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Abstract

This report presents the development of a machine learning algorithm (a neural net-

work) for the purpose of track reconstruction in the MOLLER experiment. The MOLLER

experiment is a collaboration at Je↵erson Lab which plans on measuring the parity-violating

asymmetry in high energy electron-electron (Møller) scattering. This measurement is an im-

portant test of the Standard Model and could potentially serve as evidence for new physics

beyond the Standard Model.

Reconstruction of electron trajectories provides important kinematic data about the

electrons which is necessary for the asymmetry measurement. As such, the MOLLER ex-

periment requires a track reconstruction tool which can e�ciently handle large amounts of

data. We created a recurrent neural network which models the trajectories of electrons in

the detector system for MOLLER. We trained the network using data from the GEANT 4

Monte carlo simulation for the experiment.

At this stage, our network is able to correctly predict the locations where an electron

hits the main detector given that electron’s previous positions in the detector system. We

describe various studies we conducted to improve the accuracy and e�ciency of our network,

as well as present suggestions for any potential continuations of this project.



Chapter 1

Introduction

Motivation for this project arose due to a desire for an e�cient method of track recon-

struction for the upcoming MOLLER experiment at Je↵erson Lab. Kinematic data for the

electrons is crucial to the interpretation of the parity-violating asymmetry; in order to un-

derstand the electron kinematics, we need to know the trajectories of the electrons as they

pass through the detector system. Since, like many modern physics experiments, MOLLER

will generate enormous amounts of data, the collaboration requires a tool which can handle

large datasets while performing both quickly and accurately.

So, cue machine learning — specifically, neural networks. The use of these algorithms

has greatly increased in popularity in recent years. Though they may seem like something

out of a science-fiction story — a black box which magically spits out the answers you

want without any clear explanation as to how, exactly, it does so — neural networks are, in

actuality, nothing more than a method of optimization. The advantage of neural networks

is that they excel at pattern recognition and they are intended to be used in situations with

a large volume of data. Track reconstruction seemed like a natural application for such a

tool. In addition to this, neural networks require little human input compared to current

methods of track reconstruction. Implementing a neural network as a replacement for, or

as a supplement to, the current algorithms could potentially highlight previously unknown

inaccuracies and biases which could, ultimately, lead to better results.
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In this report, we describe the creation and implementation of a neural network which

models the trajectories of electrons in a simulated version of the MOLLER experiment.

Given tracking data for a set of electrons, the model is able to predict the positions where

each electron hits the main detector. This allows us to completely determine the path that

each electron takes as it travels through the (virtual) detector system. Ultimately we hope

that this project provides a good indication of the viability of neural networks as a tool for

track reconstruction and for use in physics in general.
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Chapter 2

The MOLLER Experiment

The MOLLER (Measurement Of A Lepton Lepton Electroweak Reaction) project at Thomas

Je↵erson National Laboratory is an upcoming experiment which plans on measuring and in-

terpreting the parity-violating asymmetry (APV ) in polarized electron-electron (i.e. Møller)

scattering. APV is predicted to be (approximately) 33 parts-per-billion; the collaboration’s

goal is to measure this value with a precision of 0.7 parts-per-billion. The experiment will be

using Je↵erson Lab’s recently upgraded 11 GeV beam, with the hope that the measurement

of the asymmetry will improve upon a previous measurement of the same value (performed

at SLAC National Accelerator Laboratory) by a factor of five [1].

2.1 Theoretical Motivation

The experiment that the MOLLER collaboration will be conducting is a scattering exper-

iment. Specifically, they will be scattering a beam of longitudinally polarized electrons o↵

of atomic electrons in a liquid hydrogen target. This process of electron-electron scattering

is called Møller scattering, and it is denoted as

e�e� �! e�e�

.

Imagine taking a cubic chunk of electrons out of both the beam and the target. Suppose
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the side length of the cube from the beam is `B and the side length of the cube from the

target is `T . The cube of particles from the beam will travel with velocity v toward the cube

from the target; denote the cross-sectional area of overlap of the cubes by A. In addition,

both the beam and the target will have a certain number of particles per unit volume. Call

these quantities ⇢B (the density of the beam) and ⇢T (the density of the target). We can

assume these densities to be constant, since the size of the beam and the target will be

much larger than the range of the interaction between the electrons in either [2].

Given these values along with the number N of scattering events that occur, we can

define [2]

� =
N

⇢B`B⇢T `TA

This quantity is called the cross section. It has units of area and is a measure of the

likelihood of the interaction between the electrons taking place. The cross section is a

property of the particles themselves; it does not depend on, say, the intensity of the beam

in any given scattering experiment. As such, it is incredibly important to the study of the

behavior of any elementary particles, because it allows results from di↵erent experiments

to be compared [2].

In Møller scattering, both electromagnetic and weak e↵ects are present. The cross

section is proportional to the sum of the contributions from both of these interactions:

� ⇠ EM Contribution +Weak Contribution (2.1)

When electrons scatter, their momentum changes by some amount q. The electromagnetic

interaction is mediated by the (massless) photon, and its contribution to the cross section

is inversely proportional to q. The weak interaction, on the other hand, is mediated by the

Z boson. Unlike the photon, the Z boson is massive; its mass MZ is approximately 90 GeV,
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which is over eight times the 11 GeV beam energy that the MOLLER collaboration plans

on using. The contribution of the weak interaction to the cross section is proportional to

1

M2

Z

 
�1

1 + q2

M2
Z

!
(2.2)

Since MZ is so large, 1

M2
Z

<< 1. Also, the change in momentum q < MZ , so
q2

M2
Z

< 1, as

well. As a result, the weak contribution is dominated by the electromagnetic contribution.

How, then, are we to study the weak interaction experimentally?

The answer to this question is a phenomenon known as parity violation, which is related

to the helicity of a particle. A particle’s helicity is the sign of the projection of its spin

onto its momentum vector. If helicity is positive (i.e. the projection of the spin vector is

in the same direction as the particle’s momentum vector), then the particle is said to be

“right-handed”. If the helicity is negative, then the particle is said to be “left-handed”.

The parity transformation P flips the direction of the particle’s momentum, but leaves its

spin unchanged [4].

Figure 2.1: Helicity and parity violation - Consider a particle with momentum p and helicity S. The top left

image shows a right-handed particle; the top right image shows a left-handed particle. The bottom image shows what

happens to the right-handed particle when it undergoes a parity transformation.
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Parity is a symmetry in the electromagnetic interaction. This means that the electro-

magnetic interaction is the same before and after a parity transformation. The weak inter-

action, however, is not symmetric. According to the Standard Model, the weak force only

a↵ects left-handed particles. Because of this, in a scattering experiment such as MOLLER,

the cross section for right-handed electrons (denoted by �R) and the cross section for left-

handed electrons (�L) are not equal. As a result, we can define [1] [3]

APV ⌘ �R � �L
�R + �L

, (2.3)

a quantity called the parity-violating asymmetry. Parity is easy to implement experimen-

tally, so APV can be measured which, in turn, allows us to probe the weak interaction and

test the Standard Model.

Testing the Standard Model is the true motivation behind the MOLLER experiment.

The Standard Model gives a highly accurate (better than 2 parts-per-billion) prediction

for the value of the asymmetry, so if the value that MOLLER measures disagrees with the

Standard Model prediction, it will be strong evidence for the existence of physics beyond the

Standard Model (BSM). On the other hand, if MOLLER measures a value which does agree

with the Standard Model prediction, it will place a restriction on potential BSM theories.

2.2 Experimental Setup

The proposed setup for the MOLLER experiment consists of the following components [1]:

1. the polarized electron beam, which will be 75 µA with 80% longitudinal polarization;

2. a polarimetry system, which will continuously measure the polarization of the electron

beam;

3. a 1.5 m liquid hydrogen target;

4. a precision collimation system, to reduce background noise in the data;

6



5. a toroidal spectrometer to focus the Møller scattered electrons; and, finally,

6. the detector system, which will consist of:

(a) four planes of gas electron multiplier (GEM) detectors to track the positions of

individual particles,

(b) the main quartz detector assembly, to measure APV , and

(c) pion detectors.

The layout and relative sizes of these components are shown in Figure 2.2.

Figure 2.2: Planned layout of the MOLLER experiment - The electron beam (starting in the bottom right

corner of the figure) will travel through the liquid hydrogen target, pass through the toroid system, then enter the

detector system [1].

Since this project deals with track reconstruction, we are mainly concerned with the

detector system — specifically, the four planes of GEM detectors. The planned arrangement

of the detector system can be seen in Figure 2.3.
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Figure 2.3: Planned layout of the detector system - The electron beam is shown entering the detector system

from the left. It passes through the GEM detectors, then enters the quartz assembly. Pion detectors are located

downstream of the quartz assembly [1].

As we have already stated, the purpose of the GEM detectors is to track the positions of

the particles which enter the detector system. Each GEM consists of a thin piece of plastic

which is coated in a layer of metal. The sheet is pierced by an array of tiny, regularly spaced

holes. The entire structure is filled with a gas. Applying a voltage across the sheet results

in a high electric field in the holes. When a scattered electron passes through one of these

holes, it ionizes the gas molecules, resulting in an “avalanche” electrons — in other words,

the scattered electron “multiplies” into a cascade of many electrons. The electrons in this

avalanche then pass through the multiplication region and are collected. This data allows

us to see the position where each scattered electron passes through the detector.

Figure 2.4: The GEM detector - This is an image of the surface of a GEM taken with an electron microscope.

The sheet is 50 µm thick and each of the holes is 70 µm in diameter [5].
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MOLLER will have a series of four GEM detectors. Ideally, each Møller scattered

electron will pass through each of the four GEMs before entering the main detector. This

will give a position measurement for each electron at four di↵erent locations in the detector

system. If we fit these position measurements for any given electron with a path, we will

know the trajectory that it followed.

Methods of reconstructing the trajectories of particles from such data currently exist.

This project asks whether or not using a neural network to model the electron trajectories

in the detector system would be a viable alternative for the MOLLER collaboration. The

following chapters describe the creation and implementation of such a neural network using

data from a simulated version of the MOLLER experiment. In chapter 3, we give an

overview of machine learning. In chapters 4 and 5, we explain the details of our track

reconstruction neural network. Chapter 5 also presents data on the network’s performance.

We conclude the report with suggestions as to how this project can be continued.

9



Chapter 3

Machine Learning Overview

Machine learning is a field of artificial intelligence which focuses on methods that allow a

computer to “learn” about a set of data without being explicitly programmed [6]. Gener-

ally, machine learning algorithms are used to identify patterns within large datasets. The

algorithms identify a pattern by generating a model, then minimizing the di↵erence between

the values given by the model and the actual values in the dataset. Once such an algorithm

has created a model, it can be fed new data which it has not been exposed to and used to

make predictions about how well the new data fits into the pattern that the algorithm has

identified [7].

The first step in developing a machine learning algorithm is to determine the type of

prediction you wish to make. This is dependent on the nature of your data and dictates

the type of algorithm you can use. An algorithm which makes a discrete prediction is

called a classification algorithm. An example of a classification algorithm would be one

which identifies an image of an animal as either a cat or or a dog. An algorithm which

predicts continuous values, on the other hand, is said to be a regression algorithm. A

machine learning algorithm which predicts the price of a stock is an instance of a regression

algorithm [7].

10



3.1 Basic Structure of Machine Learning Algorithms

Regardless of algorithm type, all machine learning algorithms follow the same basic iterative

process [7]:

Step 1: Training data is fed into the algorithm. Training data consists of an input dataset

and an output dataset. Each input corresponds to an output, but, other than that

correspondence, no other information about the data is provided to the algorithm.

Put another way, the training data is a complete sample set of data from which

the algorithm will attempt to determine the relationship between the input and the

output.

Step 2: The algorithm creates a model to describe the training data. The model is a function

of a set of parameters. As the training progresses, these parameters are updated with

the goal of improving the accuracy of the model.

Step 3: The model uses the training input to compute an output. The model’s output is

compared to the actual training output which has been given to the algorithm and

a quantity called the loss is calculated. Loss is a measure of how good or bad the

model’s prediction is. The lower the loss, the higher the accuracy of the model’s

prediction. If, for example, the model makes a completely accurate prediction, the

value of the loss will be zero.

Step 4: Assuming the model’s predictions are not perfect, the algorithm attempts to improve

the model (i.e. decrease the loss) by updating the model parameters. This process is

called optimization.

Step 5: The previous steps are repeated until the loss stops changing. At this point, the

training is complete. The model can be given a set of unseen input data (i.e. data of

the same structure as the training input set) and, ideally, will be able to accurately

11



predict the correct output values. This new set of data is called the testing data and

it is used to evaluate the model’s performance.

This process is summarized in Figure 3.1:

Figure 3.1: Basic structure of a machine learning algorithm - The input is fed into a model, which then

predicts the output. The model predictions are compared to the actual output and the error (or loss) is computed.

The model parameters are updated according to the value of the error. This cycle of making predictions, calculating

the error, and updating the model parameters continues until the error is minimized. At this point, the model is said

to be optimal. (Figure adapted from [7])

3.1.1 Training, Testing, and Validation Datasets

Suppose we have a set of data which describes a large group of dogs and cats. Suppose this

dataset contains measurements of each animal’s height, weight, body temperature, and life

span. We wish to develop a machine learning algorithm which predicts whether a particular

group of measurements describes a dog or a cat.

First, we must determine what our input data and our output data look like. After

our model has been trained, we want it to be able to make a prediction based on a set of

measurements we provide it with. The set of measurements which we provide to the model

is the input data. In this example, the input data are the height, weight, body temperature,

and life span measurements for each of the animals. The output set reflects the information

that we want our model to be able to predict. In this case, our output is either “dog” or

“cat”.
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Now that we know what our input and output sets are, we can divide the dataset into a

training set and a testing set. We take a certain percentage of inputs and their corresponding

outputs to be the training set, and the remaining data to be the testing set. The relative

sizes of the training and testing sets can vary, though generally the training set is larger,

because this gives the model a wider sample of data to “learn” from.

As described in the previous section, the training set is used to create the model. Cre-

ating the model involves tuning the model parameters in response to loss calculations. In

order to update these parameters, we take a subset of the training data to test the model

on while it is training (as opposed to the testing set, which is used to evaluate the model’s

performance after the training has completed). We call this subset the validation set [8].

It is important to note that the only information which is actually given to the algorithm

are the measurements themselves. The algorithm is not told which measurement is a weight

and which measurement is a height. All it knows is that one set of numbers is an input and

the other set is an output. This is what distinguishes machine learning from other tools

which could be used to solve this same problem.

3.1.2 Loss and Optimization

Now consider any set D of training data that has been fed to a machine learning algorithm.

This could be the dog and cat data from before, or any other dataset with which you wish to

train a model. Each data point in D consists of an input x (which can be one value or a list

of values) and its corresponding output y. Following each iteration of training, the model

gives a set of predictions {p(x)} of the output for each input x in D. Then, for each input

x, the model’s prediction p(x) is compared to the actual value y of output corresponding

to x. This comparison is called the loss.

The loss is simply an error measurement. It serves as an indication of how well the

model is performing and tells the algorithm how it should update the model parameters to

13



improve the accuracy of its predictions. There are many di↵erent methods of computing

the loss; one of the common methods is computing mean squared error (MSE), which is

defined as [7]

MSE =
1

N

X

(x,y)2D

(y � p(x))2 (3.1)

The value of the loss will change with the parameters of the model. The algorithm’s

goal is to update the model parameters in order to minimize the loss, a process known as

optimization. Perhaps the most common method of optimization is the method of gradient

descent. The simplest gradient descent algorithm does the following [7]:

1. First, a set of initial values is chosen for the model parameters. This model is used to

make predictions from which we compute the loss. Call this initial loss the starting

point.

2. The gradient of the loss function at the starting point is computed.

3. The model parameters are updated by moving along the loss function in the direction

of the negative gradient.

4. The previous three steps are repeated until a set of parameters is found for which the

loss is minimized.

The process of gradient descent is shown in Figures 3.2 - 3.5:

14



Figure 3.2: Choose a starting point.

Figure 3.3: Compute the gradient of the loss function at the starting point.

Figure 3.4: Move in the direction of the negative gradient.

15



Figure 3.5: Repeat steps 1-3 until the loss is minimized.

Traditional gradient descent algorithms have many weaknesses, namely that they tend

to get stuck at false minima. Many variations of gradient descent algorithms have been

developed to address such weaknesses [9]. Most machine learning algorithms use one of

these variations for optimization.

3.2 Neural Networks

Neural networks are one of the most popular machine learning algorithms. The name

“neural network” comes from the algorithm’s basic structure, which mimics the structure

of neurons in a biological nervous system:

Figure 3.6: Structure of a neural network - A neural network is a collection of variables (called “nodes”) which

are arranged in layers, similar to the neurons in a biological nervous system. The nodes of each layer are formed from

combinations of the nodes in the preceding layers [10].
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There are many di↵erent types of neural networks which can be used to make various

kinds of predictions. All of them work by combining the input values (which are arranged

into the nodes shown in Figure 3.6) in order to determine the output values. The simplest

neural network will consist only of an input layer and an output layer. Each output in this

simple neural network will be given as a linear combination of the values in the input layer.

In more complex networks, the input data passes through one or more “hidden” layers,

where intermediate values are computed using various (not necessarily linear) functions.

These intermediate values are then combined to compute the output.

3.2.1 Epochs and Batch Size

When developing a neural network, there are a few parameters which we can control. These

parameters are [11]

(a) Batch size: During optimization, the network loops through the training dataset and

computes the loss at each data point. Instead of looping through the entire training

set, however, we can instead divide the data into smaller “batches”. Rather than

computing the loss at every point in the training set, the loss is computed at every

point in the batch. The batch size is the number of samples in each batch.

(b) Number of Epochs: When the algorithm is training, it loops through the training

set a certain number of times. This number is called the number of epochs. If the

training set has been divided into batches, then within a single epoch, the algorithm

will iterate through each batch and update the model parameters.

For example, say we have a training set that has 100 total samples (i.e. 100 sets of

inputs and their corresponding outputs). If we choose a batch size of 1, then we will have

100 total batches, each containing a single sample. During each epoch, the network will

compute the loss at each of the 100 batches. If we choose a larger batch size — for instance,
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a batch size of 20 — then we will have 5 total batches, each containing 20 samples. Rather

than computing the loss 100 di↵erent times during each epoch, the network will compute

the loss 5 times per epoch [11].

The number of epochs and the batch size are completely dependent on the individual

network. Changing these parameters impacts both the accuracy of the model that is created

and the time taken to train the model. The values of these parameters are generally chosen

through trial and error [11].

3.2.2 LSTM Networks

Long short term memory (LSTM) networks are a type of recurrent neural network (RNN).

RNNs consist of chains of repeating units which allow them to “remember” previous infor-

mation and use that information to inform later decisions. However, standard RNNs have

trouble dealing with data that has long term dependencies. LSTMs were developed to deal

with this issue. The di↵erence between a standard RNN and an LSTM lies in the structure

of their repeating units. Where the repeating unit of a basic RNN will consists only of a

single activation function layer (tanh, for example), the repeating unit of an LSTM consists

of five di↵erent layers. Figure 3.7 shows the structure of an LSTM unit [12]:

Figure 3.7: Repeating unit in a LSTM network - The structure of a LSTM network allows the algorithm to

“remember” information over time. Information from preceding units is passed into the current unit and used to

update the so-called “cell state”, which is passed on to the next unit. (Adapted from [12]).

18



The horizontal white arrow across the top of the diagram represents the cell state of

the unit. The previous unit’s cell state, Ct�1, enters the current cell state. As it passes

through the unit, the five layers (indicated by the colored arrows) update the cell state with

information from the previous unit’s output (ht�1) and the current unit’s input (xt). The

updated cell state, Ct, determines the current unit’s output,ht, and both of these values are

passed on to the next unit, where the process repeats [12].

Each layer in the LSTM performs a di↵erent task [12]:

• Layer 1 is called the “forget gate”. A sigmoid function
⇣
�(y) = 1

1+e�y

⌘
takes 1+ e�y

values from the input xt and the previous unit’s output ht�1 and returns a vector

ft of values between 0 and 1. These values indicate how much of the information

to “forget”, with 0 meaning “forget everything” and 1 meaning “keep everything”.

These values are multiplied by the values in Ct�1.

• Layer 2 is the “input gate”. Again, a sigmoid function takes xt and ht�1 and outputs

a vector it of values between 0 and 1. This vector is then multiplied by the output

of layer 3, which is a hyperbolic tangent layer. It takes the same inputs as layer 2,

and returns a vector pt of values between -1 and 1. This vector represents possible

updates to the cell state; in a similar manner to the forget gate, the network decides

which potential updates to keep by multiplying pt by it. The update is added to the

product of the previous cell state and the forget gate to create the new cell state, Ct.

• Layers 4 and 5 determine the output of the unit, ht. A final sigmoid function in layer

4 outputs a vector ot of values between 0 and 1. In layer 5, the new cell state Ct

passes through a tanh function. The unit output ht is the product of ot and tanh(Ct).

ht is sent to the next unit as well as sent out of the LSTM chain.
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Chapter 4

Overview of Simulated Data

In order to develop our neural network, we required a dataset. Since the MOLLER experi-

ment has not yet been conducted, we used data generated by the GEANT 4 Monte Carlo

Simulation for the MOLLER experiment. The dataset contains simulated measurements

from a series of five virtual detector planes which play the same role as the GEMs and the

main quartz detector will in the actual experiment. The first four virtual detector planes

are tracking planes, corresponding to the GEM detectors; these are located upstream of the

fifth virtual detector plane, called the main detector plane, which corresponds to the quartz

detector which will measure the APV . This arrangement is shown in Figure 4.1:

Figure 4.1: Virtual tracking and main detector planes - This is the arrangement of the virtual tracking and

main detector planes in the GEANT 4 simulation for the MOLLER experiment. The simulated electron beam travels

from the left to the right along the z axis. The locations of the virtual tracking planes and main detector planes

correspond to the planned locations of the GEM and quartz detectors for the experiment (see Figure 2.3).
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The set of the four virtual tracking planes is labeled as a single “Detector 30” in the

simulation. The virtual main detector plane is labeled “Detector 28”. Geometrically, these

detectors are identical: when viewed head on, each of them is a circle with a radius of 2

meters (see Figure 4.2). They are arranged along the z axis in the x, y plane. The simulated

electrons travel in the +z direction, starting at the far left (z = 23.15 m) and ending at the

main detector plane (z = 28.435 m). There is no magnetic field in the simulated detector

system, but there is air, which means the simulated electrons can lose energy as they move.

Figure 4.2: Dimensions of the virtual detectors - Each of the virtual detectors is a circle with a radius of two

meters.

The data generated by the simulation were from Møller scattered electrons from an 11

GeV beam on a liquid hydrogen target. The dataset contains measurements for 100,000

separate events. A new event was defined each time a new electron is sent into the virtual

detector system. This initial electron was labeled a primary electron. Each individual

event contained all of the information about all of the processes that occurred as a result

of each primary electron. This information included measurements of the positions where

each electron passed through each detector plane.

Each time a simulated electron traveled through one of the virtual detector planes, a
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position measurement was recorded in the form of x, y, and z coordinates, in units of

millimeters. We call such an occurrence a hit. The distribution of electron hits in the

virtual tracking planes and the main detector plane is displayed in Figure 4.3:

(a) Virtual Tracking Planes (b) Main Detector Plane

Figure 4.3: Distribution of electron hits in virtual detectors - These histograms show the distribution of

electron hits in (a) the four virtual tracking planes and (b) the main detector plane over all 100,000 events. The

majority of the hits are located in ring(s) at a radius of approximately one meter. These are (primarily) the Møller

electrons. The two-ring structure in figure (a) occurs because the 4 meter separation between the first two tracking

planes and the last two (see figures 4.1 and 4.4) has been flattened into one dimension.

The locations on the virtual detector planes with the highest concentration of electron

hits are the center (where the unscattered beam passes through) and the ring(s) at a radius

of approximately one meter. Recall the setup of the MOLLER experiment (Figure 2.2):

after the Møller scattering occurs in the liquid hydrogen target, the electrons pass through

a toroidal spectrometer. The toroidal spectrometer focuses the Møller electrons onto ring

with a radius of about a meter [1]. The ring(s) of hits on the virtual detector planes are the

ring(s) of (predominantly) Møller electrons. The two separate rings shown in Figure 4.3(a)

are a result of “flattening” the hits from the four separate virtual tracking planes onto a

single image.

Figure 4.4 shows these same hit distributions as a three-dimensional scatter plot. Here,

the hit distributions in each of the five detector planes can be seen.
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Figure 4.4: Distribution of electron hits in virtual detectors (3-dimensions) - This scatter plot shows the

distribution of electron hits in all five virtual detector planes over all 100,000 events. The two leftmost planes are the

first two tracking detectors; the three on the right are the final two tracking detectors followed by the main detector.

Again, the highest concentration of hits in each detector occurs in a ring at a ⇠ 1 m radius.

Each simulated electron is associated with a series of hit position measurements. If we

connect the hits for any given electron, we form a track. An example of a track is shown in

Figure 4.6:

Figure 4.5: Example of an electron track - The electron travelled from left to right in the positive z direction.

Each circle marks the location (the (x, y, z) position, a.k.a. the hit) where the electron passed through a virtual

detector plane. For simplicity, we only consider electrons which pass through all five virtual planes. The track is

formed by connecting the five hits to form a path.

The sample track in Figure 4.6 is an ideal case in the sense that the electron hits
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each of the five virtual detectors. This was not true of all of the electrons in the dataset

— for instance, some of the electrons only had hits recorded on two of the five virtual

detector planes. Also, it is important to note that not every track was formed from a

primary electron. The primary electrons are the first electrons in a given event to enter

the simulated detector system, but this does not mean they are the only electrons in said

event. Various reactions can occur within the detector system, and this is accounted for in

the simulated data. For consistency and simplicity, however, we considered only the tracks

which (1) were formed directly by primary electrons and (2) intercepted each of the five

detectors once (and only once).
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Chapter 5

Track Reconstruction Network

We created a LSTM network which takes in a given electron’s hits from the four virtual

tracking planes, fits those hits to a track, then “projects” that track onto the virtual main

detector plane. This “projection” is a prediction of the hit position on the virtual main

detector plane for that electron, assuming said electron continues to follow the same path.

This network allows the data from the virtual tracking planes to be connected with the data

from the virtual main detector. If we match the network’s prediction to actual measured hits

on the main detector plane, we can determine the track that any given electron “belongs”

to. This, in turn, gives us information about the electron’s behavior from the time it entered

the virtual detector system until the time it hits the main detector plane.

5.1 The Baseline Network

Creating the best version of a neural network requires quite a bit of fiddling with the various

network parameters; for clarity, we will describe what we will call our “baseline” network.

Our network was created using Python and Keras, an Application Programming Interface

(API) built on top of TensorFlow (Google’s machine learning library). See [13] and [14] for

more information.

The dataset used to develop our network contained track data for primary electrons

which hit each of the five detector planes one time (see Chapter 4 for more details). We
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used 80% of the dataset for training and 20% for testing. The input values were the first

four hit measurements in each track, corresponding to the hits in the four virtual tracking

planes. The output values were the final hit measurements in each track, corresponding to

the main detector hits. Since the hit data was given component-wise, we made separate

(but identical) networks and datasets for each component of the measurements.

In order to be fed into our network, the data required some reformatting. The first step

involved splitting the dataset into the desired training and testing sets, and then further

into the respective input and output sets. Now, recall from the previous chapter that all

of the hit data was given in units of millimeters. The virtual detector planes have a radius

of 2 m, or 2000 mm; as a result, the data consisted of numbers ranging anywhere from 0

to 2000. The network does not know the units that the data is in, so it only sees this wide

range of values. This can make optimization both slow and di�cult. To address this issue,

we rescaled all of the data so that it normally distributed with a mean of 0 and a standard

deviation of 1.

Keras also requires the input data arrays to have specific dimensions. The original input

arrays had 4 columns (for each of the four virtual tracking plane hits) and n rows, where

n was the number of tracks in the training / testing set. We reshaped the input arrays

so they had the following dimensions: (# of samples, # of timesteps, # of features). The

number of samples is the number n of tracks in the dataset. The number of timesteps is the

number of columns in the original array (so 4, in this case). Each “timestep” contained a

single measurement (the hit position), so the number of features in this situation was 1. We

created a function in Python which performs all of this reformatting, including the splitting

into training and testing sets; this can be seen in Appendix A.

Below we present the code which builds and trains our baseline network:
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model = Sequent i a l ( )
model . add (LSTM(32 , input shape =(4 ,1)) )
model . add (Dense (1 , a c t i v a t i o n=‘ l i n e a r ’ ) )
model . compi le ( l o s s =‘mse ’ , opt imize r=‘adam ’ , met r i c s =[ ‘mse ’ ] )
h i s t o r y = model . f i t ( t ra in ing input mode l , t ra in ing output mode l ,

b a t ch s i z e =100 , epochs=100 , v a l i d a t i o n s p l i t =0.1 ,
verbose=1)

The first line, model = Sequential(), initiates the construction of our network. It

indicates that we want our network to consist of a linear stack of layers. The model.add()

function adds layers to our network. We have two layers: the input layer, which is also the

LSTM layer, and the output layer. The LSTM layer takes in the following arguments:

• The number of LSTM nodes, or cells, also called the dimensionality; this number is

up to us to choose

• The shape of the input array, which is a vector of the form (# of timesteps, # of

features)

The output layer is “dense”, which indicates that it is a so-called “fully-connected”

layer. This means that every node in this layer is connected to every node in the previous

layer. This arguments that this layer takes in are

• The number of output nodes; this number must be 1, since we want the network to

predict a single number

• The “activation” function, which indicates how we want the network to combine the

inputs in order to predict the outputs. We chose a linear activation function, since

the tracks are straight lines.

Next, the model.compile() function defines the model’s learning process. We choose

a loss function (loss=‘mse’ means that we chose mean squared error) and an optimizer
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(optimizer=‘adam’ refers to the Adam optimizer, which is a popular variant of gradient

descent — see Appendix C). metrics=[‘mse’] indicates that we want the network to save

the mean squared error values from each epoch. This allows us to, for instance, plot the

mean squared error per epoch in order to see how quickly the loss decreases.

Finally, the model.fit() function trains our model. We give it an input set (training input model)

and an output set (training output model). Then, we specify the batch size (100), the

number of epochs (100), and the percentage of the training data that we would like to use

as a validation set (10%). verbose=1 will print the loss after each epoch when the code is

run.

The following sections detail our network’s performance.

5.2 Results

We wanted our network to be both e�cient and accurate. As such, we required methods of

quantifying both e�ciency and accuracy. For e�ciency, we chose to study the (real) time

taken by the network to train. We did this using Python’s timeit function. For accuracy,

we evaluated the model’s performance on the testing set. In order to do this, we defined

� =
1

N

X

(x,y)2D

|y � p(x)| (5.1)

Here, D is the testing set, (x, y) represents a single sample in D, N is the total number

of samples in D, and p(x) is the model’s prediction at input value x. �, therefore, is the

average absolute di↵erence between the actual output values in the testing set and the

model’s prediction of these output values. For our purposes, we consider �  1 mm to mean

the model’s predictions are accurate.

Our baseline network, given in the previous section, took 47.48 s to train and had a �

value of 1.3 mm. This means that the model’s predictions were fairly close to the actual

output values of the testing set. In order to better visualize the model’s accuracy, we made
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a histogram of the absolute di↵erence between the actual output values and the model’s

predictions at each sample in the data set (Figure 6.1):

Figure 5.1: Accuracy of baseline network - Most of the model’s predictions di↵ered from the actual output

values by about 0.2 mm.

The following two sections describe how various changes to the network and the data

impacted e�ciency and accuracy. For consistency, the same set of tracks was used in each

case. This set contained data for 13,000 total tracks. We took 80% of this 13,000 (10,400

tracks) to be the training set, and the remaining 20% to be the testing set.

5.2.1 Impact of Network Parameters

In our network, we are able to control three major parameters: the batch size, the number

of epochs, and the number of nodes (also called the dimensionality) in the LSTM layer. We

wanted to determine how each of these parameters impacted the e�ciency and accuracy of

the model when the other two parameters were held constant.

Impact on E�ciency

1. Batch Size: As the batch size increases, the number of batches with which the

network computes the loss during each epoch decreases. This means that the number
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of times that the network updates the model parameters per epoch also decreases. As

such, we expect the network to be more e�cient as the batch size grows. Figure 6.1

shows that this is indeed the case:

Figure 5.2: Impact of batch size on e�ciency - As the batch size increases, the time taken to train the model

decreases rapidly.

At the smallest batch size (100), the running time was ⇠ 47 seconds. At the largest

batch size (5000), the running time was less than 5 seconds. Clearly, the batch size

has a strong impact on the model e�ciency.

2. Number of Epochs: As the number of epochs increases, the number of times that

the model loops through the entire training set increases. Intuitively, then, the number

of epochs should be directly proportional to the running time. Figure 6.2 confirms

this hypothesis:
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Figure 5.3: Impact of number of epochs on e�ciency - As the number of epochs increases, the time taken to

train the model increases linearly.

3. LSTM Dimensionality: The dimensionality of the LSTM layer is the number of

LSTM cells, or nodes. As we increase the dimensionality, we see that the running

time increases, as well (Figure 6.3):

Figure 5.4: Impact of LSTM dimensionality on e�ciency - As the dimensionality of the LSTM layer increases,

the time taken to train the model increases.

While this relationship appears to be almost linear, there are several small fluctu-

ations, suggesting that the relationship between the LSTM dimensionality and the
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model e�ciency is not as direct as the batch size / number of epochs relationships.

Impact on Accuracy

1. Batch Size: As we increase the batch size, the value of � increases, then stays

relatively constant, and then increases once more (Figure 6.4):

Figure 5.5: Impact of batch size on accuracy - As batch size increases, � increases overall. This increase does

not, however, appear to be consistent.

2. Number of Epochs: As we increase the number of epochs, the number of times that

the training data is fed through the model increases. The more the model “sees” the

dataset, the more likely it is to pick out the correct relationship between the inputs

and the outputs. Thus, we expected � to decrease with increasing number of epochs.

This is exactly what we found (Figure 6.5):
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Figure 5.6: Impact of number of epochs on accuracy - As the number of epochs increases, the value of �
decreases rapidly, which means the accuracy increases.

3. LSTM Dimensionality: We did not find a clear correlation between the dimensions

in the LSTM layer and the value of �. As shown in Figure 6.6, � just appears to

fluctuate:

Figure 5.7: Impact of LSTM dimensionality on accuracy - We were unable to determine a clear relationship

between the number of LSTM dimensions and the value of �

As described above, while we found a clear relationship between the number of epochs

and the accuracy of the model, we were unable to determine any meaningful correlation
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between the batch size / the LSTM dimensionality and the accuracy. In order to better

understand these results, we needed to understand how much � fluctuates when every

network parameter is held constant. We trained the network ten times with the same

batch size, number of epochs, and LSTM dimensionality. The results from this test are

shown in Figure 6.7:

Figure 5.8: Fluctuation of � - Over ten repeated trials with every network parameter held constant, there was a

maximum fluctuation of approximately 1 mm in the value of �

This plot shows the range of � values over the ten repeated trials, indicated by the thin

vertical bar. The orange boxes represent the middle 50% of the data. We found that the

value of delta fluctuated by 1.08 mm. This is likely because di↵erent batches of training

data were selected randomly by TensorFlow in each training cycle, causing the accuracy to

vary somewhat. Based on this, the fluctuations seen in Figure 6.6 are most likely due to

the natural fluctuations of �.

Adding Detector Resolution

The network performed well on the simulated MOLLER data. However, the simulated data

represents an idealized situation. The data is “perfect” in the sense that it does not include

any of the uncertainty or noise that will be present in the actual experimental data. As a
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result, the fact that the network performs well on the simulated data does not necessarily

imply that it would perform well on real data.

One such source of uncertainty is the resolution of the detectors. Each of the detectors in

the MOLLER experiment will have a certain precision. The hit position measurements will

not be exact points, but will instead be within a certain range of values. This means that

the hits will not necessarily form perfectly straight tracks. We were able to add detector

resolution to the simulated data by shifting the hit positions by a chosen amount. We

first chose a particular detector resolution �. Then we mapped each hit in the dataset to

a shifted hit position based on �. This shifted hit position was chosen randomly from a

Gaussian distribution with the hit position as its mean and � as its standard deviation.

First, we shifted the training dataset, and left the testing set untouched. We did this

for a range of � values. Then we did the opposite, shifting the testing set and leaving the

training set untouched. In both cases, we computed � at each � in order to gauge the

accuracy of the model. The results are displayed in Figure 6.8:

Figure 5.9: Impact of detector resolution on model accuracy - The circles are the data from shifting the

training set, and the triangles are the data from shifting the testing set. At each point, � is higher when the training

set is shifted than when the testing set is shifted. In both cases, � increases with increasing detector resolution.

Shifting the training data resulted in higher � values at each � than shifting the testing
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data did. Focusing on the data from shifting the testing set, we see that � is less than 1.5

mm at each point. This means that when the model is trained on ideal data and then tested

on data that contains some uncertainty, it is still capable of making accurate predictions.
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Chapter 6

Conclusion and Outlook

The goal of this project was to determine whether or not a neural network could be used

as a tool for track reconstruction in the upcoming MOLLER experiment. We were able

to construct a LSTM recurrent neural network which predicts the final hit position in an

electron’s track with relatively high accuracy. Our current results indicate that neural

networks have the potential to perform very well as methods for track reconstruction.

However, there are still many ways we could continue to test and improve the perfor-

mance of our network. While we addressed the issue of detector resolution, there are still

other, unaddressed sources of error and uncertainty that will be present in the MOLLER

data which could impact the network’s accuracy. These include background noise from

other processes that occur in the detector system as well as detector ine�ciency. If we

are to use a neural network in an actual experimental setting, it needs to be able to make

accurate and e�cient predictions about realistic data.

In addition to this, we would also like to continue to study how the network parameters

impact performance. Ideally, we want to quantitatively determine which combination of

parameters allows for the fastest and most accurate predictions to be made.

Overall, we believe this project was a success and we hope to continue to study neural

networks as potential tools for track reconstruction.
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Appendix A

Data Processing Function

This function organizes and splits a set of tracks into training and testing sets. It scales

and reshapes these datasets for use in training and testing the model. This function can

also add detector uncertainty to both the training and the testing sets.

# Description: Processes data for training / testing the model

# Last Updated: 03/16/2019

# Author: Mary Robinson

def process_data(file_name, training_percentage, detector_resolution_training,...

detector_resolution_testing):

import numpy as np

import sklearn

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

# first - loads the full data file

data = np.loadtxt(file_name)

# splits the list of hits into sets of tracks

# (NOTE: assumes each track consists of 5total hits;

# does not work for tracks of variable length)

tracks = np.split(data, len(data)/5)

tracks = np.stack(tracks)

# splits the list of tracks into training and testing sets

#for the reconstruction algorithm based on the percentage of

#data the user wishes to train the algorithm on (training_percentage)

number_training_samples = int(round(len(tracks)*training_percentage))

training_data = tracks[0:number_training_samples]

testing_data = tracks[number_training_samples:len(tracks)]

# Adding detector resolution
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Shifted_training_data = []

for hit in training_data:

mu = hit

shifted_hit = np.random.normal(mu,detector_resolution_training)

Shifted_training_data.append(shifted_hit)

Shifted_training_data = np.array(Shifted_training_data)

Shifted_testing_data = []

for hit in testing_data:

mu = hit

shifted_hit = np.random.normal(mu,detector_resolution_testing)

Shifted_testing_data.append(shifted_hit)

Shifted_testing_data = np.array(Shifted_testing_data)

# then splits the training and testing sets into input sets /

# output sets (i.e. first four hits / last (predicted) hit)

training_input = Shifted_training_data[:, 0:4]

training_output = Shifted_training_data[:,4:5]

testing_input = Shifted_testing_data[:,0:4]

testing_output = Shifted_testing_data[:,4:5]

# Scalers

training_input_scaler = scaler.fit(training_input)

training_output_scaler = scaler.fit(training_output)

testing_input_scaler = scaler.fit(testing_input)

testing_output_scaler = scaler.fit(testing_output)

# reshapes and scales input sets

training_input_scaled = training_input_scaler.transform(training_input)

testing_input_scaled = testing_input_scaler.transform(testing_input)

training_input_model = training_input_scaled.reshape(len(training_input_scaled), 4, 1)

testing_input_model = testing_input_scaled.reshape(len(testing_input_scaled), 4, 1)

# reshapes output sets for use in algorithm

training_output_scaled = training_output_scaler.transform(training_output)

testing_output_scaled = testing_output_scaler.transform(testing_output)

training_output_model = training_output_scaled.reshape(len(training_output_scaled),1)

testing_output_model = testing_output_scaled.reshape(len(testing_output_scaled), 1)

return data, tracks, training_data, testing_data, training_input, training_output,...

testing_input, testing_output, training_input_model, training_output_model,...

testing_input_model, testing_output_model, testing_output_scaler
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Appendix B

Track Reconstruction Network

This is the full track reconstruction network. It is written in Python using Keras. This
includes the network itself, as well as the necessary code to train and test the model.

import keras

from keras.models import Sequential

from keras.models import load_model

from keras.layers import Dense

from keras.layers import LSTM

import track_recon_data_processing #see Appendix A

import numpy as np

import timeit

# Use the data processing function to load the dataset

data, tracks, training_data, testing_data, training_input, training_output,...

testing_input, testing_output, training_input_model, training_output_model,...

testing_input_model, testing_output_model, testing_output_scaler =...

track_recon_data_processing.process_data("13000_tracks.csv", 0.80, 0.0, 0.0)

# Builds the network

model = Sequential()

model.add(LSTM(32, input_shape=(4,1)))

model.add(Dense(1, activation=’linear’))

model.compile(loss=’mse’, optimizer=’adam’, metrics=[’mse’])

# Train the network

tic = timeit.default_timer() # This will time how long the training takes

history = model.fit(training_input_model, training_output_model, ...

batch_size=100, epochs=100, validation_split=0.1, verbose=1)

toc = timeit.default_timer()

# Plotting MSE / Epoch (optional)

fig1 = plt.figure()

plt.plot(history.history[’mean_squared_error’])
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plt.title(’Mean Squared Error (baseline)’)

plt.xlabel(’Epoch’)

plt.ylabel(’Mean Squared Error’)

fig1.savefig(’model_mse.png’)

# Testing the model

prediction = model.predict(testing_input_model, verbose=1)

prediction = testing_output_scaler.inverse_transform(prediction)

# Evaluating the model’s performance on testing set

prediction_list = list(prediction)

testing_output_list = list(testing_output)

difference = [0]*len(testing_output_list) # Computes absolute difference

for i in range(0, len(testing_output_list)):

difference[i] = abs(prediction_list[i] - testing_output_list[i])

difference = np.array(difference)

# Plots absolute difference

fig3=plt.figure()

plt.hist(difference, bins=100)

plt.title(’Accuracy of Model Predictions’)

plt.xlabel(’Absolute Difference between Model Prediction and Output (mm)’)

fig3.savefig(’model_acc.png’)

# Calculates and prints the average absolute difference (called delta in the report)

# and the time taken to train

print("mean difference: ", np.mean(np.array(difference)))

print("time: ", toc - tic)
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Appendix C

The Adam Optimizer

The amount by which a gradient descent algorithm adjusts the model parameters as it

moves along the loss function is called the learning rate. Choosing an appropriate learning

rate presents a challenge: if the learning rate is too large, the algorithm could overstep

the minimum point, and if the learning rate is too small, the algorithm will approach the

minimum extremely slowly.

The Adam (short for adaptive moment) optimizer [9] is a variant on gradient descent

optimization which updates the learning rate as optimization progresses. It works by keeping

track of the mean (also called the “first moment”) and the uncentered variance (the “second

moment”) of the gradient of the loss function.

Consider the following:

• E(wt), the loss as a function of the model parameters wt at iteration t of training;

• gt, the gradient of E(w) at iteration t

• mt, the estimate of the first moment of the gradient at iteration t;

• st, the estimate of the second moment of the gradient at iteration t;

• ⌘t, the learning rate at iteration t;

• �1,�2, the “forgetting factors”, typically equal to 0.9 and 0.99, respectively;

• ✏, typically equal to 10�8, a factor intended to prevent division by 0

The estimates of the first and second moments of the gradient are given by

mt = �1mt�1 + (1� �1)gt

and
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st = �2st�1 + (1� �2)g
2

t

.

The algorithm then computes

m̂t =
mt

1� �t
1

and

ŝt =
st

1� �t
2

.

The model parameters are then updated by

wt+1 = wt � ⌘t
m̂tp
ŝt + ✏

.
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