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Abstract	

	 This	paper	explores	the	correlation	between	blood	pressure	fluctuations	and	the	

severity	of	Hypoxic	Ischemic	Encephalopathy	(HIE).	Via	isolating	particular	frequency	

bands	of	blood	pressure	signal	and	calculating	their	power,	the	researcher	was	able	to	

discern	patients	with	different	HIE	severity	and	verified	the	assumption	that	less	

fluctuation	in	blood	pressure	is	correlated	with	more	severe	brain	injury.	Furthermore,	the	

researcher	attempted	to	construct	a	prediction	algorithm	based	on	power	within	certain	

frequency	bands	of	the	blood	pressure	signal.	

	 Keywords:	Blood	pressure,	HIE,	Fourier	Transform,	Kernel	Density	Estimation,	

prediction		
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I. Introduction	

Hypoxic	 Ischemic	 Encephalopathy	 (HIE)	 is	 a	 subtype	 of	 Neonatal	 Encephalopathy	

(NE),	 a	 clinical	 condition	 in	 which	 a	 neonate’s	 brain	 malfunctions.	 Although	 lacking	 a	

universal	definition,	HIE	can	be	broadly	described	as	a	condition	where	the	brain	experiences	

a	reduced	amount	of	blood	supply	or	a	diminished	amount	of	blood	perfusion	(Volpe,	2001).	

Other	 definitions	 exist,	 and	 in	 fact	 in	 many	 cases	 the	 terms	 HIE	 and	 NE	 are	 used	

interchangeably	 for	 various	 reasons.	 For	 our	 purposes,	 it	 is	 sufficient	 to	 define	 HIE	 as	

neonatal	brain	injury	related	to	insufficient	blood	flow	and	reduced	oxygen	supply.		

Reported	 incident	 rates	 of	 HIE	 varies	 greatly	 across	 nations	 and	 time,	with	 lower	

estimations	around	1.0	per	1000	live	babies	(Badawi,	et	al.,	1998)	and	higher	estimations	

around	8.0	per	1000	 live	babies	 (Thornberg,	Thiringer,	Odeback,	&	Milsom,	1995;	Hull	&	

Dodd,	1992).	The	highest	incidence	rate	reported	was	approximately	26	per	1000	live	babies	

based	 on	 a	 single	 hospital	 observation	 in	 Nigeria	 (Airede,	 1991).	 This	 discrepancy	 in	

estimation	may	be	partially	explained	by	the	lack	of	common	standards	as	well	as	varying	

ways	of	measuring	HIE,	which	is	not	uncommon	in	this	field	of	neonatology.	For	example,	no	

two	 of	 the	 previously	mentioned	 four	 studies	 used	 the	 same	 criteria	 or	measurement	 in	

determining	HIE,	and	while	 some	studies	were	population-based	estimation,	others	were	

hospital	 based,	which	 usually	 results	 in	 higher	 numbers.	Other	 potential	 confounds	 exist	

such	as	time	of	measurement	and	other	parameters.	Since	HIE	is	a	progressive	disease,	the	

time	of	measurement	as	well	as	the	gestational	age	of	a	baby	greatly	influence	the	outcome.	

Currently,	 the	 best	 estimation	 given	 by	 the	 American	 College	 of	 Obstetricians	 and	
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Gynecologists	and	the	Academy	of	Pediatrics	puts	HIE	incidence	rate	at	1.9	–	3.8	per	1000	

live	babies	(Hankins	&	Speer,	2003).			

As	 expected,	 blood	 flow	 is	 critical	 to	 neonatal	 brain	 development.	 Any	 prolonged	

disruption	in	the	delivery	of	glucose	or	oxygen	may	severely	damage	brain	function,	resulting	

in	a	hypoxia	event.	A	variety	of	clinical	conditions	may	result	in	a	hypoxia,	including	placental	

abruption,	prolapse	of	umbilical	cord,	and	uterine	rupture	(Douglas-Escobar	&	Weiss,	2015).	

A	moderate	hypoxia	event	will	likely	prompt	the	brain	to	shut	down	its	anterior	circulation	

to	redirect	and	maintain	sufficient	perfusion	for	more	critical	regions	such	as	the	brain	stem,	

cerebellum,	basal	ganglia,	and	other	regions	supporting	basic	life	functions	(Douglas-Escobar	

&	 Weiss,	 2015;	 Harteman,	 et	 al.,	 2013).	 As	 a	 result,	 regions	 supplied	 by	 the	 anterior	

circulation	such	as	 the	cerebral	 cortex	will	 suffer	 from	a	sequence	of	 injuries.	 In	extreme	

events	where	hypoxia	is	severe	and	sudden,	the	brain	might	fail	to	adequately	redirect	blood	

perfusion	 to	 critical	 regions,	 resulting	 in	 damage	 to	 the	 basal	 ganglia,	 thalami,	 or	 even	

eventually	causing	premature	death	(Douglas-Escobar	&	Weiss,	2015).		

Historically,	 the	 severity	 of	 HIE	 is	 categorized	 by	 the	 Sarnat	 Staging	 System.	 The	

Sarnat	Staging	system	is	an	observation-based	system	which	comprises	components	such	as	

muscle	tone	or	pupil	reaction.	An	infant	suspected	of	HIE	may	be	classified	into	normal,	Label	

I:	Mild,	Label	II:	Moderate,	or	Label	III:	Severe	according	to	the	Sarnat	Staging	System.	Most	

babies	being	diagnosed	as	Label	III:	Severe	HIE	suffer	from	long-term	neurological	disorders	

if	not	treated	properly	and	in	time.		

As	 one	 might	 have	 realized,	 the	 Sarnat	 Staging	 System	 is	 arguably	 neither	 very	

objective	nor	accurate.	Thanks	to	technological	advances,	better	ways	of	clinical	classifying	
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HIE	severity	such	as	Electroencephalography	(EEG)	analysis	or	Magnetic	Resonance	Imaging	

(MRI)	 analysis	 have	 been	 developed.	 However,	 due	 to	 various	 constraints,	 such	

measurements	usually	cannot	be	administered	until	some	time	after	birth.	EEG	analysis	is	

usually	done	approximately	24	hours,	48	hours,	or	72	hours	into	an	infant’s	life.	MRIs	are	

usually	done	around	the	same	time.		

While	MRI	is	often	considered	by	the	medical	field	as	the	gold	standard,	executing	MRI	

on	 infants	 is	 particularly	 hard.	 Furthermore,	 although	 MRI	 is	 thought	 to	 be	 the	 safest	

screening	method	developed	to	date,	 its	safety	on	preterm	or	near-term	infants	has	never	

been	examined	(Stokowski,	2005).	Modern	day	MRI	machines	are	predominantly	designed	

for	adults	and	are	often	large	and	noisy.	Expecting	an	infant	to	cooperate	throughout	an	MRI	

scan	will	be	unreasonable.	Besides	the	practical	difficulty	in	putting	an	infant	through	an	MRI	

scan,	interpretation	of	MRI	results	is	largely	subjective	to	the	examiner’s	experience.	In	fact,	

it	 is	 not	 uncommon	 for	 different	 medical	 practitioners	 with	 different	 backgrounds	 to	

disagree	and	come	up	with	contrasting	interpretation	of	the	same	MRI	image.	In	our	research,	

for	example,	initial	MRI	readings	were	later	determined	by	the	same	group	of	physicians	at	

UVa	 Health	 as	 rather	 inaccurate	 and	 required	 second	 readings.	 Moreover,	 developing	 a	

common	rubric	to	interpret	infant	MRI	collected	at	different	locations	is	exceedingly	difficult	

due	 to	 sheer	 number	 of	 confounds	 present.	 Incorporating	 MRI	 information	 from	 other	

institutions	requires	sending	data	back	and	forth	so	that	one	person	could	do	all	the	readings	

to	ensure	consistency.		

EEG,	 on	 the	 other	 hand,	 is	 considered	 easier	 to	 examine	 and	 depends	 less	 on	 the	

interpretation	of	individuals.	Examining	wave	forms	at	different	frequencies	gives	clinicians	

a	way	to	estimate	the	severity	of	brain	damage	of	an	infant.	However,	it	has	been	argued	that	
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compared	to	MRI,	EEG	is	less	accurate	for	predicting	long	term	outcome.	More	importantly,	

unlike	MRI	which	 is	a	direct	measurement	and	pinpoints	specific	regions	of	damage,	EEG	

only	measures	brain	electrical	activity	and	is	thus	still	indirect.		

In	conclusion,	we	found	that	most	current	ways	of	screening	for	HIE	either	require	

subjective	 interpretation	 or	 are	 hard	 to	 execute	 on	 infants.	 We	 were	 therefore	 asked	 to	

explore	alternative	methods	to	objectively	classify	HIE	severity	using	regularly-collected	data	

available	 from	 bed-side	 monitors.	 Ideally,	 such	 models	 will	 provide	 predictions	 with	

reasonable	 accuracy	 for	 physicians	 before	 any	 of	 the	 above-mentioned	 elaborate	

measurements	are	available.		

This	 is	not	the	first	study	in	which	researchers	attempted	to	classify	brain	damage	

based	on	 solely	 bed-side	monitor	 data.	 Previous	 research	has	 established	 that	 heart	 rate	

variability	may	be	negatively	correlated	with	the	severity	of	various	diseases	among	infants	

such	as	sepsis	through	spectrogram	analysis	(Aboab,	et	al.,	2008).	The	correlation	between	

certain	 pathologies	 and	 other	 bed-side	 monitor	 readings	 has	 also	 been	 examined.	

Continuous	blood	pressure,	however,	is	often	available	yet	overlooked.	In	particular,	to	the	

best	of	our	knowledge,	the	relationship	between	blood	pressure	and	HIE	severity	has	never	

been	addressed.	Blood	pressure	 in	Neonatal	 Intensive	Care	Unit	 (NICU)	 infants	 is	usually	

collected	by	sensors	implanted	in	umbilical	or	other	arteries.	Preliminary	visual	inspection	

suggests	that	blood	pressure	or	its	variability	might	actually	be	reflective	of	brain	damage.	

Naturally,	we	hypothesized	that	similar	to	how	heart	rate	fluctuation	correlates	with	sepsis,	

blood	pressure	 fluctuations	may	provide	a	measure	of	HIE	severity.	Furthermore,	we	also	

picked	up	surprising	examples	of	suspicious	pseudo-periodic	oscillation	(see	Figure	I	-	A)	in	

blood	pressure	among	some	neonates.	Some	of	 these	cases	 imitate	sinusoidal	waves	with	
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periodicity	 of	 approximately	 30	 minutes,	 others	 are	 pseudo-periodic	 yet	 heavily	 right	

skewed	and	have	lower	frequencies.	These	cases	are	few	and	far	between,	yet	the	patterns	

are	inherently	interesting	since	clear-cut	oscillations	are	seldom	seen	in	infants.	Moreover,	

such	patterns	are	seldom	reported	and	their	clinical	significance	has	never	been	examined.	

We	 are	 thus	 also	 interested	 in	 examining	 whether	 these	 periods	 of	 oscillation	 may	 be	

indicative	of	underlying	diseases.		

 

Figure I - A. Example of pseudo-periodicity in blood pressure. The horizontal axis denotes hours since birth and the vertical axis 
denotes blood pressure reading in mmHg (systolic, mean and diastolic). Interesting cyclical patterns emerge around hour 140. 	
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II. Overview	of	Dataset	

Our	 database	 consists	 of	 a	 variety	 of	 electronic	 signals	 collected	 from	monitoring	

devices	in	Neonatal	Intensive	Care	Unit	(NICU)	at	the	University	of	Virginia	Health	System	

(UVa	Health)	between	2009	to	date.	All	data	presented	are	anonymous	and	labeled	only	by	

NeoID,	 a	 pseudo-identification	 number	 which	 can	 only	 be	 correlated	 to	 the	 respective	

individual	medical	records	through	information	held	confidential	at	UVa	Health.	This	work	

has	been	approved	by	 research	compliance	committees	at	UVa	and	William	&	Mary.	 	The	

particular	dataset	used	in	this	study	consists	of	78	full-term	babies	(NeoID	range:	1127	~	

5562)	who	had	some	period	of	blood-pressure	data	recorded	within	the	first	week	of	life.	All	

babies	in	this	dataset	were	term	or	near-term	infants	who	were	suspected	of	suffering	from	

HIE,	and	hence	brought	to	the	NICU.	It	is	worth	noting	that	apart	from	HIE,	many	of	these	

babies	also	suffered	from	other	pathologies,	which	makes	it	harder	to	make	deterministic	

conclusions	as	we	progress.		

We	 identified	 two	 sets	 of	 blood	 pressure	 data	 with	 three	 signals	 per	 set	 in	 the	

database:	sig	12/sig	57,	sig	13/sig	58,	sig	14/sig	59,	 and	corresponding	 time	signals	T_sig	

12/T_sig	57,	T_sig	13/T_sig	58,	T_sig	14/T_sig	59.	sig12/sig57	corresponds	to	systolic	blood	

pressure,	sig	13/sig	58	corresponds	to	diastolic	and	sig	14/sig	59	corresponds	to	mean	blood	

pressure.	Systolic	and	diastolic	blood	pressures	are	direct	measurements	while	mean	blood	

pressure	is	computed	according	to	clinical	convention	by	taking	a	weighted	arithmetic	mean	

between	systolic	and	diastolic	blood	pressure.	A	typical	ratio	would	be:	

𝑀"# =
2
3𝐷"# +

1
3 𝑆"#	
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where	M,-	represents	mean	blood	pressure,	D,-	represents	diastolic	blood	pressure	and	S,-	

represents	systolic	blood	pressure.	All	blood	pressure	signals	are	originally	presented	with	a	

sampling	frequency	of	0.5Hz	(see	Figure	II-A).	

 

Figure II - A. Example of raw blood pressure data. The horizontal axis is hours since birth and the vertical axis is blood pressure 
reading in mmHg. Note the amount of unrealistic fluctuations that exist in this data.	

As	for	HIE	labeling,	the	dataset	includes	both	binary	labels	(Label	0:	Normal/mild	HIE,	

Label	1:	Moderate/severe	HIE)	and	conventional	Sarnat-like	three-label	classification	(Label	

1:	Normal/mild,	Label	2:	Moderate,	Label	3:	Severe)	based	on	24	hour	EEG(EEG-24),	48	hour	

EEG(EEG-48),	72	hour	EEG(EEG-72),	24	hour	MRI(MRI-24),	and	48	hour	MRI(MRI-48).	In	

this	 particular	 study,	 we	 choose	 Sarnat-like	 three-label	 EEG-24	 classification	 as	 “ground	

truth”.	

a. Pre-processing.	As	discussed	above,	the	particular	subset	of	data	we	utilized	consists	of	

data	 ranging	 from	NeoID	 1127	 to	 NeoID	 5562.	 This	 particular	 subset	 can	 be	 further	

divided	into	two	parts	in	terms	of	how	data	is	presented.	
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Figure II - B. Example of the contents of a .mat file. This file contains information for bed 11 day 0027.	

i. NeoID	≤4019:	Data	is	stored	as	.mat	files	(see	Figure	II	-	B)	in	an	external	hard	drive	

and	indexed	by	bed-day	rather	than	NeoID.	Each	.mat	file	consists	of	all	data	collected	

by	 the	bed-side	monitor	at	 that	particular	bed	on	 that	day.	 In	cases	where	multiple	

babies	occupied	the	same	bed	throughout	a	day,	the	.mat	file	still	stores	all	data	as	one	

file	without	 indicating	a	switch	 in	baby.	Additional	 information	 including	birth	 time	

and	 initial	 bed	 location	 information	 is	 provided	 in	 a	 separate	 .mat	 file	 to	 align	 the	

above-mentioned	bed-day	data	with	NeoID.	Effort	is	needed	to	extract	data	from	these	

bed-day	files	and	convert	them	into	variables	indexed	by	NeoID	for	further	processing.	

As	 is	 expected	 for	 any	 medical	 catalog,	 availability	 of	 all	 the	 above-mentioned	

measurements	vary	widely	across	babies	and	time.	

ii. NeoID	>4019:	Data	is	stored		as	 .mat	 files	 in	 a	 secured	 online	 database.	 These	 data	

have	mostly	been	preprocessed;	 they	contain	only	blood	pressure	and	other	critical	

signals.	 The	baby-bed-day	matching	which	was	necessary	 for	 infants	with	NeoID	≤

4019	had	already	been	finished	by	collaborators	at	UVa	Health.	Hence,	these	data	are	

already	indexed	by	NeoID,	and	minimum	pre-processing	is	necessary	for	these	data.	

	



SPECTROGRAM ANALYSIS OF NEONATAL BLOOD PRESSURE 14 

III. Filtering	

Clinical	 data	 is	 usually	 messy,	 and	 our	 dataset	 does	 not	 deviate	 from	 this	 norm.	

Artifacts	in	blood	pressure	data	can	arise	for	a	variety	of	reasons,	including	flushing,	motional	

artifacts,	body	position,	and	also	other	medical	interventions	such	as	drug	administration.	In	

our	particular	dataset,	three	particular	types	of	artifacts	are	prominent:	

a. Flushing.		Flushing	refers	to	the	act	of	disconnecting	the	measurement	device	to	release	

gas	 that	 has	 accumulated	 throughout	 the	 system.	Artifacts	 caused	 by	 flushing	 usually	

exhibit	unique	patterns	where	all	three	blood	pressure	readings	spike	and/or	converge	

(see	Figure	III	-	A).		

 

Figure III - A. Example of possible flushing. The horizontal axis denotes hours since birth and vertical axis denotes blood pressure 
readings in mmHg. Note the sudden spike and convergence around hour 25.83.	

The	first	part	of	our	filtering	algorithm	deals	with	this	type	of	artifact.	First,	we	define	

time-series	S,-,	D,-,	M,-	that	correspond	to	systolic,	diastolic	and	mean	blood	pressure	

as	usual.	The	 ith	point	 in	 these	 time	 series	 can	be	 referenced	by	S,-(𝑖),	D,-(𝑖),	M,-(𝑖)	
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respectively.	For	this	part	of	the	filtering,	we	assume	no	time	discrepancy	between	three	

signals	which	means	S,-(𝑖),	D,-(𝑖),	M,-(𝑖)	should	share	a	common	time-stamp	t.	(Time	

discrepancies	are	handled	through	another	part	of	the	filtering	process.)	In	this	filtering	

step,	 we	 eliminate	 points	 where	 the	 differences	 between	 the	 three	 blood	 pressures	

signals	are	smaller	than	a	selected	threshold	α ≥ 0,	which	can	be	represented	as:		

9
S:;<=><? = 	 {𝑆"#(𝑖)|	C𝑆"#(𝑖) − 𝑀"#(𝑖)C ≥ 𝛼 ∨ |𝑀"#(𝑖) − 𝐷"#(𝑖)| ≥ 𝛼}	
M:;<=><? = 	 {𝑀"#(𝑖)|	C𝑆"#(𝑖) − 𝑀"#(𝑖)C ≥ 𝛼 ∨ |𝑀"#(𝑖) − 𝐷"#(𝑖)| ≥ 𝛼}	
𝐷HIJKLJM = 	 {𝐷"#(𝑖)|	C𝑆"#(𝑖) − 𝑀"#(𝑖)C ≥ 𝛼 ∨ |𝑀"#(𝑖) − 𝐷"#(𝑖)| ≥ 𝛼}	

	

By	adjusting	α,	the	researcher	has	total	control	over	the	filtering	criteria	and	can	tighten	

or	loosen	the	criteria	as	desired.		

For	this	particular	study,	α	was	set	to	3	mmHg.		

b. Gaps.	Gaps	in	data	are	another	type	of	artifact	prominent	in	this	dataset.	Gaps	can	arise	

from	 multiple	 reasons	 such	 as	 the	 infant	 being	 transferred	 to	 another	 location,	

detachment	from	measurement	device,	or	any	other	medical	operation	in	which	a	blood	

pressure	measurement	is	not	available	(see	Figure	III	-	B).	

To	 remove	 gaps	 in	 the	 dataset,	 the	 researcher	 applied	 linear	 interpolation	where	

applicable.	In	particular,	the	researcher	utilized	the	Matlab	built-in	fillmissing()	function,	

and	in	particular,	parameters	were	set	to:	

[x_new]	=	fillmissing(…,’linear’);	

Upon	completion,	additional	visual	inspection	was	implemented	to	ensure	reasonable	

interpolation	results.		
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Figure III - B. Example of a substantial gap in data. The horizontal axis denotes hours since birth and the vertical axis denotes 
blood pressure readings in mmHg. Note the substantial gap starting around hour 73 and lasting for over an hour. 	

c. 	Random	Fluctuations.	A	third	prominent	artifact	in	this	dataset	is	random	fluctuation.	

This	 could	 again	 be	 caused	 by	 different	 reasons,	 including	 movement	 of	 the	 baby,	

medication,	 inspection	 of	 the	 baby,	 or	 other	 reasons	 not	 known	 to	 us.	 Typical	

characteristics	of	such	fluctuations:	(a)	a	sudden	rise	or	drop	in	one	or	all	of	the	blood	

pressure	signals,	(b)	one	or	all	of	the	blood	pressure	readings	drastically	undershooting	

or	overshooting	the	normal	range,	(c)	sudden	discrepancy	between	two	consecutive	data	

points	of	a	single	signal,	(d)	prolonged	period	of	wild	oscillation	(see	Figure	III	-	C).		

Carrying	 on	 the	 notations	 assumed	 in	 3.1	 Flushing,	we	 define	 a	 second	 threshold	

variable	τ.	Then	we	filtered	these	artifacts	by	the	following	procedure:	

9
S:;<=><? = 	 {𝑆"#(𝑖)|	C𝑆"#(𝑖 + 1) − 𝑆"#(𝑖)C ≤ 𝜏 ∨ 20 ≤ 𝑆"#(𝑖) ≤ 100}	

M:;<=><? = 	 {𝑀"#(𝑖)|	C𝑀"#(𝑖 + 1) − 𝑀"#(𝑖)C ≤ 𝜏 ∨ 20 ≤ 𝑀"#(𝑖) ≤ 100}	
𝐷HIJKLJM = 	 {𝐷"#(𝑖)|	C𝐷"#(𝑖 + 1) − 𝐷"#(𝑖)C ≤ 𝜏 ∨ 20 ≤ 𝐷"#(𝑖) ≤ 100}	

	

• Remove	the	second	data	point	if	two	consecutive	data	points	in	one	signal	differ	by	a	

number	larger	than	τ;		
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• Remove	data	points	substantially	over	or	under	the	normal	range,	which	is	defined	as	

between	20	~	100	for	all	blood	pressure	signals.		

It	is	worth	noting	an	additional	protection	mechanism	was	in	place	that	will	override	

this	 particular	 section	 of	 the	 filtering	 algorithm	 if	 triggered.	 If	 the	 gap	 between	 two	

consecutive	 data	 points	 is	 longer	 than	 or	 equal	 to	 10	 seconds,	 the	 above-mentioned	

filtering	criteria	is	not	imposed	to	avoid	excessive	filtering.		

In	this	study,	𝜏	was	set	to	be	5.	

 

Figure III - C. Example of random fluctuations. The horizontal axis denotes hours since birth and the vertical axis denotes blood 
pressure readings in mmHg. Note the unrealistic readings in systolic and diastolic blood pressure around hour 88.2.	

d. Misalignment.	Misalignment	refers	to	cases	where	some	or	all	three	signals	do	not	start	

at	the	same	time.	This	phenomenon	is	especially	prominent	when	the	signal	picks	up	after	

a	 prolonged	 gap.	 Conceptually,	 such	 time	 discrepancies	 are	 reasonable	 since	 systolic	

pressure	and	diastolic	pressure	alternate.	At	any	particular	moment,	the	heart	is	either	

in	systolic	or	diastolic	state,	and	in	theory	one	cannot	measure	systolic	and	diastolic	blood	

pressure	simultaneously.	Additionally,	since	mean	blood	pressure	is	computed	by	taking	
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a	 weighted	 mean	 of	 systolic	 and	 diastolic	 pressure,	 it	 is	 reasonable	 for	 mean	 blood	

pressure	to	be	lagging	even	more.	This	discrepancy,	however,	proves	to	be	problematic	

for	further	analysis.	To	tackle	this	issue,	we	resampled	all	signals	to	1Hz	frequency	with	

universal	time	stamp:	

𝑇QLRSJTUKI = {𝑡|𝑡 ∈ 𝑇}.	

e. Other	 general	 rules.	 Other	 general	 rules	 are	 observed	 and	 imposed	 to	 ensure	

reasonable	outcomes	throughout	the	filtering	processing.	Some	of	these	rules	include:	

• No	negative	data-points	should	be	allowed;	

• The	order	𝑆"#(𝑖) ≥ 𝑀"#(𝑖) ≥ 𝐷"#(𝑖)	should	always	hold.	

The	abovementioned	rules	of	filtering	are	imposed	upon	the	data	from	all	available	

babies,	and	filtered	blood-pressure	signals	are	stored	as	both	variables	in	workspace	as	well	

as		.fig	Matlab	figure	files	for	future	examination	and	retrieval	(see	Figure	III	-	D).		

Visual	inspection	of	all	the	filtered	blood	pressure	signals	made	us	exclude	24	babies	

whom	either	had	insufficient	data	(less	than	2	days),	substantial	periods	of	missing	data,	or	

who	had	blood	pressure	signal	only	after	Day	3.	Babies	with	no	corresponding	HIE	 labels	

were	also	not	included.	This	left	us	with	a	total	of	54	babies	(Label	1:	n	=	25,	Label	2:	n	=	11,	

Label	3:	n	=	18),	which	is	the	dataset	we	based	our	analysis	on.	
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Figure III - D. Example of filtering result. The horizontal axis denotes hours since birth and the vertical axis denotes blood 
pressure readings in mmHg. The top three signals are the unfiltered raw blood pressure data. The bottom three signals are the 
corresponding filtered blood pressure minus 100 mmHg. Note the degree to which filtering has helped, albeit some apparent 

artifacts still exist. 	
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IV. Fourier	Analysis	

A	previous	study	by	Zachery	Vesoulis	and	others	has	established	correlation	between	

blood	 pressure	 fluctuation	 and	 effectiveness	 of	 inotrope	 treatment	 (Vesoulis,	 Mathur,	 &	

Mcpherson,	2017).	In	that	study,	Vesoulis	et	al.		approached	the	data	by	breaking	down	blood	

pressure	 into	 four	 continuous	 frequency	 bands	 which	 correlate	 to	 different	 underlying	

physiological	phenomena.		As	we	were	also	interested	in	pseudo-periodic	behaviors	of	blood	

pressure	and	also	hypothesized	a	correlation	between	blood	pressure	fluctuation	and	brain	

damage,	we	adopt	a	similar	approach.	Since	our	data	was	approximately	week-long	and	we	

were	 also	 interested	 in	 hour-long	 fluctuations,	 we	 added	 additional	 frequency	 bands	 to	

analyze	fluctuations	with	lower	frequencies.	To	be	specific,	we	broke	down	our	data	into	the	

following	3	sets	which	constitutes	a	total	of	10	continuous	frequency	bands.	These	sets	and	

bands	will	be	repeatedly	utilized	throughout	this	paper:			

• Set	1,	identified	by	Vesoulis	et	al.	(Vesoulis,	Mathur,	&	Mcpherson,	2017):	

o Band	A:	6	~	17	seconds,	corresponding	to	myogenic	waves;		

o Band	B:	17	~	51	seconds,	corresponding	to	neurogenic	waves;	

o Band	C:	 51	~	105	 seconds,	 corresponding	 to	 endothelial	NO-dependent	

waves;		

o Band	D:	105	~	300	seconds,	roughly	corresponding	to	endothelial	waves;		

• Set	2:	

o Band	E:	5	~	10	minutes;		

o Band	F:	10	~	20	minutes;		

o Band	G:	20	~	30	minutes;	
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• Set	3:	

o 	Band	H:	0.5	~	1	hour;	

o 	Band	I:	1	~	2	hours;		

o Band	J:	2	~	3	hours.	

To	begin,	we	sought	to	analyze	how	each	frequency	band	contributes	to	the	overall	

signal	by	 isolating	each	frequency	band.	Two	different	methods	of	 isolating	signal	 in	each	

frequency	bands	were	tried	and	tested.		

a. Hard	 Thresholding:	 A	 hard	 threshold	 essentially	 imitates	 a	 band-pass	 filter	 with	 a	

vertical	 cliff	 and	 no	 tail	 (also	 known	 as	 a	 brick-wall	 filter).	 To	 achieve	 this	 desired	

performance,	we	built	our	own	algorithm	based	on	Matlab’s	built-in	FFT	function	fft().	

According	to	Matlab	documentation	(MATLAB,	2006),	the	fft()	 function	computes	a	

discrete	 Fourier	 transform	 based	 on	 the	 standard	 fast	 Fourier	 transform	 algorithm.	

Suppose	 we	 have	 a	 vector/array	 of	 time-series	 data	 X,	 then	 Y	 =	 fft(X)	 computes	

𝑌(𝑘) =Z𝑋(𝑗)𝑒^
_`R
L (a^b)(c^b)	

L

adb

	

where	Y(k)	is	the	frequency	domain	representation	of	the	respective	input	vector/array.			

After	 retrieving	 the	 frequency	 domain	 representation	 of	 the	 input	 data,	 we	 may	

impose	a	hard	threshold	by	the	following:	

• Identify	 frequencies	 that	match	with	 the	upper-bound	 and	 lower-bound	of	 the	

desired	frequency	band	to	construct	an	interval	of	interest.	It	is	worth	noting	that	

more	often	than	not	the	frequencies	at	which	coefficients	are	calculated	through	

discrete	Fourier	transform	do	not	exactly	coincide	with	the	desired	upper	or	lower	

boundaries,	so	a	closest	frequency	is	chosen.	
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• Annihilate	the	signal	at	all	frequencies	that	are	not	in	the	interval	of	interest	by	

replacing	 their	 Fourier	 coefficients	 with	 zeroes.	 Preserve	 all	 data	 within	 the	

interval	of	interest	for	band	reconstruction.			

After	imposing	a	hard	threshold,	we	may	reconstruct	the	blood-pressure	within	this	

particular	frequency	band	by	utilizing	the	Matlab	built-in	inverse	Fast	Fourier	Transform	

function,	 ifft().	 Again	 according	 to	 Matlab	 documentation	 (MATLAB,	 2006),	 the	 ifft()	

function	calculates	the	following:	Suppose	we	have	frequency	domain	information	Y,	then	

the	corresponding	time-series	data	is	computed	by:	

𝑋(𝑗) =
1
𝑛Z𝑌(𝑘)𝑒^

_`R
L ^(a^b)(c^b)	

L

cdb

	

After	 examining	 this	 methodology,	 we	 discovered	 that	 imposing	 a	 hard	 threshold	

could	potentially	result	in	undesired	behaviors	such	as	oscillations	and	other	artifacts	in	

the	reconstructed	data	due	to	the	nature	of	a	brick-wall	filter.	Hence,	we	decided	that	a	

soft	threshold	would	be	a	better	option.	

b. Soft	Thresholding:	A	soft	threshold	is	essentially	a	band-pass	filter	with	a	non-vertical	

cliff	 and	 some	 tail	 across	 the	 entire	 frequency	 range.	 To	 impose	 a	 soft	 threshold,	we	

utilized	 the	Matlab	 built-in	 zero-phase	 filtering	 filtfilt()	 function,	which	 filters	 a	 time-

series	data	according	to	a	provided	filter.	To	 impose	a	 filtfilt()	 function,	one	must	 first	

construct	a	filter	using	the	designfilt()	function.	In	this	particular	application,	we	chose	a	

Butterworth	Infinite	Impulse	Response	filter	(IIR)	rather	than	a	Finite	Impulse	Response	

filter	(FIR)	to	achieve	faster	computation	speed.	Specifically,	we	defined	the	half-power	

frequency	of	the	filter	to	be	the	upper	and	lower	boundaries	of	the	frequency	band	of	
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interest	and	a	filter	order	of	around	five	to	avoid	the	ringing	oscillations	resulting	from	a	

brick-wall	filter.		

After	constructing	the	desired	filter,	we	imposed	the	filter	on	our	time-series	blood-

pressure	data	to	isolate	the	desired	frequency	band.	

Below	is	an	example	of	the	reconstructed	blood	pressure	(see	Figure	IV	-	A):	

 

Figure IV - A. Example of reconstructed blood pressure within a frequency band. The horizontal axis denotes days since start of 
data, and the vertical axis denotes fluctuation of blood pressure.	

After	identifying	soft-thresholding	as	the	way	to	isolate	a	particular	frequency	band,	

we	isolated	blood	pressure	for	all	ten	frequency	bands	(Band	A	to	J)	for	each	of	the	54	babies	

for	 whom	 we	 had	 data	 and	 a	 corresponding	 HIE	 label.	 Visual	 examination	 of	 the	

reconstructed	blood	pressures	suggests	particularly	interesting	changes	in	Band	D:	105	~	

300	seconds,	which	we	decided	to	further	examine	with	spectrogram	analysis.	
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V. Spectrogram	&	Power	Analysis		

After	identifying	frequencies	of	interest	via	Fourier	transform,	we	decided	it	would	be	

beneficial	to	further	analyze	the	patterns	of	blood-pressure	fluctuations	by	computing	their	

power	via	spectrogram.		

a. Spectrogram	 across	 all	 Frequencies.	 For	 our	 purpose,	 we	 once	 again	 utilized	 the	

Matlab	built-in	spectrogram()	function.	The	spectrogram()	function	calculates	the	power	

spectrum	density	(PSD)	of	each	input	segment	at	different	frequencies	using	short-term	

Fourier	 transform	 similar	 to	 what	 is	 done	 in	 Chapter	 IV.	 To	 demonstrate,	 the	

Spectrogram()	function	can	be	called	with	the	following:		

[s,	f,	t,	ps,	fc,	tc]	=	spectrogram(x,	…,	fs)	

where	x	is	the	input	time-series	(usually	a	segment	of	the	entire	time-series),	fs	indicates	

the	sample	rate	of	the	input	signal.	On	the	output	side	of	the	function,	we	are	particularly	

interested	in	the	variables	ps	and	f	since	they	correspond	to	the	power	spectral	density	

and	the	exact	frequencies	at	which	PSD	coefficients	are	calculated.	Below	is	an	example	

of	f	(see	Figure	V	-	A)	and	ps	(see	Figure	V	-	B):	

 

Figure V - A. Example of frequencies in Hz at which power is calculated.	
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Figure V - B. Example of power spectrum density matrix. Each column represents one segment in which power is calculated.	

As	demonstrated,	ps	 is	an	a × b	matrix	with	each	column	indicating	the	power	 in	a	

particular	window	and	each	row	indicating	a	particular	frequency.	It	is	worth	noting	that	

since	 Fourier	 transform	 operates	 by	 transforming	 time	 domain	 information	 into	

frequency	domain	information,	technically	f	and	tc	cannot	be	retrieved	at	the	same	time.	

tc	 in	 this	 calculation	 actually	 represents	 the	 middle	 time-stamp	 of	 the	 input	 blood	

pressure	segment.	To	be	specific,	we	performed	windowing	to	generate	each	segment,	

which	is	discussed	later.	

One	 thing	 worth	 noting	 is	 that	 the	 Matlab	 documentation	 of	 the	 spectrogram()	

function	(Matlab,	2006)	is	not	clear.	In	particular,	it	did	not	explain	how	it	calculates	the	

underlying	Fourier	transform	and	glossed	over	the	details	of	what	is	exactly	is	calculated	

to	get	the		resulting	power	spectral	density.	To	achieve	a	better	understanding	of	how	PSD	

is	 actually	 calculated	 in	 the	 spectrogram()	 function	 since	 this	 is	 arguably	 the	 most	

important	part	of	this	project,	we	decided	compose	a	naïve	indigenous	power	spectral	

function	based	on	simple	 fft()	 to	 test	 the	concept.	 In	essence,	we	adopted	the	discrete	
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version	of	the	following	formula	under	the	assumption	that	the	total	power	in	our	signal	

is	finite	and	hence	the	Parseval	theorem	is	applicable:		

𝑝𝑠𝑑 = 	l |𝑥(𝑓)|_𝑑𝑓
o

^o
	

where			

𝑥(𝑓) = 	l 𝑒^_`Rpq
o

^o
𝑥(𝑡)𝑑𝑡	

	 By	comparing	results	calculated	by	the	built-in	spectrogram()	function	and	our	naïve	

function,	we	arrived	at	the	conclusion	that	although	slight	differences	exist	in	the	exact	

frequencies	that	were	chosen	to	calculate	the	PSD,	the	results	are	generally	in	line.	Hence,	

we	 are	 cleared	 to	 proceed	 by	 implementing	 the	 built-in	 function	 as	 it	 is	 generally	

computationally	faster	(see	Figure	V	–	C	for	example	of	a	spectrogram).		

 

Figure V - C. Example of a full-scale spectrogram. The horizontal axis denotes time since start of data and the vertical axis 
denotes frequency. This spectrogram is done with a Hann window, which will be discussed below.	

To	ensure	 that	 the	PSD	calculated	 is	not	dramatically	 influenced	by	 the	spikes	and	

remaining	artifacts	in	the	blood	pressure	signal,	we	decided	to	impose	windowing	with	
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overlaps.	We	 imposed	 a	 Hann	 window	 (see	 Figure	 V	 -	 D)	 on	 each	 segment	 of	 blood	

pressure	input.	A	Hann	window	has	the	following	characteristics:	

𝑤(𝑛) =
1
2 (1 − 𝑐𝑜𝑠	(

2𝜋𝑛
𝑁 ))	

where	w(n)	are	the	corresponding	coefficients	of	the	window	with	size	N.		The	size	of	the	

Hann	window	will	be	discussed	below.	

 

Figure V - D. Example of a Hann window of size 100.	

b. Power	 within	 each	 Frequency	 Band.	 Although	 we	 were	 primarily	 interested	 in	

fluctuations	in	Band	D:	105	~	300	seconds,	we	decided	to	calculate	the	power	spectrum	

for	all	bands	identified	in	Chapter	IV.	This	requires	our	window	length	to	vary	according	

to	 the	 frequency	 band	 in	 question	 since	 overly-large	 or	 small	 windows	 might	 have	

negative	 effects	 such	 as	masking	 or	 spiking	 on	 the	 outcome.	 	 For	 each	 frequency	 Set	

identified	in	Chapter	IV,	we	defined	corresponding	window	length:		

𝑙K ≅ 10 ∗ 	𝑚𝑖𝑛𝑓𝑟𝑒𝑞({𝑠𝑒𝑡K: 𝐵𝑎𝑛𝑑�, 𝐵𝑎𝑛𝑑�, 𝐵𝑎𝑛𝑑� … }	)	

To	be	specific,	the	window	for	each	‘Set’	is	defined	as:	
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• Window	size	and	overlaps	for	Set	1:	30-minute	window	moving	5	minutes	ahead	

each;	

• Window	size	and	overlaps	for	Set	2:	5-hour	window	moving	5	minutes	ahead	each;	

• Window	size	and	overlaps	for	Set	3:	12-hour	window	moving	30	minutes	ahead	

each;	

We	 calculated	 three	different	PSD	 for	 each	baby	according	 to	 the	abovementioned	

three	sets	of	window	length	and	overlaps,	with	the	results	labeled	PS_1,	PS_2,	and	PS_3.	

Note	that	at	this	moment,	PS_1,	PS_2,	and	PS_3	are	three	complete	power	spectra	with	

different	window	lengths	and	they	each	include	data	for	all	10	frequencies.	To	isolate	each	

frequency	band,	the	following	procedure	is	needed:	

• Determine	which	 ‘Set’	 the	 frequency	 band	 in	 question	 belongs	 to	 and	 find	 the	

corresponding	PS	data	with	correct	window	length;	

• Identify	the	upper	and	lower	boundaries	u	and	l	in	terms	of	Hz	of	the	frequency	

band	in	question;	

• Find	the	corresponding	upper	and	lower	frequencies	in	frequency	variable	f	and	

establish	a	row	interval.	Similar	to	Chapter	IV-a,	the	closest	approximate	is	used	

when	an	exact	match	cannot	be	achieved;	

• Collapse	the	row	interval	by	summing	the	power	within	the	interval.		

𝑝𝑠UQ�(1: 𝑡) = 𝑠𝑢𝑚(𝑝𝑠(𝑢: 𝑙, 𝑡))	

The	resulting	1 × b	matrix	will	contain	the	sum	power	within	a	frequency	band	

at	each	time	stamp.	The	corresponding	time	stamp	remains	to	be	tc.	
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With	this	method,	we	generated,	for	each	baby,	10	power	spectra	which	correspond	

to	the	10	frequency	bands	identified.	Plotting	these	power	spectra	with	area()	function	

plots	gives	us	results	similar	to	the	following	(see	Figure	V	–	E,F,G):	

 

Figure V - E. Example of raw power in Band D: 105 ~ 300s. 

 

Figure V - F. Example of raw power in Band F: 10 ~ 20min. 

 

Figure V - G. Example of raw power in Band I: 1 ~ 2h 

c. Averaging	&	Resampling	Power.	After	visually	inspecting	the	power	spectra	generated	

and	HIE	severity	labels	for	some	babies,	we	concluded	that	there	are	preliminary	trends	

supporting	 our	 initial	 hypothesis	 stating	 that	 the	 degree	 of	 fluctuation	 is	 negatively	

correlated	 with	 brain	 damage	 severity.	 In	 particular,	 we	 observe	 stark	 differences	 in	
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degree	of	fluctuation	in	Band	D,	which	we	demonstrated	with	the	following	two	examples	

(see	Figure	V	–	H,	I):	

 

Figure V - H. Band D 105 ~ 300s raw power for Baby NeoID 1127. This baby is classified as Label 3 – Severe HIE.  

 

Figure V – I. Band D 105 ~ 300s raw power for Baby NeoID 1165. This baby is classified as Label 1 – Normal/Mild. 

To	better	display	the	differences	between	Group	1	and	Group	3,	we	further	process	

the	power	spectra	by	smoothing	out	sudden	spikes	and	grooves.	Smoothing	was	carried	

out	by	taking	the	arithmetic	mean	of	the	power	spectrum	in	each	band	across	a	six-hour	

window	moving	one	hour	ahead	in	each	step.	The	resulting	curve	will	be	referred	to	as	

“raw	average	power”	(see	Figure	V	-	J).	This	technique	helps	us	trace	the	silhouette	of	the	

power	spectrum	without	being	distracted	by	brief	and	sudden	changes.	

To	compare	the	difference	in	power	in	different	babies,	we	need	to	harmonize	the	time	

stamps.	The	Matlab	built-in	resample()	algorithm	was	used	to	linearly	resample	the	raw	

average	 power	 at	 each	 hour	 mark	 within	 the	 first	 week,	 resulting	 in	 a	1 × 168 	one-
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dimensional	array	for	each	baby.	This	array	will	be	referred	to	as	the	average	power	of	

each	baby	and	will	be	utilized	in	the	clustering	process	discussed	in	the	next	part.	

 

Figure V – J. Example of raw averaged power in Band D. Note that the orange raw averaged power line traces the outline of the 
raw power but leaves out details such as the sudden spikes.	
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VI. Clustering,	Kernel	Density	Estimation	&	Predictions	

Tasked	with	the	mission	to	construct	a	prediction	algorithm,	we	first	test	if	averaged	

power	can	be	clustered	according	to	HIE	severity.	Encouraged	by	promising	visual	inspection	

results	suggesting	a	significant	difference	in	power	in	Band	D	(105	~	300s),	we	decided	that	

our	main	focus	will	be	to	attempt	to	cluster	Band	D	averaged	power	against	HIE	severity.	

a. Clustering.	Recall	that	under	the	Sarnat	Staging	System,	HIE	severity	can	be	divided	into	

three	 different	 categories:	 Label	 1	 –	Normal/mild,	 Label	 2	 –	Moderate,	 and	 Label	 3	 –	

Severe.	 We	 started	 by	 simply	 plotting	 averaged	 powers	 against	 their	 severity	 label	

according	to	the	Sarnat	Staging-like	EEG-24	labeling	supplied	by	UVa	Health	(see	Figure	

VI	-	A).	

 

Figure VI - A. Averaged power plotted against HIE severity labels. Note the dramatic difference between Label 1 and Label 3	

	 As	seen	in	the	above	figure,	it	is	tempting	to	conclude	that	Label	1	–	Normal/mild	and	

Label	3	–	Severe	are	two	different	clusters.	Label	2	–	Moderate	seems	to	exhibit	patterns	

of	both	Label	1	and	Label	3	and	is	thus	hard	to	interpret.		
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	 An	obvious	drawback	to	the	above	figure	is	that	the	vertical	lines	which	signal	the	end	

of	the	averaged	power	data	as	well	as	the	random	fluctuations	across	the	week	made	it	

hard	 to	 identify	 the	 exact	boundaries	or	patterns	 for	 clustering.	To	better	discern	 the	

three	groups	from	each	other,	we	utilize	a	box	plot	to	demonstrate	the	general	trend	while	

leaving	out	the	individual	fluctuations.	In	particular,	the	Matlab	built-in	boxplot()	function	

is	called,	and	a	box	plot	is	generated	at	each	hour	mark	showing	the	spread	of	averaged	

power	within	each	group	for	the	entire	first	week	(see	Figure	VI	-	B).		

 

Figure VI - B. Box plot for averaged power in each Label throughout the first week. Red crosses indicate outliers identified by 
Matlab; red dashes in the box indicate the median value, each box indicate the 25th ~ 75th quartile range, and the whiskers 

signify the range of valid data-points.	

	 	With	the	box	plot	above,	we	were	able	to	verify	our	hypothesis	that	there	is	a	clear	

separation	between	Label	1	and	Label	3.	Without	assuming	normality,	additional	ranked-

sum	 tests	 further	 supported	 this	 claim.	 In	 particular,	 we	 identified	 two	 interesting	

patterns	 which	 we	 would	 like	 to	 further	 investigate	 and	 could	 be	 valuable	 for	

constructing	a	prediction	algorithm:	
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• The	difference	in	trend	in	Label	1	vs.	Label	3	before	the	8th	data	point	(5th	~	11th	

hour	averaged	power):	While	averaged	power	exhibits	a	rise	and	fall	pattern	near	

the	start	of	 the	 first	day	 in	Label	1,	averaged	power	 consistently	drops	with	no	

obvious	rise	in	Label	3.		

• The	difference	 in	absolute	value	 in	Label	1	vs.	Label	3:	While	average	power	 in	

Label	1	has	a	median	of	approximately	125	across	the	entire	week,	average	power	

in	 Label	 3	 has	 a	 median	 of	 only	 approximately	 25.	 The	 contrast	 is	 especially	

obvious	towards	the	end	of	the	24th	data	point	(21st	~	27th	hour	averaged	power).	

To	verify	the	whether	the	trend	identified	in	the	first	point	of	interest	could	be	helpful,	

we	carried	out	further	calculations.	In	particular,	we	calculated:	

𝑟𝑎𝑡𝑖𝑜 =
𝑝(𝑡b)
𝑝(𝑡_)

, 𝑡b < 𝑡_ ≤ 8	

where	p(t)	is	the	averaged	power	for	each	baby.		We	concluded	that	although	the	trend	

might	 be	 valid,	 the	 exact	 location	 at	 which	 the	 averaged	 power	 rises	 and	 falls	 differ	

substantially	across	babies	and	thus	a	simple	ratio	calculation	will	not	be	useful.	Due	to	

time	constraints,	we	decided	to	table	this	route	and	moved	on	to	examine	whether	we	

could	base	our	predictions	on	the	second	point	of	interest.		

b. Kernel	Density	Estimation	(KDE).	 	One	common	technique	that	is	frequently	used	to	

discern	 samples	 collected	 from	 hypothetically	 different	 distribution	 is	 to	 perform	 a	

Kernel	Density	Estimation.		A	KDE	on	our	data	will	be	particularly	beneficial	since	it	will	

give	us	a	more	intuitive	understanding	of	how	data	with	different	Labels	are	distributed.	

To	 construct	 a	 KDE,	we	 once	 again	 relied	 on	 the	Matlab	 built-in	 ksdensity()	 function.	

According	 to	 Matlab	 documentation	 (MATLAB,	 2006),	 ksdensity()	 estimates	 the	
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probability	 density	 function(pdf)	 of	 a	 random	 variable.	 In	 particular,	 ksdensity()	

calculates:		

𝑝�(𝑥) =
1
𝑛ℎZ𝐾 �

𝑥 − 𝑥R
ℎ �

L

Rdb

	

where	 x� = [𝑥b, 𝑥_, 𝑥�, … , 𝑥L] 	is	 the	 input	 sample,	 K(x)	 is	 the	 kernel	 function,	 and	 h	

represents	the	corresponding	bandwidth.	For	our	purpose,	we	chose	to	fit	our	data	with	

an	Epanechnikov	distribution,	which	can	be	calculated	by:		

𝐾(𝑢) =
3
4
(1 − 𝑢_), |𝑢| < 1,	

and	K(u)	=	0	otherwise.	

	 Before	we	proceed	to	fit	our	data	with	Epanechnikov	kernels,	some	pre-processing	is	

needed.	For	each	severity	Label,	we	collected	averaged	power	for	all	babies	within	that	

group,	resulting	in	a	𝑛 × 168	matrix,	with	n	being	the	number	of	babies	with	that	label.	

We	then	reshaped	the	abovementioned	matrix	into	a		1 × 𝑚	one-dimensional	array	and	

removed	 NaNs	 and	 0s	 which	 we	 originally	 used	 to	 signal	 missing	 data.	 We	 then	

considered	 each	 data	 point	 in	 this	1 × 𝑚 	array	 as	 an	 independent	 data	 point,	 hence	

collapsing	the	time	and	baby	dimensions	of	our	data.	After	this	procedure,	we	were	able	

to	 fit	 the	 abovementioned	 Epanechnikov	 kernel	 onto	 our	 data	 by	 simply	 calling	 the	

ksdensity()	function	(see	Figure	VI	–	C).		
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Figure VI - C. Kernel Density Estimation based on the entire week’s data. The horizonal axis represents averaged window and the 
vertical axis represents corresponding probability.	

	The	KDE	analysis	once	again	supports	our	previous	conclusion	that	most	data	points	

in	Label	1	are	distributed	around	125,	most	data	points	in	Label	3	are	distributed	around	

25	and	data	points	in	Label	2	exhibit	properties	of	both	Label	1	and	3.		

c. Prediction.	Based	on	these	probability	density	functions,	we	were	able	to	construct	the	

probability	 that	 a	 given	 observed	 power	 will	 correspond	 with	 a	 particular	 label.	 In	

particular,	according	to	Bayes	theorem	we	may	compute:	

𝑝(𝑙𝑎𝑏𝑒𝑙	𝛼|𝑝𝑜𝑤𝑒𝑟) =
𝑝(𝑝𝑜𝑤𝑒𝑟|𝑙𝑎𝑏𝑒𝑙	𝛼)𝑝(𝑙𝑎𝑏𝑒𝑙	𝛼)

𝑝(𝑝𝑜𝑤𝑒𝑟) 	

After	consulting	medical	practitioners,	we	were	informed	that	a	prediction	based	on	

data	collected	within	approximately	the	first	24	hours	will	be	most	useful	since	EEG	and	

MRI	examinations	are	usually	only	 carried	out	 after	 the	24th	hour	mark	and	very	 few	

biomarkers	have	been	identified	to	reliably	predict	HIE	severity	well	within	the	first	24	

hours	 of	 birth.	Hence,	we	 decided	 that	 rather	 than	 utilizing	 the	 entire	week’s	 data,	 it	

would	be	more	useful	to	construct	density	distributions	using	only	data	around	the	24th	
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hour	 mark	 and	 construct	 a	 prediction	 based	 on	 these	 pdfs	 only.	 To	 be	 specific,	 we	

examined	the	following	two	periods:	

• 18th	~	24th	data	point,	or	15th	~	27th	hour	due	to	averaging;	

• 24th	~	30th	data	point,	or	21st	~	33rd	hour	due	to	averaging.	

Adopting	 the	same	steps	we	used	 to	construct	KDE	 for	 the	entire	week’s	data,	 the	

resulting	KDE	based	on	the	18th	~	24th	data	point	is	(see	Figure	VI	-	D):	

 

Figure VI - D. Kernel Density Estimation based on the 18th ~ 24th data point. The horizonal axis represents raw power and the 
vertical axis represent the corresponding probability density. The general trend follows our expectation.	

Combining	this	KDE	and	the	abovementioned	Bayes	theorem	allows	us	to	predict	the	

probability	a	given	power	will	fall	into	each	Label	within	this	period	of	time	(see	Figure	

VI	-	E).		
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Figure VI – E. Prediction functions plotted above histogram based on 18th ~ 24th data point. The left vertical axis denotes the 
probability a power lies in a particular group, and the right vertical axis denotes number of instances each power is observed in 

each label.	

We	overlaid	a	histogram	representing	data	distribution	within	this	period	over	the	

prediction	curves	to	emphasize	the	difference	in	strength	of	our	prediction	at	different	

powers.	As	expected,	a	prediction	based	on	more	data	(higher	histogram	value)	is	less	

susceptible	to	artifacts	and	random	fluctuations	than	a	prediction	based	on	relatively	less	

data.	Bearing	in	mind	this	difference,	we	concluded	that	predictions	at	power	above	300	

are	less	meaningful	compared	to	predictions	at	power	0	~	300.	We	were	able	to	further	

conclude	that	by	reading	off	the	figure,	80%	of	observations	with	an	averaged	power	of	

25	came	from	babies	with	Label	3,	and	very	few	observations	with	an	averaged	power	of	

125	came	from	babies	with	Label	3.		

We	 then	 constructed	 KDE	 for	 the	 24th	 ~	 30th	 data	 point.	 With	 the	 exact	 same	

methodology,	we	were	able	to	achieve	the	following	KDE	(see	Figure	VI	-	F):	
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Figure VI – F. Kernel Density Estimation based on the 24th ~ 30th data point. The horizonal axis represents raw power and the 
vertical axis represent the corresponding probability density. 	

And	the	corresponding	prediction	(see	Figure	VI	–	G):	

 

Figure VI – G. Prediction functions plotted above histogram based on 24th ~ 30th data point. The left vertical axis denotes the 
probability a power lies in a particular group, and the right vertical axis denotes number of instances.	

Again,	by	reading	of	the	figure,	a	baby	with	an	averaged	blood	pressure	power	of	25	

within	this	period	has	a	near	90%	probability	of	being	in	Label	3,	and	a	baby	with	a	blood	

pressure	power	of	above	150	is	very	unlikely	to	belong	to	Label	3.		 	
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VII. Discussion	&	Future	Work	

With	 this	 study,	we	were	able	 to	conclude	via	Fourier	Transform	and	spectrogram	

analysis	that	substantial	difference	in	blood	pressure	fluctuation/power	exists	among	babies	

with	different	HIE	severity.	We	established	a	negative	correlation	between	blood	pressure	

fluctuation/power	and	HIE	severity,	correlating	babies	with	more	severe	HIE	to	a	smaller	

degree	 of	 blood	 pressure	 fluctuation/power.	 Furthermore,	 we	 were	 able	 to	 construct	 a	

primitive	 prediction	 algorithm	 that	 will	 predict	 how	 likely	 an	 observed	 averaged	 blood	

pressure	 power	will	 fall	 into	 each	 Label	 based	 on	 Bayesian	 statistics	 techniques	 such	 as	

Kernel	Density	Estimation.	

Several	limitations	to	this	project	exist.	First	of	all,	similar	to	any	other	research	purely	

based	on	bed-side	monitor	data,	we	cannot	rule	out	the	possibility	that	the	abovementioned	

patterns	 are	 partly	 or	 completely	 caused	 by	 confounds	 such	 as	 different	 medications	

administered	to	different	groups.	We	were	aware	of	this	potential	drawback	throughout	the	

project	and	repeatedly	confirmed	with	physicians	at	UVA	Health	who	collected	these	data	

that	to	the	best	of	their	knowledge	these	differences	are	not	caused	by	treatment.	One	way	

to	 ensure	 the	 validity	 of	 these	 differences	 would	 be	 to	 pore	 through	 individual	 medical	

records	to	verify	the	exact	treatments	administered.	This	process,	however,	must	be	left	to	

our	 clinician	partners.	Another	potential	 limitation	 is	 that	our	prediction	 is	based	on	 the	

Bayesian	 assumption	 that	 the	 ratio	 of	 Label	 1	 vs.	 Label	 2	 vs.	 Label	 3	 in	 our	 sample	 is	

representative	of	 the	population.	The	accuracy	of	 this	assumption	can	only	be	verified	by	

future	studies.	Concerning	the	details	of	this	study,	work	may	be	done	to	refine	the	various	

windows	used	in	this	study	as	they	are	mostly	empirical	rather	than	based	on	theory.			
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To	predict	HIE	severity	based	on	our	prediction	curves,	one	must	calculate	averaged	

power	exactly	the	way	we	did.	We	would	argue	that	while	the	negative	correlation	between	

degree	 of	 blood	 pressure	 fluctuation	 and	HIE	 severity	 is	most	 likely	 valid,	 our	 particular	

averaged	 power	 measurement	 is	 hard	 to	 interpret	 and	 additional	 work	 can	 be	 done	 to	

simplify	the	calculation	while	retaining	its	essence.		

Also,	once	again	due	to	the	time	constraint,	we	were	not	able	to	look	into	how	some	

patterns	of	pseudo-periodicity	of	blood	pressure	we	originally	identified	may	be	indicative	

of	various	pathologies,	which	was	one	of	our	two	original	motivations.	This	part	will	also	be	

left	for	future	studies.		

Additionally,	future	studies	may	want	to	explore	the	predictiveness	of	the	other	

frequency	bands	we	identified	but	were	not	able	to	examine	due	to	time	constraint.	A	long	

shot	will	be	to	analyze	whether	incorporating	other	bed-side	monitor	data	such	as	heart	

rate	with	blood	pressure	will	yield	even	more	accurate	predictions.	Also,	since	this	study	is	

purely	data	driven,	it	offers	no	physiological	explanation	whatsoever.	It	would	very	

beneficial	to	explore	the	underlying	physiological	mechanisms	that	prompted	the	difference	

in	blood	pressure	fluctuation/power	we’ve	seen.	Finally,	one	would	always	want	to	explore	

the	possibility	of	training	a	machine	learning	model	such	as	Long-short	Term	Memory	or	

Convolutional	Neural	Network	based	on	this	dataset	given	additional	data. 
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