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Abstract

This report describes the implementation of a deep neural network for parti-

cle identification on the MOLLER experiment. The MOLLER experiment, currently

in its early stages of design at the Thomas Je↵erson National Accelerator Facility

(JLab), will attempt to measure the parity-violating asymmetry present in the elas-

tic electron-electron scattering, to a precision of 0.7 ppb. While the Standard Model

precisely predicts this asymmetry, if the value measured by the MOLLER experiment

were to di↵er significantly from the predicted value, then the experiment could pro-

vide laboratory-based evidence of physics beyhond the Standard Model (BSM) and

point researchers in the right direction for its exploration. The high energy electron

beam used in this experiment is predicted to generate scattered electrons as well as a

background of roughly 0.13 percent pions. While the ratio of pions to electrons will

be small, their presence may significantly a↵ect the asymmetry measurement. The

detected particles, predominantly pions and electrons, must thus be classified. Here,

an algorithm is proposed to classify particles detected in the MOLLER experiment

using deep neural networks (DNNs). Once the classification algorithm is success-

fully written and proven to work, the uncertainty in the classification of the particles

as pions, electrons, or positrons will be determined. If successful, this classification

algorithm may be used to optimize the design of the experiment hardware.



Chapter 1

Introduction and Theory

1.1 Research Objectives

The purpose of this research project is to write and implement a neural network

that will perform particle classification for the MOLLER Experiment. The specific

objectives of the project are the following. First, the project will determine the ob-

servables from the MOLLER Experiments GEANT-4 simulation from which a neural

network could ex- tract relevant information. Second, the project will design, code,

and optimize the neural network. Third, the project will determine which combi-

nation of available observables allow the network to perform most e↵ectively and to

display these results using a series of metrics. Finally, the project will use the results

of the classification to aid in the design of the particle detectors for the MOLLER

Experiment by giving insight as to which observables are most relevant for particle

classification.

1.2 The Goal of the MOLLER Experiment

The purpose of the MOLLER (Measurement Of a Lepton Lepton Electroweak

Reaction) experiment is to measure the parity-violating asymmetry that arises when

polarized electrons are scattered o↵ of unpolarized electrons. This measurement will
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serve to either further validate or invalidate the electroweak theory and will contribute

to the search for physics beyond the Standard Model (BSM). The two most important

motivations for conducting the experiment are the following. First, the measurement

of parity violation arising due to the weak mixing angle will allow experimenters

to measure the parity-violating asymmetry in polarized electron-electron scattering

more precisely than ever before. Importantly, the average experimental value of this

asymmetry, A
PV

, is a function of the weak mixing angle, ✓
w

, and aligns with the

theoretical prediction of the Standard Model when the 126 GeV scalar resonance is

assumed to be the Higgs Boson. However, the two most precise measurements that

contribute to the world average value for ✓
w

have a remarkable statistical di↵erence of

3�, potentially signalling the existence of physics BSM. Physicists involved with the

MOLLER experiment plan to measure the asymmetry with a sensitivity of �(sin2
✓

w

)

= ± 0.00028 in hopes of further constraining the theoretical possibilities that have

arisen from these measurements [4].

The second piece of the physics motivation behind the MOLLER experiment is

to parameterize BSM neutral current interactions by constraining the coupling for

four- fermion interactions, ⇤/g. Here, ⇤ is a mass scale factor and g describes the

strength of the new physics interactions for these occurrences. The sensitivity of the

measurement of A
P

V corresponds to the sensitivity of ⇤/g and is currently the most

sensitive proposed measurement of the CP-conserving neutral current interactions

[4].

The planned experimental setup for the MOLLER experiment is the following.

A beam of longitudinally polarized electrons at 11 GeV will strike a liquid hydrogen

target, producing electrons that have been scattered o↵ other electrons, referred to as

Moller electrons. These electrons, along with other particles produced, namely pions,

will be observed by a detector system shown in Figure 1.1 [4].
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Figure 1.1: Layout of the Detector Setup for the Moller Experiment, taken from
[4]. This image shows the longitudinally polarized electron beam which will hit a
liquid hydrogen target. The resulting Moller electrons and other particles will then
be measured by the detector system.

Figure 1.1 shows the experimental setup of the Moller experiment [4]. Figure 1.2

shows a plot of weak mixing angle measurements vs. energy scale, along with the

prediction of the Standard Model. The value given for the Moller experiment is the

expected SM value, with the anticipated experimental precision indicated [4].

1.3 The Standard Model

The Standard Model is an elegant and highly accurate model of the known funda-

mental particles in the universe and the ways in which they interact with one another.

The Standard Model takes elementary particles to be point-like objects that are not

made up of more fundamental constituents. These elementary particles are split into

two categories: half-integer spin particles, or fermions, and integer spin particles, or

bosons. Fermions are further classified into leptons and quarks. Leptons interact

3



Figure 1.2: The weak mixing angle vs. energy scale for various HEP experiments,
taken from [4]. The measurement the MOLLER Experiment hopes to make is shown
with the proposed error bar and the proposed energy scale. Its central value is taken
from the Standard Model prediction. The blue line on this plot is the Standard Model
prediction.

through the weak force, gravity, and the electromagnetic force and include electrons,

muons, taus and their corresponding neutrinos. Quarks interact with each of these

forces as well, and also with the strong force, and thus, have a color charge. In na-

ture, quarks are only found in composite particles with quantum numbers of either

three quarks (baryons) or quark-antiquark pairs (mesons). Other combinations, in

principle, are allowed by the Standard Model; however, evidence for their existence

is not yet definite [7].

The second type of particle is the boson. The strong force and the electroweak

force are both mediated by the exchange of bosons. The strong force is mediated by

eight types of massless bosons called gluons, the weak force is mediated by the W±

and Z bosons, and the electromagnetic force by the massless photon. The gluons and

W± and Z bosons are all self-interacting [7].

1.3.1 Symmetry in the Standard Model

The SM has two types of symmetries, both of which play important roles in quantum

field theory. The first type covers continuous symmetries in which the values of
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the parameters are continuous. This type includes space-time symmetries such as

rotation and translation and internal symmetries, the symmetry of some physical

quantity. The SM is described by the gauge symmetry, a continuous symmetry,

SU(3)
C

x SU(2)
L

x U(1)
Y

where SU(3)
C

corresponds to strong force interactions and

SU(2)
L

x U(1)
Y

corresponds to electroweak force interactions. The W± and Z bosons

are not massless and therefore SU(2)
L

x U(1)
Y

is not a symmetry of the vacuum, the

Standard Model must be allowed a mechanism through which spontaneous symmetry

breaking occurs [7]. This mechanism is the Higgs Mechanism and is governed by

the Higgs Boson which gives mass to those particles that couple with the Higgs.

The Higgs was confirmed experimentally by researchers at the LHC in 2012 and was

reported to have a mass of 126 ± 0.4 ± 0.4 GeV, which is within SM predictions [1].

The second type of symmetry, and the type that the MOLLER experiment is

interested in probing, encompasses discrete symmetries. As the name suggests, the

parameters in discrete symmetries have discrete values. The CPT theorem says that

interactions must be invariant under transformations that include charge conjugation

(C), parity (P), and time reversal (T). Among other transformations, the weak force

is not invariant under parity transformation, and thus, violates this symmetry. These

three symmetries act on the wave function of a particle in the following ways. Charge

conjugation converts particles to anti-particles and vice-versa. Parity takes the spatial

components of the wave function and makes them negative in this way: P (x, y, z)!

 (-x, -y, -z). Time reversal makes the time component of the wave function negative

in this way: T(x, y,z,t) !  (x,y,z,-t) [7].

1.3.2 Parity Violation

In practice, parity violation in the weak force can be measured by changing the

spin of the particles that interact with one another via the weak force and then
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comparing the interactions of the particles for which the dot product of their spin

and momentum is positive and for which this dot product is negative. Any di↵erence

in scattering probability indicates the presence of parity violation, described by the

following equations:

N

R

= � · p = + (1)

N

L

= � · p = � (2)

A

PV

= (N
R

�N

L

)/(N
R

+N

L

) (3)

where N

R

is the number of right handed particles, N
L

is the number of left handed

particles, � is the cross section of the interaction, p is the momentum, and A

PV

is the

asymmetry. In the MOLLER experiment this is done by rapidly changing the polarity

of the electron beam. It is known from experiment that parity is not conserved and

therefore nature prefers particles whose spin and momentum vectors are anti-aligned,

also known as left-handed particles, and anti-particles whose spin and momentum

vectors are aligned, known as right-handed particles.

1.4 Physics Beyond the Standard Model

Because of its high sensitivity, the MOLLER experiment will have the ability to

put constraints on future BSM phenomena as might be observed by higher-energy

experiments like the LHC. This new physics, if observed, will likely involve parity

violating coupling for electrons with a force carrier whose mass is either much greater

than or much less than that of the Z boson in the Standard Model and will conserve

flavor and CP symmetry. Such bosons arise in many theories including some grand

unified theories, dark-Z models, and others. This BSM physics will also have similar

sensitivities to such new physics interactions in current and anticipated LHC data.
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1.5 Background Processes Present in the MOLLER
Experiment

A roughly 0.1 percent signal contamination from pions and other hadrons is expected

in the measurement of the Moller peak. For the parity-violating asymmetry expected

to be present in the measured cross-section, the hadronic signal will correspond to a

necessary correction of about three percent to the measurement of A
PV

for electron-

electron scattering. For this reason, it is very important to di↵erentiate between

hadrons and electrons in the signal [10].

1.6 Binary Classification through the use of Neu-
ral Networks

In the context of machine learning, binary classification is the process of classifying

a data set of observables into one of two categories (here, given as Type A and

Type B). The output of a binary classification network is, for each data point, the

probability that the data point is Type A and the probability that it is Type B.

In most approaches, these two numbers will add to one. For example, a network

output for a given sample could be (0.6, 0.4) corresponding to a 60% probability that

the sample is Type A and 40% probability the sample is Type B. The input data

set for these networks gives the observables used in a series of columns where the

rows are then the individual data points. Once training data is input, the network

processes the training data. It does this using a series of matrix multiplications

with non-linear activations in which free parameters are optimized to minimize a loss

function, calculated by contrasting the network predictions to a separate validation

data set. Each observable in which the network successfully identifies a pattern will

increase the accuracy of the networks ability to predict the type of each data point in

7



Figure 1.3: Binary classification using two observables, taken from [8]. This cartoon
illustrates that when given n observables, in this case two, the network will draw an
n�1 dimensional shape around the data, in this case a one dimensional line, in order
to classify the two types of data.

unlabeled data. The more distinguishable an observable is between one data type to

the other, the more useful it is to the networks prediction. The cartoon in Figure 1.3

shows a binary classification of apples and oranges using two observables [8]. Here,

the network draws a one dimensional line through the plot. As is made clear by

this example, in this type of network architecture, a network using n observables to

classify data will draw an n� 1 dimensional shape around the training data in order

to determine not just patterns, but correlations and patterns simultaneously.

1.6.1 Metrics Used

There are multiple ways to represent the output of a binary classifier. Here, I will

discuss output histograms and ROC curves. Output histograms divide the output

from the neural network into percentage bins and plot the Type A and Type B

predictions next to each other. In the following example plot from my previous

research with the ATLAS experiment, Figure 1.4, there are ten bins representing

groups of ten percent. The far left bin represents the number of data points with

a zero to ten percent likelihood of being Type A objects, in this case, signal jets.
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Figure 1.4: Example Output Histogram, taken from previous research (personal files).
The classification of signal and background jets is shown. The plot is split up into
bins of ten percent. The far left bin indicates a zero to ten percent likelihood that the
jet is a signal jet. As is evident from the fact that the majority of the background jets
are in this bin, the algorithm has a high success rate for background jet classification.
Likewise for the signal jets, the majority of signal jets are in the far right ninety to
one hundred percent likelihood bin, again indicating network success.

The blue column is the population of signal jets with this likelihood and the red

column is the population of background jets (Type B). As is evident, this is an

example of a successful training algorithm as the majority of the jets are in the zero

to ten percent bin or the ninety to one hundred percent bin and are, for the most

part, correctly classified within these bins. Receiving Operator Characteristic (ROC)

curves are another tool for measuring the performance of binary classifiers. ROC

curves plot the true positive rate, or in the case of this example, the e�ciency of

predicting Type A data points correctly vs. the false positive rate or the likelihood

that the Type B data points are predicted incorrectly for a range of threshold values

on a discrimination value. It is expected that the ROC curve of a network that is

performing well will be exponential in shape. The smaller the area under the curve,

9



the more e↵ective the network is at predicting data point type [6]. Figure 1.5 shows

two ROC curves from my aforementioned previous research. This ROC curve on the

left is evidence of e↵ective network performance. The ROC curve on the right shows

less e↵ective network performance. Again, here, Type A objects are signal jets and

Type B objects are background jets.

10



Figure 1.5: Example ROC Curves, taken from previous research (personal files). The
area under the curve for the data in the top plot is smaller than that for the data
in the bottom plot. This indicates better network performance for the data sets in
the plot on the top. I have two hypotheses for this di↵erence. The first is the data
sets used to produce the right ROC curves have fewer data points, thus, the network
has less information to learn from. Second, the data sets used to produce the left
ROC curves are in a region of the ATLAS detector that gives better distinguishably
between signal and background jets, thereby leading to better network performance
for this region.
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Chapter 2

Experimental Technique

2.1 Machine Learning Approach

2.1.1 Tensor Flow

TensorFlow is an open source machine learning data analysis system created by

Google. It allows its users to be flexible in their Machine Learning (ML) approach

and, while most developed for the use of running data through Deep Neural Networks

(DNNs), its use is not limited to this application. Neural networks, like the ones im-

plemented by TensorFlow, use multidimensional arrays or tensors to find patterns

in data for both classification problems, like the one described here, and regression

problems [2]. In this research project I have used Tflearn, a deep learning library

built on top of TensorFlow. The Tflearn dnn function allowed me to train, validate,

and evaluate the performance of the network. Appendix A shows the network code

used. Figure 2.1, adapted from [5] shows the current neural network setup. Figure

2.2 shows a schematic for the way in which data is processed by Tflearn from [2].

2.1.2 Parameters

Activation

Using a series of neural networks a set of parameters was implemented that allowed

the network to produce the most accurate classification results. In the last fully con-

12



Figure 2.1: Initial network configuration, adapted from [5]. This figure shows a
network with a single hidden layer and no dropout function. The network coded for
this project had four hidden layers and one dropout function, indicated by the arrow,
but is otherwise identical.

Figure 2.2: Data Flow Schematic, taken from [2]. This schematic show the way in
which data is processed by TfLearn. After it is read in and shu✏ed, it is preprocessed.
Then, using the structure chosen, the network is trained and validated.
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nected layer a softmax activation was used. The softmax activation assigns decimal

probabilities to the output of a multiclass network, i.e. a pion electron classification

network, that must add to one. Unlike a standard normalization, the softmax activa-

tion will minimize cross-entropy, between predicted and true values and give outputs

between [0, 1]. Here, cross-entropy refers to a loss function that describes the loss

between the two probability distributions. This is the most useful output for pion

identification. The cross-entropy function, f is below:

f =�(y·log(p))+(1�y)·log(1�p) (4)

Here, y is the zero or one indicator for a particle being a pion or electron and p is the

likelihood that the data point in question is of class y . Log refers to log base 10 [12].

Optimizer

The learning rate is a parameter that indicates the step size taken in numerical multi-

variable optimization methods. A learning rate of 0.5 was used in the adam optimizer

to maximize the e�ciency of the learning in the initial configuration. Within the DNN

function provided by TfLearn, beta1 of 0.9 and beta2 of 0.999 are parameters which

control the rates at which the uncentered variance and uncentered variance squared

are optimized, and relate to the distribution of probabilities. An epsilon value of

0.1 was used to prevent division by zero in the implementation of the optimizer. By

setting the value to 0.1, ten percent of the time the network will explore random

classification paths it has not yet considered before eventually settling on its decision.

When a significantly smaller learning rate was used within the adam optimizer, not

only did the loss plateau as iterations were run but the program was unable to dis-

tinguish between the particles as clearly when training data was analyzed. Similarly,

the program was again unable to distinguish between the particles when the learning

rate was very high, above 0.9, however, rather than plateauing the loss tended to

14



decrease and then fluctuate irregularly.

2.1.3 Dropout Function

One dropout layer is included in the network to prevent over fitting. This function

tells the training network to dropout a randomized set of connections making the

network less sensitive to the specific weights of the individual data and allowing it to

most e↵ectively generalize validation data. 1

1Section 2.1.2 is adapted from an unpulished report by Mary Robinson and myself written for
our research with Professor Phiala Shannahan. Taken from personal files.
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Chapter 3

Results

3.1 Summary of Results

In the first part of this project, the goal of the research was to develop the tools

necessary to classify pions and electrons for the MOLLER Experiment. After the

MOLLER simulation file was completed, testing was able to start. Once the data

was extracted from the simulation file, distinguishability was calculated and the data

was run through the neural network using a series of di↵erent network configurations.

Network variation included both variation in the architecture and in the optimization

of the results. In general, accuracy for electron identification was fairly good, however,

the networks did poorly at identifying pions. Further results and discussion on this

discrepancy can be found below.

3.1.1 The Data Set

The data set used in this analysis was developed using GEANT-4, a platformed de-

veloped by CERN which allows experimenters to simulate high energy particle and

nuclear physics experiments using Monte Carlo methods. While the simulation file

contains a huge amount of information including momentum, timing information,

etc. for each detector hit, only a small amount of this information will be available

to experimenters once the experiment is running. This available data includes posi-
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tion data and the number of photo-electrons in the pion and Shower-Max detectors.

Because z data is trivial, representing the position of the detector only, all of the

position data can be geometrically related to x and y. Furthermore, the simulation

data includes many zeroes. In the position data, zeroes indicate that no particle track

intercepted the detector, thus referred to as a null data point. Therefore, data points

containing a zero in x or y were dropped. In the photo-electron data the data points

with zeroes in both the pion detector data and the Shower-Max detector data were

considered to be null data points and were dropped under these conditions. Table 3.1

shows the lengths of the data sets with di↵erent amounts of data removed.

Data Rejected Length of Data Set
Pions Electrons

None 100,000 100,000
x = 0 OR y = 0 29,717 78,439
x = 0 OR y = 0 OR (p-e

SM

= 0 AND p-e
⇡

= 0) 6,731 29,921

Table 3.1: This table shows the lengths of data sets with di↵erent amounts of null
data dropped. Here, p-e

SM

refers to the number of photo-electrons in the Shower-
Max detector and p-e

⇡

refers to the number of photo-electrons in the pion detector.
This information is relevant because, in general, more data leads to higher accuracy
in network performance.

The histograms in Figure 3.1 show the number of zeroes in the photo-electron data

for the Shower-Max detector in the unfiltered data in which the null data points are

left. The histograms in Figure 3.2 show the number of zeroes in the photo-electron

data for the pion detector in the unfiltered data with the null data points left in.

These plots show that the majority of the photo-electrons corresponding to electrons

are absorbed in the Shower-Max detector and the majority of the photo-electrons

corresponding to the pions are absorbed by the pion detector.
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Figure 3.1: This figure shows histograms of the number of photo-electrons in the
Shower-Max detector for electrons (left) and pions (right). These histograms are
plotted on a log scale so that data points not equal to zero can be seen. The data
shown here includes null data points.

Figure 3.2: This figure shows histograms of the number of photo-electrons in the pion
detector for electrons (left) and pions (right). These histograms are plotted on a log
scale so that data points not equal to zero can be seen. The data shown here includes
null data points.

18



3.1.2 Observable Plots

The observables used for classification were distance from the beamline to the position

of the hit (r, Figure 3.3), the x and y coordinates, and the number of photo-electrons

in the pion and Shower-Max detectors. It can be quantitatively stated from the plot

below that the r variable has good distinguishability between pions and electrons

indicating that the network should be able to identify the di↵ering patterns present.

Histograms for x and y data as well as filtered Shower-Max and pion detector data

can be seen in Appendix B.

3.1.3 Quantitative Distinguishability

Quantitative distinguishability of the observables was calculated using the coe�cient

of variation. No cuts were made on the observables before feeding them into the net-

work, however, the quantitative disinguishability of each observable was calculated to

determine the oder in which the network was given data in testing. The coe�cient of

variation (CV) is calculated by dividing the standard deviation by the mean for both

pions and electrons. The distinguishability was then calculated by subtracting CV
pion

from CV
electron

and taking the absolute value. As is clear from this formulation, if the

means and standard deviations of the pions and electrons are similar, this number

will be small. Likewise, if the means, standard deviations, or both are di↵erent this

number will be large, and the bigger the di↵erence the larger the distinguishability.

It was recently pointed out that in some cases, while the means and standard de-

viations could be very di↵erent, the ratio of the two could be similar, leading to a

small quantitative distinguishability. This insight should be explored more in future

research. Similarly to the figure shown in Section 3.1.1, Figure 3.4 shows electron

and pion data for the x coordinate overlaid to exemplify the distinguishability. Table

3.2 shows relevant distinguishability data.
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Figure 3.3: This figure shows histograms of the r variable (defined above) for pions
and electrons. The y-axis represents number of events and the x-axis is distance in
millimeters. The scales on the larger plots are di↵erent, however, the scales on the
smaller plots are the same in order to be able to clearly see the di↵erence between
the shapes of the distributions of the pions and electrons. The top plot shows the
pion data and the bottom plot shows electron data.
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Figure 3.4: This figure shows histograms of the x variable overlaid for pions and
electrons. The y-axis represents number of events and the x-axis is distance in mil-
limeters. Here, the distinguishability is high indicating a di↵erence in the means and
standard deviations of x data for pions and electrons. This indicates that when run
through the neural network, the network should be able to e↵ectively learn from this
observable. Null data points have been removed from data shown.
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Observable Distinguishability

x 315.0325424
y 295.4429294
r 0.9770266829
Number of photo-electrons in the pion detector 9.19215353
Number of photo-electrons in the Shower-Max detector 2.38805432

Table 3.2: The distinguishability of each relevant observable is shown here. The dis-
tinguishability = | CV

electron

� CV

pion

|. Larger values indicate more usefulness for
the network. Here, x has the highest distinguishability and is thereby the observ-
able that is hypothesized to be most useful to the network in learning the di↵erence
between pions and electrons. The data presented does not include null data points.

3.1.4 Network Results

Variation in Optimization Procedure

In order to achieve the most e↵ective neural network, three parameters were varied

in each run. The first is number of epochs. The number of epochs determines the

number of times the network runs through the data, for example, if the number of

epochs is ten, the network with look at the data ten times before settling on a decision

about the likelihood that the data point fed in is an electron or pion. The second

parameter is batch size. Batch size is the number of data points the network looks

at at one time. For example, if the batch size is ten and the total number of data

points is one-thousand, the network will look at one-hundred batches of data with

ten data points in each batch. The final parameter is cuto↵. The cuto↵ indicates the

likelihood of a particle being a moller electron that experimenters count as being a

moller electron. For instance, the most intuitive cuto↵ would be fifty percent, or .5.

This would mean that when the network output data is analyzed, if the network gives

a fifty percent or higher likelihood of a particle being a moller electon, it is counted

as a moller electron. This parameter can be as high as 0.999999 and as low as 0.0001

to optimize results. Thus far, a total of 238 combinations of these parameters and 16
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data sets have been tested.

In testing, the network was first run using only x data which has the highest

distinguishability. Next y data was added, then timing data. It was later determined

that timing data is not a usable observable because, while the simulation has fine

timing data, the timing data from the actual experiment will be too coarse to use.

Next, the timing data was taken out and photo-electron data was added. R data was

not added to the network because r =
p
x

2 + y

2, a correlation the network would

have determined and therefore, adding r to the data set would not have added new

information. 10% of the data was used as a validation set. Finally, photo-electron

data in the Shower-Max and Pion detectors was added and null data points were

removed, as described above.

At each iteration of data sets, a batch size of ten and an epoch of ten was shown

to be the most e↵ective. The most e↵ective cuto↵ varied from .5 to .9 and likelihoods

below 50% don’t exist in most runs of the network. This indicates that the network

favored labeling data points as electrons. This is probably because there is more

moller electron data than pion data because all rows having a zero in the data set

were dropped (null data). Interestingly, adding the timing data actually decreased

the accuracy of the network. Even though the distinguishability of the timing data is

high at 1644.6023, the null rows in the timing data took out more data than it added

information.

The Figure 3.5 compares network performance for di↵erent network configurations

using only x and y data. As is shown on the plot, the configuration with the highest

accuracy was using an epoch of ten, a batch size of ten, and a cuto↵ of .68. This

configuration resulted in about 73% accuracy for inputted particles. As is shown on

the plot, in general, accuracy increases with cuto↵ as discussed above.
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Figure 3.5: This figure shows network performance vs. cuto↵ for multiple network
configurations. Each color on the plot represents a di↵erent combination of epoch
and batch size. The x-axis is the percentage of particles correctly identified. The
y-axis is the cuto↵, elaborated on above.
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Full Data Set Results

Table 3.3 shows the results for the full data set network runs. In this data, points

were dropped where x = 0, y = 0, or both the number of photo-electrons in the pion

and Shower-Max detector = 0. In general, electron identification accuracy hovers

just above 70% while pion identification accuracy is much lower, between 2% and

3%. The particle identification e�ciency was optimized for the full data sets. Rather

than testing various cuto↵s by hand, a code was written that found the optimal cuto↵

for identifying the maximum number of pions and electrons. The uncertainty of this

optimization is ± 5%. All further results presented were generated using the optimal

cuto↵ unless otherwise stated.

Epochs Batch Size Cuto↵ Percentage Identified Correctly
Electrons Pions

100 10 0.1 75.014 1.449
10 10 0.1 73.061 1.870
100 1 0.1 68.872 2.941
10 1 0.1 68.644 2.916

Table 3.3: This table shows the network results for four di↵erent configurations of
number of epochs and batch size with optimized cuto↵. The accuracy is low for pions
and as is clear from the cuto↵, the network labels most data points as electrons

The low pion identification accuracy could be attributed to a number of factors.

The most likely explanation is that when the null data points are removed from the

data set, the pion data only comprises about 18% of the tested statistics. Because

10% of the data is used for network training and the other 90% is used for testing,

the low pion accuracy is likely a result of low statistics. With more data to train the

network on, ideally at least 10,000 data points for both pions and electrons (a 200,000

point data set, total), the accuracy would be expected to increase. Unfortunately,

this type of data set was unavailable for this project. Other explanations include
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the distinguishability between observables not being high enough and there not being

enough observables available for testing. Taking a closer look at the network test in

which the number of epochs and batch size were both 10, even at a cuto↵ of .9, the

network only identified about 5% of the pions accurately.

Variation in Network Architecture

In order to attempt to increase the accuracy of pion identification, a more in depth net-

work structure change was implemented. These networks configurations were tested

using 10 epochs and a batch size of 10 because this yielded the highest accuracy in

the original configuration. First the number of network layers was tested. Of the net-

works tested, the network structure that yielded the highest accuracy was a network

with four fully connected layers. Next, di↵erent numbers of dropout functions with

di↵erent values were tested. A single dropout function with a dropout value of .9 got

the best results. Next, in the first fully connected layer, a variance scaling weight

initialization was found to be the most e↵ective weight initialization. Also in this

layer, a bias was more e↵ective than the layer used without bias. Finally, a softplus

activation in the last fully connected layer was determined to give the highest accu-

racy compared to other activations. The final network code can be seen in Appendix

A.

While this most e↵ective network configuration resulted in about 81.4% of the

electrons being correctly identified, the pion accuracy was still very low; less than

.1% at the optimized cutto↵ and only about 1.5% at a cuto↵ of .9. The network

performance plot, Figure 3.6, discussed above, is shown here. While the network is

clearly e↵ective at classifying electrons, it is ine↵ective at classifying pions.

Because the pion accuracy is so low, the ROC curves made are not worth showing

here as they do not give any useful information about the network performance that
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Figure 3.6: This figure shows the network performance plot for the final network
configuration. The left most collumns are the 0 - 10% likelihood the particle is a pion
bin which corresponds to 90 - 100% likelihood the particle is an electron. The fact
that most of the electrons are in this bin is positive, however, the majority of the
pions are in this bin as well. This plot shows that the network identifies the majority
of particles as electrons.
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cannot be gained from the clearer network performance plot above.
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Chapter 4

Conclusion

4.1 Hardware Design Applications

It is the goal of this experiment to aid in the design of the pion detectors by deter-

mining which observables would be most beneficial to network performance. In the

future, these observables may be prioritized in the design of the detectors. From the

results presented here, the recommendation from this project is that the following

observables be prioritized: distance from the beamline to the position of the hit and

number of photo-electrons in the Shower-Max and pion detectors. Figure 3.7 shows

the current detector setup [4].

4.2 Further Testing

Students in the future wishing to continue this projects have a couple of avenues

through which to do so. The first would be to focus on the development of the neural

network. While initial optimal results were obtained by changing the epochs, batch

size, and cuto↵s, activation, etc. a completely di↵erent network architecture could be

tried to maximize network e�ciency. Such di↵erences in architecture could include a

di↵erent network shape or di↵erent numbers of hidden layers. Alternatively, students

could use the results presented above to contribute to the hardware design of the
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Figure 4.1: This figure shows the layout of the main tracing and integrating detectors.
The predicted electron trajectories are shown in blue and green. The green track is
the predicted track for electrons that are elastically scattered o↵ of target protons
and the blue track is the predicted track for electrons elastically scattered o↵ of target
electrons (Moller Electrons). Taken from [4].

MOLLER experiment. While the initial design phase of the experiment is coming

to a close, there is still plenty of hardware work to be done that could possibly be

influenced by the results of this project.

4.3 Final Summary

This thesis details the first attempt at classifying pions and electrons for the MOLLER

experiment using a binary classifier deep neural network. While the network was fairly

successful at identifying electrons, the pion identification accuracy was very low, re-

gardless of the network configuration. Because of this, it is not advisable to use this

specific machine learning approach in the analysis of the MOLLER experiment with-

out further testing. In order to increase pion identification accuracy more statistics

are needed as well as perhaps a di↵erent neural network structure. Currently, these

results cannot be compared against other classification schemes for the MOLLER

experiment because no other have been tried as of April 2019.
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Appendix A

Code Sample

The following is the neural network code found to be the most e↵ective.

import numpy as np

import tflearn

import csv

# Load CSV file, indicate that the first column represents labels

from tflearn.data_utils import load_csv

data, labelsA = load_csv(’/data/remoll/akburns/config/hit_b_train.csv’, target_column=4, categorical_labels=True, n_classes=2)

input, labelsB = load_csv(’/data/remoll/akburns/config/hit_b_tst.csv’, target_column=4, categorical_labels=True, n_classes=2)

# Build neural network

#Data has 2 features - change each time a new observable is added

net = tflearn.input_data(shape=[None, 4])

net = tflearn.fully_connected(net, 10, activation=’tanh’, regularizer=’L2’, weight_decay=0.001, bias = True, weights_init=variance_scaling)

net = tflearn.fully_connected(net, 32)

dropout1 = tflearn.dropout(net, 0.9)

net = tflearn.fully_connected(dropout1, 10, activation=’tanh’, regularizer=’L2’, weight_decay = 0.001)

net = tflearn.fully_connected(dropout1, 2, activation=softplus)

net = tflearn.regression(net)

# Define model

model = tflearn.DNN(net, tensorboard_verbose=3)

# Start training (apply gradient descent algorithm)

model.fit(data, labelsA, n_epoch=10, batch_size=10, show_metric=True, validation_set=0.1)

pred = model.predict(input)

print("Moll likelihood:", pred)

with open(’/data/remoll/akburns/evaluate/hit_b_rsults.csv’,’wb’) as f:

csv_writer = csv.writer(f, delimiter=’,’)

for x in pred:

csv_writer.writerow(x)
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Appendix B

Observable Plots

These plots show histogram of x (Figure B.1), y (Figure B.2), the number of photo-electrons in the
pion detector (Figure B.3), and the number of photo-electrons in the Shower-Max detector (Figure
B.4). These plots give readers an idea of the di↵erences in the shapes of the distributions in pions
and electrons. In each of these figures, the electron histograms are shown on the right and the pion
histograms are shown on the left.
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Figure B.1: This figure shows histograms of the x variable for electrions (left) and
pions (right). The y-axis represents number of events and the x-axis is distance in
millimeters. The scales on the plots are the same in order to be able to clearly see
the di↵erence between the shapes of the distributions of the pions and electrons.

Figure B.2: This figure shows histograms of the y variable for electrons (left) and
pions (right). The y-axis represents number of events and the x-axis is distance in
millimeters. The scales on the plots are the same in order to be able to clearly see
the di↵erence between the shapes of the distributions of the pions and electrons.
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Figure B.3: This figure shows histograms of the number of photo-electrons in the pion
detector using filtered data for electrons (left) and pions (right). The scales on the
plots are di↵erent in order to be able to see the non-zero data points on both plots.
The data is plotted on a log scale because non-zero data points on the electron plot
are otherwise not visible.

Figure B.4: This figure shows histograms of the number of photo-electrons in the
Shower-Max detector using filtered data for electrons (left) and pions (right). The
scales on the plots are di↵erent in order to be able to see the non-zero data points on
both plots on a linear scale.
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