 = ¢21 = a1 = a3 =0,k =b =
1

3.4 Case 2: Advertisement influences and adopters’

influences on potential buyers only

In the second case we still set a; = 0 and b = 1, but let ¢;; > 0. This setting indicates
that there are some percentages of the current adopters of product 1 and 2 who do not
like their products, but they only have voluntary influences on the potential adopters
and involuntary influences on the other current adopters; there is no active influence on
current adopters. Again, no current adopters are entering the potential buyers pool. The
advertisement parameters p; and the scale parameters k were set as arbitrary but positive

numbers such that 0 < p;, k < 1.
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Since a; = 0,b = 1, the system (2.10) is reduced to

dN

d_tl —(1 — Ny — No)(p1 + kNy — kqia Ny + kgar No)
— kqia N1 — paN1 + kga1No + p1No,

dN.

d_tﬂ —(1 = Ny — No)(ps + kNy — kqa1 Ny + kqia V)

— kqa1No — p1 N2 + kq12 N1 + p2 V7.
Adding the two equations in (3.13) together we have

d(Ny + Ns)
dt

0.6

N1

0.5

population
o o
w =
T

o
[N}

0.1

time

= (1 =Ny — No)(p1 +p2+ ENy + kEN,).

(3.13)

(3.14)

Figure 3.4: Graph of Nj, Ny against time for Case 2: p; = 0.3,p2 = 0.6,q12 = @21 =

0.4,(11:(1,2:0,]{‘217:1

Since (3.14) and (3.3) from case 1 are identical, we follow the same procedure by

setting N = N; + N, and obtain the same result that NV = 1. Now, substitute this back

to system (3.13) we obtain:
—kqiaN1 — pa N1 + kga1 Ny + p1 Ny = 0.

21
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As Ny =1 — Ny, (3.15) can be expressed as

Ni(kqia + kgo1 + p1 + p2) = kg1 + pr. (3.16)

We can now solve for (Ny, Na):

k k
N, = q21 + 1 CNy=1-N, = 12 + P2 ' (3.17)
kqia + kqga1 + p1 + p2 kqi2 + kqa1 + p1 + p2
Thus, there exists a unique equilibrium solution
k k
(N7 g21 + D1 « q12 + D2 (3.18)

- kqo + kg +p1+p2 ° N kqia + kgo1 +p1 +p2”

In this case, the equilibrium depends on p;,q; and k. Figure 3.4 demonstrates a
simulation of the equilibrium solution of Case 2 with the initial condition (0,0), and
Figure 3.5 demonstrates the phase portrait of the solution of Case 2 with some solution

trajectories with different initial conditions.
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Figure 3.5: Phase portrait for Case 2: p; = 0.3,p2 = 0.6,¢12 = o1 = 0.4,a1 = ay =0,k =
b=1
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3.5 Case 3: Advertisement influences and adopters’
influences on other adopters only

In the third case we instead set ¢1o = go; = 0 and b = 1, but let a; > 0. This setting indi-
cates that there are some percentages of the current adopters of product 1 and 2 who do
not like their products, but they only have voluntary influences on the other adopters—
there is no active influence on the potential adopters. Again, no current adopters are
entering the potential buyers pool. The advertisement parameters p; and the scale pa-
rameters k were set as arbitrary but positive numbers such that 0 < p;, k < 1.

Let a = a1 — ay. Since ¢12 = q21 = 0,b = 1, the system (2.10) is reduced to

dN
d_tl = (1 = N1 — No)(p1 + kNy) — po N1y + p1No + aN1 No,
(3.19)

dN-
d_t2 = (1 = N1 — No)(p2 + kNa) — p1Na + p2 N1 — alNi Na.
Adding the two equations in (3.19) together we have
d(Ny + Ns)

dt = (1 —N1 —Ng)(pl +p2+kN1+kN2). (320)

Since (3.20) and (3.3) from case 1 are identical, we follow the same procedure by setting
N = N; + N, and obtain the same result that N = 1, and correspondingly N; + Ny = 1.
Now, substitute this back to system (3.6) we obtain:

—p2N1 + p1Na + aN1 Ny = 0. (3.21)
As Ny =1 — Ny, (3.21) can be expressed as
—paN1 +p1(1 — Ni) +alNi(1 = Np) =0,
p1+ Ni(a —p; — pa) —aN} =0, (3.22)
aN? — Ny(a—p1 —p2) —p1 = 0.

We can now solve for Nj:

(a—p1 —p2) £ v/(a—p1 — p2)? + dap;

N, =
! 2a

(3.23)
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When a > 0, \/(a — p1 — p2)? + 4ap; > a — p; — ps. In order for Ny > 0, we must have

(@ —py —p2) + \/(a —p1—p2)?+ 4ap1. (3.24)

N, =
! 2a

When a < 0, \/(a —p; — p2)? +4ap; < a — p; — p2. In order for Ny > 0, we must also

choose (@ — p1 — p2) + \/(a — p1 — p2)? + 4ap;. Thus, there exists a unique equilibrium

solution for all a:

(a —p1 —p2) + /(a — p1r — p2)? + dap,
2a

(N} = JNp=1-—N7). (3.25)

0.8

N1
N2

0.7

0.6 -

population
o o
S (4}

o
w

0.2

0.1

time

Figure 3.6: Graph of Nj, Ny against time for Case 3: p; = 0.3,p2 = 0.6,q10 = @21 =
0,a1 =05,a0=08k=0b=1

Also, the solution satisfies

lim Ny (a) =1, lim Nj(a) =0

a—o0 a—o0 (3'26)
lim Ny(a) =0, lim Nj(a)=1.
a——00 a——00
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In this case, the equilibrium depends on pi,po and a. Again, the scale parameter k
for active influences on the potential adopters does not influence the equilibrium solution
as such influences do not exist under this setting. Figure 3.6 demonstrates a simulation
of the equilibrium solution of Case 3 with the initial condition (0,0), and Figure 3.7
demonstrates the phase portrait of the solution of Case 3 with some solution trajectories

with different initial conditions.
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Figure 3.7: Phase portrait for Case 3: p; = 0.3,p2 = 0.6,¢12 = 21 = 0,a; = 0.5,a5 =
0.8,k=b=1

3.6 Case 4: All influences exist

In the fourth case we further complicated the scenario: we set g;;, k, a;, and p; to be
positive, and b = 1. This setting models the case where there are some percentages of
the current adopters of product 1 and 2 who do not like their products, and they have
voluntary effects on both the potential buyers and the other current adopters. Again, by

setting b = 1 there are no current adopters entering the potential buyers pool.
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Let a = a; — ay. Since b = 1, the system (2.10) is reduced to

dN-
d_tl =(1— Ny — No)(p1 + k(1 — qi2) N1 + kga1 N2)
— (kqi2 + p2) N1 + (kg21 + p1) N2 + aN1 N,
N, (3.27)
e =(1— Ny — No)(p2 + k(1 — go1) N2 + kq12N1)
— (kgo1 + p1)Na + (kqi2 + p2) N1 — aN1 No.
Adding the two equations in (3.27) together we have
d(Ny + N.
% = (I = Ny — No)(p1 + p2 + kN1 + kNy). (3.28)
0.7
0.6 [ —
§(13
0.2
. .
0 0.5 1 1.5 2 2.5 3

time

Figure 3.8: Graph of Ny, Ny against time for Case 4: p; = 0.3,p2 = 0.6,q12 = @21 =
04,a; =0.5,a,=08,k=b=1

Again, we follow the same procedure by setting N = Ny + Ny and obtain N = 1. Now,
substitute this back to system (3.27) we obtain:

—(kqu2 + p2) N1 + (kg1 + p1)Na + aN1 Ny = 0. (3.29)
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Since Ny = 1 — Ny, (3.29) can be expressed as

GN12 - Nl(a —p1 — D2 — kqi2 — kQ21) — kga1 —p1 = 0. (330)

We can solve for Ni:

N, — (a—p1—p2 — kqz — kga1) £ \/(a —p1 — P2 — kqia — kgo1)? + 4a(kga + p1)
1 — .

2a
(3.31)

Comparing (3.31) with (3.23) in case 3, we can see that the solution N; has the exact
same structure, except that p; is transformed into p; + kqo1, and p, is now ps + kqi2. By
adding kgo1 to p; and adding kg2 to po we essentially only increase the value of p; and
p2 by some positive value. Therefore, the solution for this scenario will be similar to that

of the second scenario.

There exists a unique equilibrium solution:

(@ —p1 —p2— kqia — kgo1) + \/(a —p1 — P2 — kqua — kqo1)? + 4a(kger + p1)

N =
! 2a ’
Ny =1— Ny.
(3.32)
The solution also satisfies

lim N{(a) =1, lim Nj(a) =0
a—r o0 a—r 00 (3.33)

lim Ny(a) =0, lim Nj(a)=1.

a——00 a——00

In this case, the equilibrium also depends on the scale parameter &k since now there are
users switching their products based on other users’ influences. Figure 3.8 demonstrates
a simulation of the equilibrium solution of Case 4 with the initial condition (0,0), and
Figure 3.9 demonstrates the phase portrait of the solution of Case 4 with some solution

trajectories with different initial conditions.
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Figure 3.9: Phase portrait for Case 4: p; = 0.3,p2 = 0.6,¢12 = 21 = 0.4,a; = 0.5,a5 =
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3.7 Complementary scenarios for 0 < b < 1

In the previous four cases we only investigate the situations where b = 1, which means
that each current user who gives up their current products must buy the other one. But
from now on, we want to consider a more realistic case where 0 < b < 1. Unlike Case 1-4,
in which we can analytically solve for the equilibrium solution of the system, we cannot
do so when b # 1. Thus, we want to first prove the there still exist at least a equilibrium

solution for the system (2.10) when 0 < b < 1.

Theorem 3.2. Suppose 0 < pi,k < 1, 0 < gj,a;, < 1,0 < b <1 fori,j e {1,2},
then there always exists at least one equilibrium solution (N{, N3) of system (2.10) for

t € (0,00).
Proof. First, we let
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filNY, Ny ) =(1 = Ny = Ny )(p1 + k(1 — qi2) N} + ka1 Ny)
— (kqi2 + p2)N{ + b(kga1 + p1) Ny + (bay — az) N{ Ny
=0
fo(NE, NJ) =(1 = N} = N3)(p2 + k(1 = g21) N3 + kquaNY)
— (kgor + p1)N3 + b(kqi2 + p2) NT + (bag — a1)NT N3

=0.

Now, let N} = N? = 0 and substitute it back to fi(N{, N;) and fo( NZ, N3):

f1(0, Ny) =(1 = Ny)(p1 + kga1 Ny ) + b(kgar + p1)Ny =0
f2(0, N3) =(1 = N3)(p2 + k(1 = qa1)N) — (kga1 + p1) N5 = 0.
Thus, we have
(kgor +p1)N5 = (1 — N3)(p2 + k(1 — q21)N3),
and so
F1(0,N3) =(1 = N3)(p1 + kg1 N3) + b(1 — N3)(p2 + k(1 — ¢21)N3)
=(1 — N2)(p1 + bps + kg1 N3 + kb(1 — g21)NZ) > 0.

Thus, Nj < Ny.

(3.34)

(3.35)

(3.36)

(3.37)

Similarly, let NJ = N2 = 0 and substitute it back to fi(N{, Nj) and fo( N2, N3):

FNT,0) =(1 = N (p1 + k(1 = qu2) Ny) — (kq12 + p2) Ny =0
f2(NE,0) =(1 = N?)(p2 + kq12N?) + b(kqia + p2) Nf = 0.
Thus, we have
(kqua + p2) Ny = (1= N{)(p1 + k(1 — q12) N}),
and so
f2(NY,0) =(1 = N})(p2 + kqra) Ny) + b(1 = N)(p1 + k(1 — qia) Ny)

=(1— N})(p2 + kq1aN{ + bpy + bk(1 — qi2)N}) > 0.
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Thus, we obtain N < N7.

Connecting N}, NJ and N, N2 respectively we have the curve fi(Ny, No) = 0 and
f2(Ny, N3) = 0. Since we also know that Ny, Ny > 0, and Ni < Ny, N} < N7, then based
on the intermediate value theorem, the two curves fi(Ny, No) = 0 and fo(Ny, No) = 0

must intersect at least once, as shown in Figure 3.10.

N
*
2
No1
f1
T
N2 -\-K
0 N1 1 2 N+2 ?\”
|

Figure 3.10: Graph of fl(Nla NQ) =0 and fQ(Nl, NQ) =0

Thus, There always exists at least one equilibrium solution (N7, N5) of system (2.10).

]
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against b for Case

There are also four scenarios for 0 # b < 1, each served as a counterpart for Case 1-4.

We will introduce each case briefly with numerical simulation results.

1. Case 5 is complementary for Case 1 in section 3.3: we set q12 = ¢o1 = a1 = as = 0

just as in case 1, but let 0 < b < 1. Again, in this setting, there is no internal

influences on either potential or current adopters. However, some of the current

adopters who abandon their products because of the external advertising influences

would enter the potential buyers pool. Therefore, we would expect to see that

N1 + Ny # 1, and as b approaches 1, the sum of N; and Ny would also approaches

1. As before, p; and k were arbitrary but positive such that 0 < p;, k < 1.

Now, the system (2.10) is reduced to

(3.41)

dN-
d_tl = (1 = N1y — No)(p1 + kN1) — paN1 + bp1 Na,
dN:
d_t2 = (1 = N1 — Na)(p2 + kENa) — p1No + bpa Ny
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Because of the existence of parameter b, we were unable to obtain the analytic
solution of the equilibrium of system (3.41). Instead, we plot the equilibrium solu-
tions against different values of b as it starts from 0 and approaches 1, as shown in

Figure 3.11. We set the step of increase of b to be 0.01.

Figure 3.12 demonstrates a simulation of the equilibrium solution of Case 5 with
the initial condition (0,0), and Figure 3.13 demonstrates the phase portrait of the

solution of Case 5 with some solution trajectories with different initial conditions.
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Figure 3.12: Graph of Ny, Ny against time for Case 5: p; = 0.3,p2 = 0.6, g12 = qo1 = a1 =
as =0,k =1,b=0.5.
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Figure 3.13: Phase portrait for Case 5: p; = 0.3,p2 = 0.6,¢120 = qo1 = a1 = ay = 0,k =
1,6 =0.5.

2. The sixth case is a counterpart of Case 2. We set a; = 0, ¢;; > 0, and let p;, k
be any arbitrary positive numbers such that 0 < p;,k < 1, as in any other cases.
However, again, we let b < 1. This setting indicates that there are some voluntary
influences from current adopters on the potential adopters, but no such voluntary

influence on other adopters. Similar to Case 5, we would expect the sum of N; and

N5 approaching 1 as b increases.

The equilibrium solutions against different values of b as it starts from 0 and ap-

proaches 1, was shown in Figure 3.14. The step of increase of b was again 0.01.

33



N1
N2
N1+N2 | |

0.9

0.8 b

o
~
|

population
o
o
1

o
(4]

\\ ‘
Il

Figure 3.14: Graph of the equilibrium solution of Ny, Ny, and N; + N, against b for Case
6: p1 =0.3,p2 =0.6,q10 = g1 = 04,01 = a2 =0,k =1,b€[0,1).

Figure 3.15 demonstrates a simulation of the equilibrium solution of Case 6 with
the initial condition (0,0), and Figure 3.16 demonstrates the phase portrait of the

solution of Case 6 with some solution trajectories with different initial conditions.
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Figure 3.15: Graph of Nj, N, against time for Case 6: p; = 0.3,p2 = 0.6,q12 = @21 =
04,0, =a3=0,k=1,0=0.5.
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Figure 3.16: Phase portrait for Case 6: p; = 0.3,p2 = 0.6,¢q12 = @21 = 0.4,a; = ay =
0,k=1,b=0.5.
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3. The seventh case is a counterpoint of Case 3. We set ¢1o = ¢21 = 0 but a; > 0 and
0 < b< 1. As before, 0 < p;;k < 1. This setting indicates that there are some
influences from current adopters on other current adopters, but there is no such
influence on the potential adopters. We would again expect the sum of Ny and N,

approaching 1 as b increases.

The equilibrium solutions against different values of b as it starts from 0 and ap-

proaches 1, was shown in Figure 3.17. The step of increase of b was again 0.01.
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Figure 3.17: Graph of the equilibrium solution of Ny, N5, and N; 4+ N, against b for Case
7 P11 = 0.37]92 = 0.6,(]12 = (21 = 0,a1 = 0.5,@2 = 08, k= 1,b € [0, 1)

Figure 3.18 demonstrates a simulation of the equilibrium solution of Case 7 with
the initial condition (0,0), and Figure 3.19 demonstrates the phase portrait of the

solution of Case 7 with some solution trajectories with different initial conditions.
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Figure 3.18: Graph of Nj, N, against time for Case 7: p; = 0.3,p2 = 0.6,q12 = qo1 =
0,a1 =0.5,a0=0.8,k=1,b=0.5.
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Figure 3.19: Phase portrait for Case 7: p; = 0.3,p2 = 0.6,¢12 = @21 = 0,a1 = 0.5,a5 =
0.8,k=1,b=0.5.
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4. The final case, Case 8, is a counterpoint of Case 4. This is the most complicated
ca