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Abstract  
Neural development is a highly regulated process that requires coordinated signaling in 

order to develop a properly functioning nervous system. One of these key signaling pathways is 

the Notch pathway, a highly conserved signaling pathway that plays a key role in development, 

particularly neural development.  Recent studies have linked Ttyh1, a volume-sensitive chloride 

channel with a calcium-binding site, to the Notch signaling pathway.  However, despite its 

importance in development and disease, Ttyh1 remains poorly studied.  Previous work in the 

lab has shown that Ttyh1 is highly expressed in the adult and developing nervous system, 

expression that has implications for the maintenance of neural stem cells and numerous 

cellular functions, such as cell communication, adhesion, and migration. This thesis project 

investigated the role of Ttyh1 in neuro-development by genetically knocking it out using 

CRISPR/Cas9 genomic editing technology and investigating the expression of neural marker 

genes and the other members of the tweety family. Chromogenic in situ hybridization revealed 

knockout of Ttyh1 resulted in differential expression of Sox2, a progenitor cell marker, and 

tubb2b, a differentiated neuronal marker. RT-qPCR analysis of Ttyh1 knockouts did not result in 

a consistent significant difference in gene expression. These results suggest that Ttyh1 may be 

involved in neural stem cell development, but further investigation is needed to confirm its 

precise role. 
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Overview  
Neural development requires highly coordinated regulation and signaling in order to 

successfully form the functioning nervous system. During embryonic development, the 

presumptive nervous system must differentiate and organize a multitude of neural cells 

including neurons, astrocytes, and oligodendrocytes (Kim et al., 2018). To accomplish such 

drastic rearrangement the developing embryo relies on highly conserved signaling processes 

governed by genes such as Sonic Hedgehog, Wnt, and Notch (Kim et al., 2018).  

 Notch specifically, is a highly conserved signaling pathway that can be found in all 

multicellular animals (Kopan et al., 2009).  Notch signaling plays a key role in the development 

of almost all tissue types (Siebel et al., 2017).  Some of the processes that Notch regulates 

include cell death, growth, migration, and determination of cell type (Kopan et al 2009; Bolos et 

al., 2007). Notch signaling functions over short distances, communicating between nearby cells 

through the release of signaling molecules binding to its receptors (Shimoji et al., 2011). Once 

signaling molecules bind and activate the receptors, Notch releases a subunit, which binds to 

DNA and results in a change in gene expression that maintains stem cell characteristics 

(Shimojo et al. 2011).  

Recent studies have shown a link between Notch signaling and Ttyh1, a highly conserved 

volume sensitive chloride channel expressed in the nervous system (Kim et al., 2018). Ttyh1 is a 

relatively newly discovered gene and not much is known about how it fits into molecular 

pathways (Campbell et al., 2000). However, Ttyh1 does have numerous implications in 

important cellular pathways, such as the cell communication, migration, structure, and 

maintenance of stem cell populations (Kim et al., 2018; Mathews et al., 2007; Jung et al., 2017; 
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Stefaniuk et al., 2010a).  Ttyh1 has also been implicated in a number of diseases such as cancer, 

epilepsy, and brain damage (Matthews et al., 2007; Jung et al., 2017; Stefanuik et al., 2010b, 

Wiernasz et al., 2014).  

The goal of this thesis was to investigate the role of  the Ttyh1 gene in 

neurodevelopment. Using CRISPR/Cas9 genetic editing technology, Ttyh1 was specifically 

targeted and knocked out in Xenopus laevis embryos. Gene expression of key neural marker 

genes and other potential partners in TTyh1 function were analyzed in Ttyh1 knockout embryos 

via in situ hybridization and quantitative polymerase chain reaction. 

 

Introduction 
Notch Signaling 

The Notch signaling pathway is a highly conserved pathway found in all metazoans, 

which has key functions in the development of most organs and tissues (Kopan et al., 2009; 

Siebel et al., 2017). Notch signaling has been found to participate in a variety of cellular 

processes including cell proliferation, apoptosis, differentiation, specification, adhesion, 

migration and maintenance of stem cell and progenitor cell populations throughout 

development and in self-renewing adult tissues (Kopan et al., 2009; Bolos et al ., 2007).  

Notch signaling is activated by ligand binding to the Notch transmembrane protein 

(Shimoji et al., 2011). Once activated, the receptor undergoes proteolysis, releasing the active 

fragment of Notch, the Notch Intracellular domain (NICD) (Kopan et al., 2009; Shimojo et al., 

2011).  Following proteolysis, the NICD is imported into the nucleus where it forms a complex 

able to bind DNA and induce the expression of transcriptional repressors that then inhibit 
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differentiation and maintain neural stem cells and progenitor cells (Shimojo et al., 2011). Notch 

signaling typically acts over a short range and requires physical contact between cells (Kopan et 

al., 2009; Shimojo et al., 2011). Thus, cells inhibit differentiation of their neighbors through 

lateral inhibition (Shimojo et al ., 2011).   

The involvement of Notch signaling in numerous cell processes also means that aberrant 

signaling is linked to multiple human disease. Developmental disorders include Alagille 

syndrome, tetralogy of Fallot, syndactyly, sonondylocostal dysotosis and familial aortic valve 

disease (Penton et al., 2012; Kopan et al., 2009). Notch signaling also has been implicated in 

cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy 

(CADASIL) as well as cancer. Notch has also become the target for therapeutics for T cell acute 

lymphoblastic leukemia and colon cancer (Takebe et al., 2014).  

Because Notch signaling is an ancient and highly conserved signaling pathway, and plays 

key roles in development, homeostasis, and disease, there is significant interest in 

understanding all of the major players in the Notch pathway as well as the effects of 

perturbation of the Notch pathway during embryonic development. Towards this end previous 

studies conducted in the lab performed a series of experiments that overexpressed and 

inhibited Notch signaling.  Surprisingly, while perturbed embryos showed significant 

morphological deformities and aberrant gene expression early in development, by later stages 

the embryos appeared to compensate and showed few if any indications of the abnormalities.   

Early in development, the overexpression of Notch via injection of a synthetic intracellular 

domain (ICD) mRNA construct resulted in decreased expression of differentiated marker genes, 

increase in neural cell counts, slower neural tube closure, and a greater proportion of apoptotic 



10 
 

cells in Xenopus laevis embryos (Pownall et al., unpublished). On the other hand, inhibition of 

Notch signaling via injection of a DNA binding mutant (DBM) that blocks NICD’s ability to act as 

a transcription factor, increased expression of differentiation marker genes. However, in both 

cases embryos displayed high levels of plasticity and were able to recover from the 

perturbations as development progressed. Based on these intriguing results, we performed 

RNA-seq analysis of perturbed embryos. While an entire suite of genes was differentially 

expressed, one of the genes in this list was particularly fascinating. A gene called, Ttyh1 

(Tweety) revealed a four-fold increase of expression following upregulation of the Notch 

signaling pathway.  This suggested that the Ttyh1 gene was involved in the Notch signaling 

pathway.  Another study also linkingTtyh1 to the Notch pathway showed that increased 

expression of Ttyh1 resulted in increased expression of downstream genes in the Notch 

signaling pathway (Kim et al., 2018).    

Tweety Homolog 1 (Ttyh1) 

 Ttyh1 is a member of the tweety gene family. The Tweety (Ttyh1) gene was first 

discovered in Drosophila melanogaster as a transcriptional unit with an unknown function 

adjacent to the flightless I gene (Campbell et al., 1993). Tweety has a broad phylogenetic 

distribution with orthologs existing in vertebrates, insects, slime molds, and plants (Matthews 

et al., 2007). In vertebrates the tweety gene family consist of three members, tweety homeolog 

1 (Ttyh1), tweety homeolog 2 (Ttyh2), and tweety homeolog 3 (Ttyh3) (Matthews et al., 2007). 

All three members of the tweety family have been characterized as large conductance chloride 

channels, maxi-Cl-, with five transmembrane domains (Shizuki et al., 2004). Ttyh2 and Ttyh3 
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encode Ca2+-activated channels, whereas Ttyh1 encodes a Ca2+-independent, volume- sensitive 

Cl- channel that is capable of binding Ca2+ (Suzuki et al., 2004; Kamada et al., 2010). 

 Ttyh1 is primarily expressed in the brain, eye, spinal cord, and testis, with lower levels 

expressed in the pancreas, pituitary gland, mammary gland, and liver (Matthews et al., 2007). 

During embryogenesis, Ttyh1 is primarily expressed in the developing nervous system, with 

expression in the brain, spinal cord, eyes, and cranial ganglia as embryos continue to progress 

through neurogenesis (Halleran et al., 2015). In addition, Tthy1 is expressed in stem cells and 

progenitor cells in proliferative, ventricular zones and subventricular zones (Halleran et al., 

2015, Kumada et al., 2010). In adults, Ttyh1 is abundant in terminally differentiated neural cells 

(Kumada et al., 2010). On a cellular level, Ttyh1 has been found on the endoplasmic reticulum, 

Golgi apparatus, and clathrin coated vesicles in neurons and astrocytes, late endosomes or 

lysosomes of astrocytes, and axons and dendritic spines of neurons (Kumada et al., 2010, 

Weirnasz et al., 2014; Matthews et al., 2007; Stefanuik et al., 2010a).   

  Ttyh1 has been implicated in numerous cellular pathways and processes. Induced 

expression of Ttyh1 in the embryonic kidney cell line, HEK293, resulted in high expression at 

cell-cell interfaces, an association with integrins, and cytoskeletal rearrangements suggesting a 

role in cell to cell communication, migration, and adhesion (Matthews et al., 2007). Ttyh1 has 

also been associated with tumor microtubules in glioma cell proliferation, supporting its roles in 

cell migration and proliferation (Jung et al., 2017).  Manipulation of Ttyh1 expression also 

resulted in morphological changes in neurons in vitro (Stefaniuk et al.,2010a). In addition, Ttyh1 

has been shown to be critical for neural development in mice as homogeneous inhibition of the 

gene resulted in embryonic lethality prior to neural development (Kumada et al., 2010).  
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Induction of Ttyh1 in primary mouse cell culture has been shown to support stem cell capacity 

(Kim et al., 2018). Additionally, Ttyh1 is speculated to regulate ER Ca2+, due to its ability to bind 

Ca2+ and its positioning in the lumen of the ER, and be involved in cell division, as it is highly 

expressed during the metaphase of mitosis (Kumada et al., 2010).   

Ttyh1 has also been observed in numerous pathologies. Upregulation of Ttyh1 has been 

observed in several forms of cancers, including astrocytoma and glioma, during epileptogenesis 

and epilepsy, and following brain damage in astrocytes (Matthews et al., 2007; Jung et al., 

2017;  Stefaniuk et al., 2010b; Wiernasz et al., 2014).  Lower expression of Ttyh1 has also been 

observed in breast cancer (Darweesh et al., 2014). In addition, the fusion of Ttyh1 to a 

microRNA cluster have been shown to drive expression of the microRNAs in embryonal tumors 

with multilayered rosettes, a deadly form of pediatric brain tumor (Kleinman et al., 2014).  

 Because Ttyh1 has clear links to the Notch signaling pathway, has robust expression in 

neural regions during early stages of development, is implicated in multiple cellular processes 

for neuron development, and is involved in numerous brain pathologies, Ttyh1 is an excellent 

candidate for investigation.  Moreover, despite its importance and clear clinical relevance, 

there have been relatively few studies of the gene, particularly functional investigations. The 

goal of this thesis was to investigate the role of Ttyh1 in neurodevelopment by developing a 

protocol for CRISPR/Cas9 genomic knockouts in Xenopus laevis and investigating subsequent 

expression of neural marker genes, Sox2 and tubb2b, the other members of the tweety family, 

Ttyh2 and Ttyh3, and one of the Notch Receptors, Notch1. This project was conducted in 

Xenopus laevis because of its well characterized neural development, relatively fast 

development, and access to early stages of development. 
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Materials and Methods 
Animal care 

 All animal care and procedures were performed in accordance with the College of 

William and Mary’s Institutional Animal Care and Use Committee (IACUC) regulations. Xenopus 

laevis embryos were obtained through natural matings as described in Sive et al. (2000). Staging 

was done in accordance with Nieuwkoop and Faber (Nieuwkoop and Faber, 1994).   

 

CRISPR guide RNA design and synthesis 

Guide RNA (gRNA) for CRISPR/Cas9 mutagenesis was designed using Harvard's CHOP 

CHOP site (http://chopchop.cbu.uib.no/). The site evaluates the gene of interest FASTA 

sequence for potential target sites based on GC content, off target sites, and self-

complementarity. The gRNA was selected based on ranking, location in the sequence, and 

termination with the S. pyogenes Cas9 protospacer adjacent motif (PAM) site, NGG. The gRNA 

sequence was then confirmed in the gene of interest via BLAST. The final gRNA sequence 

selected was: GGAATTGGCATTGGTTTCTACGG, with the PAM site in bold.  An oligo was then 

designed with the gRNA without the PAM site, the promoter site for SP6 polymerase 

(lowercase), and an overlap region for the constant region (lowercase and bold). The final oligo 

sequence ordered was: 

atttaggtgacactataGGAATTGGCATTGGTTTCTAgttttagagctagaaatagcaag. The 

oligonucleotide for the constant region ordered was: 

AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCTAG
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CTCTAAAAC. All oligonucleotides were ordered from Integrated DNA technologies (IDT). 100 

µM of both oligonucleotides were hybridized in duplexing buffer (10mM Tris, 1 mM EDTA, 

50mM NaCL) for 5 min at 95 C, then cooled for 1hr at room temperature (RT). Approximately 

2uM of annealed oligonucleotide solution was then was filled in via polymerase chain reaction 

(PCR) using Q5 Hot Start 2x master mix from New England Biolabs (NEB), with the following 

reaction 94 C for 5 min, 20 cycles of 94 C 20 sec, 58 C 20 sec, 68 C 15 sec, 5 min 68 C. The 

complete oligonucleotide was then cleaned up using NEB PCR clean up kit according to the 

manufacturer’s instructions. The uncapped gRNA was transcribed using the mMessage 

mMachine kit according to manufacture instructions and purified using Qiagen RNeasy Mini 

Elute Cleanup kit according to manufacturer's instructions. Purified gRNA was stored in -80 until 

injected.  

 

Injections and screening 

Cas9 protein was ordered from IDT and stored at -20. Cas9 was combined with purified 

gRNA and allowed to incubate at RT for 10 min. The cas9/gRNA solution was then diluted with 

5% Fluoresceinated lysine-fixable dextran (FLDX). Embryos were injected bilaterally at the 2-cell 

stage with 9.2 nL of the construct. For the FULL concentration embryos received 2.3 ng of gRNA 

and 5.2ng of Cas9. For the HALF concentration embryos received 1.15 ng of gRNA and 2.6 ng of 

Cas9. For FLDX controls embryos were injected with diluted FLDX for a total 0.6 µg of FLDX. 

Non-injected controls were also selected. Embryos were also injected unilaterally at the 2-cell 

stage receiving 1.15 ng of gRNA and 2.3 ng of Cas9. Embryos were injected in a 1/3 Marc’s 

Modified Ringers (MMR) and 4% Ficoll, from Sigma, solution. Embryos were allowed to recover 
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in 1/3 MMR and 4% ficoll at 16 C.  1.5-2 hrs following injections necrotic embryos were 

removed and healthy embryos were moved to a 0.1X MMR and 4% ficoll solution and remained 

at 16 C. Necrotic embryos were removed and solution was changed 6 hrs and 9 hrs post 

injection, then allowed to recover overnight at 16 C. Injected embryos were either tracked for 

mortality every 3-4hrs or grown to NF stages 20, 30, or 40 for nitrogen or MEMFA fixation 

(method described below). Mortality tracked embryos received a solution change every 3-4 hrs 

of 0.1xMMR and 4% ficoll until completion of gastrulation where the solution was changed to 

0.1x MMR and Gentamycin. Following NF stage 20 mortality tracked embryos received solution 

changes only twice a day with 0.1x MMR and Gentamycin. The solution was changed at each 

timepoint. Necrotic Embryos were also removed at each time point. 

 

Fixation (MEMFA and Nitrogen) 

Injected embryos for fixation were screened for fluorescence with a Nikon SMZ800N 

stereomicroscope. Unilaterally injected embryos were also screened for left or right injection at 

stage 20 or 30. Embryos for in situ hybridization were fixed in MEMFA (100 mM MOPS, pH 7.4, 

2 mM EGTA, 1 mM MgSO4, 4% Formaldehyde), washed in 100% ethanol and stored at -20 C. 

Embryos for DNA and RNA extraction were individually flash frozen in liquid nitrogen and 

stored at -80 C.  

 

Whole Mount In Situ Hybridization 

Antisense probes for neural marker genes tubb2 (Klein et al., 2002) and Sox2 (Huyck et 

al., 2015) were synthesized with digoxigenin-substituted uracil nucleotides according to Sive et 
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al. (Sive et al., 2000). Spatial expression of the genes was analyzed via chromogenic in situ 

hybridization as described in Sive et al. with minor modifications, using NBT/BCIP 

(nitrobluetetrazolium/5-bromo-4-chloro-3-indolyl phosphate) alkaline phosphatase 

substrates (Sive et al., 2000). Whole mount images were taken in phosphate buffer saline on a 

Nikon SMZ800N stereomicroscope attached to a Nikon DS-Ri2 camera.  

 

Histology 

For histological analysis, embryos were dehydrated in 100%  ethanol followed by 

dehydration in 100% xylene and embedded and set in 100% paraffin for a minimum of 18 

hours. Embryos were sectioned into 18 μm-thick transverse slices on a microtome, mounted 

onto glass slides, and cover slipped with permount. Sections were photographed using an 

Olympus BX60 scope attached to an AmScope MU1400 digital camera. Histological structures 

were determined based on Hausen et al. (1991). 

 

DNA and RNA extractions 

Genomic DNA and RNA were extracted from nitrogen fixed embryos using TRI reagent 

by Thermo Fisher. Embryos were individually homogenized in 100 μl of Tri Reagent. RNA was 

isolated using 20 μl of chloroform. The aqueous phase was collected, and RNA was precipitated 

out with 50 μl Isopropanol. The RNA pellet was then washed in 75% ethanol, allowed to dry, 

and resuspended in 30μl of nuclease free water. Genomic DNA was precipitated out of the 

interphase layer using 100% Ethanol, then washed with 70% ethanol, allowed to dry and 

resuspended in 20 μl of TE.  
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Reverse Transcription and Quantitative Polymerase Chain Reaction 

Approximately 500ng of extracted RNA was reverse transcribed using iScript by BioRad 

according to the manufacturer’s instructions. Gene expression was analyzed using TaqMan 

Universal qPCR Master Mix and StepOne Real-Time PCR according the manufacturer’s 

instructions. Custom primers and probes were ordered and designed using the Custom TaqMan 

Gene Expression Assays.  Cycling conditions were: 95 C 10 min; 40 cycles of 95 C 15 sec, 60 C 

1 min. TaqMan probes were labeled at the 5′ end with FAM dye and at the 3′ end with the NFQ 

quencher. Primers used were: tubb2b, 5’ - GGCAGATTTTCAGACCAGACAACTT – 3’ and 5’ -

GACCTTTGGCCCAGTTATTGC- 3’; Notch1, 5’ - CAAGCAGGACATTAATGAGTGCAG-3’ 5-

AGCGGTATGATCCAAACTCATTGAT-3’; ttyh2, 5′-CTGGACTGCTGCTGTGTCT and 5′-

CATTGGTCTCACTGTTCCCATAGAA-3′; ttyh3, 5′-TGGAAGAATCATTACTTGCTGGATGAA-3′ and 5′-

CAGAAGCAGGCCCAGGTA-3′; Drosha, 5′-ACCCCGATCGCCTTCATG-3′ and 5′-

GGCTTTCAAACTGCACTTACAGAGA-3′. The sequence for Sox2 primers was unavailable, but will 

be available once probe and primers are re-ordered. Raw data were processed with StepOne 

Software v2.3. Data was normalized to Drosha RNA (ΔΔCT analysis).   

  

Polymerase Chain Reaction and Sequencing  

Primers approximately 200 bp upstream of the target site were designed. Forward: 5’-

GCAGGACAAAAGAAGAAAGCTGTA-3’ and Reverse 5’-CTGGTTAGTGGGACAGAGCAG-3’. PCR was 

performed using NEB Q5 High Fidelity PCR Master mix according to manufacture's instructions 

using extracted genomic DNA. Cycling conditions were: 98 C 30 sec, 30 cycles of  98 C 10sec,   
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65 C 30sec  72 C 30 sec; 72 2 min; hold at 4 C. PCR products were purified using NEB PCR clean 

up kit according to manufactured instructions, then sequenced using sanger sequencing using 

the same primers for PCR.  

 

TIDE: Tracking of Indels by Decomposition Analysis 

CRISPR mutation efficiency was analyzed using the TIDE online tool 

(https://tide.deskgen.com/) developed by Brinkman et al., 2014. The gRNA sequence along with 

the chromatogram files from sequencing of a control sample and a test sample are 

submitted to the website. TIDE first aligns the gRNA sequence to the control sample to predict 

the cut site, then aligns the region upstream of the predicted cut site of the test and control 

sample. The software then analyzes the peak heights of the chromatograms for each base 

downstream of the cut site to determine the relative abundance of aberrant nucleotides in the 

sequence provided.  TIDE creates sequence trace models of possible insertions and deletions 

(INDEL) based on the control sample. The program then runs a goodness of fit analysis of the 

test sample to a combination of control sample and the predicted INDELs. TIDE calculates the p-

value for the abundance of a given INDEL in the population via two-tailed t-test of the variance–

covariance matrix of the standard errors. The program then sums the abundance of statistically 

significant INDELs to provide a percent mutation efficiency, which is the percentage of the 

sequence population that contains an INDEL mutation.  

All experimental samples were compared to a non-injected control of the same stage 

from the same injection date. One non-injected control sample was selected for comparison for 

each injection date and staged based on Xenbase BLAST identity percentage match to Ttyh1L.  

https://tide.deskgen.com/
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Statistical Analysis 

Statistical difference of the mean percent mutation efficiencies of experimental 

conditions was calculated using unpaired, unequal variance, two-tailed T-test in Excel. The 

standard deviation was also calculated in Excel. 

Percent survival was calculated at the end of each mortality experiment by dividing the 

total living embryos by the initial number of embryos placed into the plate. The mean was 

taken across all three mortality experiments. The statistical difference of the mean survival rate 

between replicates was calculated using unpaired, unequal variance, two-tailed T-test in Excel. 

The standard deviation was also calculated in Excel. 

qPCR ΔCT values were calculated by subtracting the mean CT values of technical 

replicates for the housekeeping gene, Drosha, from the mean CT of the gene of interest. ΔΔCT 

were calculated by subtracting the mean ΔCT of the biological controls from the ΔCT of each 

sample. ΔΔCT were calculated using the mean ΔCT for stage 20 and 30 separately and mean ΔCT 

across both stages. The fold change was calculated by setting 2 to the power of the negative 

ΔΔCT (2-(ΔΔCT)). Difference between experimental conditions was calculated using unpaired, 

unequal variance, two-tailed T-test in excel on the 2-(ΔΔCT) value for stage 20 and 30, separately 

and both stages combined. Linear regression analysis was calculated using the regression tool in 

the Data Analysis tool pack in Excel where TIDE mutation efficiency was the independent 

variable and the 2-(ΔΔCT) was the dependent variable. All calculations were done in Microsoft 

Excel. 
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Results  
Mutation Efficiency 

 To determine the success of the CRISPR/Cas9 Knockout ofTtyh1, genomic DNA (gDNA) 

was extracted from individual embryos. PCR products of the target site were then sequenced 

and analyzed using the Tracking of Indels by Decomposition (TIDE) developed by Brinkman et al. 

(2014). TIDE analysis of stage 20 and 30 embryos injected with the higher concentration of 2.3 

ng gRNA and 5.2 ng Cas9 (FULL) had an average mutation efficiency of 41.4%, with a high 

degree of variability (SD 37.7, n = 22) (Figure 1A). For embryos injected with 1.15 ng gRNA and 

2.6 ng Cas9 (HALF) the average mutation efficiency was 26.7% (SD 33.66, n = 5), for FLDX 

injected controls (FLDX) the average was 5.08% (SD 3.55, n =6), and for non-injected controls 

(CON) the average was 0.17% (SD 0.44, n= 12). FULL embryos had a significantly higher 

mutation efficiency as compared to CON (p = 5e -5) and FLDX (p = 2.3e -4) embryos. There was 

not a significant difference in mutation efficiency between FULL and HALF embryos (p = 0.26). 

There was a significant difference between CON and FLDX embryos (p = 0.027) when mutation 

efficiency was analyzed in both stages together.  
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 (A-C) Average percent mutation efficiency of based on Tracking of Indels by Decomposition (TIDE). 
FULL (2.3ng gRNA, 5.2ng Cas9), HALF (1.15ng gRNA, 2.6ng Cas9), FLDX  (5% Fluoresceinated lysine-
fixable dextran) and Con (non-injected control) embryos. (A) TIDE analysis of mutation efficiency in 
NF stage 20 and 30 (FULL, n = 22), (HALF, n = 5), (FLDX, n = 6), (Con n = 12). (B) TIDE Analysis of 
mutation efficiency in NF stage 20 embryos (FULL, n = 8), (Con, n = 5), . (C) TIDE analysis of 
mutation efficiency in stage NF 30 (FULL, n = 14), (HALF, n = 5), (FLDX, n = 5), (Con n = 7).  (** = p ≤ 
0.01; *** = p ≤ 0.001), error bars indicate 1 standard deviation.  

Figure 1.  Mutation Efficiency of CRISPR/Cas9 Ttyh1 Knockouts 
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The mutation efficiency was also analyzed by stage. At stage 20 the average mutation 

efficiency was 28.78% (SD 32.88, n = 8) for FULL and 0.04% (SD 0.08, n = 5) for CON embryos 

(Figure 1B). The difference in mutation efficiency between FULL and CON embryos at stage 20 

was just below the threshold of significance (p = 0.054). At stage 30 mutation efficiency was 

48.62% (SD 37.66, n = 14) in FULL, 26.86% (SD 33.66, n =5) in HALF, 0.26% (SD 0.55, n = 7) in 

CON, and 4.96% (SD 3.88, n =5) in FLDX embryos (Figure 1C). Mutation efficiency was 

significantly higher in FULL embryos as compared to CON (p = 5e -4) and FLDX injected controls 

(FLDX) (p = 0.0011). The mutation efficiency was not significantly different between FULL and 

HALF embryos at stage 30 (p = 0.31).  Together these data suggest that injection of the FULL 

concentration is able to successfully induce a mutation in Ttyh1. 

 

Mortality 

To determine if CRISPR/Cas9 Knockout of Ttyh1 had significant effects on mortality, 

survival of embryos bilaterally injected with the full concentration 2.3 ng gRNA, 5.2 ng Cas9 

(FULL), half concentration of 1.15 ng gRNA and 2.6 ng Cas9 (HALF), a control injection with just 

FLDX (FLDX), and non-injected controls (CON) were monitored (Figure 2). Figures2A-C depict 
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the percent survival over the course of 2 or 3 days mortality was tracked. The first mortality 

experiment was only monitored until embryos reached NF stage 30 (Figure 2A), mortality 2  

 (A-C) Percent survival of bilaterally injected three independent replicates (Full 2.3ng gRNA, 
5.2ng Cas9; Half 1.15ng gRNA, 2.6ng Cas9; FLDX  5% Fluoresceinated lysine-fixable dextran) 
and non-injected control (Con) embryos from injection (0hrs) to NF stage 30 (A) or NF st40 
(B,C).  (A) n = 30 in duplicate for all experimental conditions  (B,C) n = 25 in duplicate for all 
experimental conditions. Gray background indicates gastrulation. Black vertical lines indicate 
NF stage (D) Average survival rate across mortality replicates (** = p ≤ 0.01; *** = p ≤ 0.001), 
error bars 
 
 indicate 1 standard deviation.  

Figure 2.  Mortality of TTYH1 knockout during early development 
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(Figure 2B) and 3 (Figure 2C) were monitored until embryos reached NF stage 40. The 

survival often declined in the first 12hrs following injections, during overnight incubations, or 

during gastrulation. Survival became relatively stable once embryos reached stage 30. FULL 

embryos had a high mortality rate, with an average survival rate of 37.01% (SD = 26.26). HALF 

embryos had an average survival rate of 27.53% (SD = 9.5). FLDX embryos had an average 

survival rate of 37.75% (SD = 18.29). In all replicates, CON embryos had the best and most 

consistent survival rate, with an average of 89.00% (SD = 4.36). On average, FULL embryos did 

not have survival rate that was statistically different from HALF embryos (p = 0.47) or FLDX 

embryos (p = 0.95). All injected embryos had significantly higher mortality rates as compared to 

control embryos: FULL (p= 0.0062), HALF (p = 2.6e-6), FLDX (p = 0.0010). 

 

In Situ Hybridization of Bilaterally- and Unilaterally-injected Embryos 

 To determine the effects ofTtyh1 knockouts on neurodevelopment, in situ hybridization 

was performed on bilaterally and unilaterally injected embryos to visualize Sox2, a transcription 

factor that is a marker for neural progenitor cells, and tubb2b, a neuron-specific microtubule 

component expressed in differentiated neurons (Graham et al., 2003; Moody et al., 2007). 

Bilaterally injected embryos appeared to have less expression of Sox2 at NF stage 30 and 40 

throughout the developing the nervous system (Figure 3). Differences in expression were most 

noticeable at NF stage 30 (Figure 3A-D). Bilateral embryos also appeared to have lighter 

expression of tubb2b at NF stages 30 and 40, throughout the developing nervous system 

(Figure 4).  
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Embryos were also injected unilaterally and analyzed for marker gene expression to 

compare the effects ofTtyh1 knockdown within the same genetic background. Consistent with 

bilaterally injected embryos, Sox2 expression was less prominent on the injected side of the 

Representative images of Sox2 expression in embryos bilaterally injected with 1.15ng TTYH1 gRNA 
and 2.6ng Cas9 and non-injected controls. (A,C) NF stage 30 bilaterally injected with CRISPR construct 
(A) lateral view, (C) dorsal view. (B,D) NF stage 30 non-injected control (B) lateral view, (D) dorsal 
view. (E,G) NF stage 30 bilaterally injected with CRISPR construct (E) lateral view, (G) dorsal view. 
(F,H) NF stage 30 non-injected control (F) lateral view, (H) dorsal view. Scale bar is 1mm in all images. 
N = 12 for all condition Abbreviations: I/M intermediate/medial longitudinal stripes of primary 
neurogenesis; FB, forebrain; E, eye; MB, midbrain; HB, hindbrain; SC, spinal cord.    
 

Figure 3.  Expression of Sox2 in bilaterally injected embryos 
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embryo, with the most apparent differences in NF stage 30 embryos (Figure 5). Expression of 

tubb2b in unilaterally injected embryos was more dynamic (Figure 6). Tubb2b had more intense 

expression in the injected side in NF stage 20 embryos (Figure 6A-C). By NF stage 30 tubb2b  

Representative images of NBT expression in embryos bilaterally injected with 1.15ng TTYH1 gRNA 
and 2.6ng Cas9 and non-injected controls. (A,C) NF stage 30 bilaterally injected with CRISPR construct 
(A) lateral view, (C) dorsal view. (B,D) NF stage 30 non-injected control (B) lateral view, (D) dorsal 
view. (E,G) NF stage 30 bilaterally injected with CRISPR construct (E) lateral view, (G) dorsal view. 
(F,H) NF stage 30 non-injected control (F) lateral view, (H) dorsal view. Scale bar is 1mm in all images. 
N = 12 for all condition. Abbreviations: I/M intermediate/medial longitudinal stripes of primary 
neurogenesis; FB, forebrain; E, eye; MB, midbrain; HB, hindbrain; SC, spinal cord.    
 

Figure 4. Expression of NBT in bilaterally injected embryos 
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expression was visually the same on injected verse the non- injected side (Figure 6D-F). At NF 

stage 40 tubb2b expression was more intense in the non-injected side of the embryo (Figure 

6G-I), consistent with bilaterally injected embryos ay the same stage.  

Histology of unilaterally injected embryos was performed to examine the spatial 

expression of marker genes following knockout of Ttyh1 with greater resolution along both the 

anterior-posterior and dorsal-ventral axes. Expression of Sox2 in histological sections was more 

prominent  on the non-injected side, consistent with whole mount images (Figure 7). 

Differences in Sox2 expression were the most visually apparent at NF stage 30, with differences 

Representative images of Sox2 expression in embryos unilaterally injected with 1.15ng TTYH1 gRNA 
and 2.6ng Cas9. (A-C) NF stage 20 same embryo with views of dorsal (A) lateral injected side (B) and 
lateral non-injected side (C), (D-F) NF stage 30 same embryo with views of dorsal (D) lateral injected 
side (E) and lateral non-injected side (F). (G-I) NF stage 40 same embryo with views of dorsal (G) 
lateral injected side (H) and lateral non-injected side (I). (A, D, G) Dorsal view. Injected side is the 
lower half of the embryo in all three panels. Scale bar is 1mm in all images. N = 8 for all condition 
Abbreviations: I/M intermediate/medial longitudinal stripes of primary neurogenesis; FB, forebrain; 
E, eye; MB, midbrain; HB, hindbrain; SC, spinal cord. 
    

Figure 5. Expression of Sox2 in unilaterally injected embryos. 
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in expression noticeable throughout the entire anterior-posterior axis of the developing brain, 

neural crest, and spinal cord (Figure 7G-L). Differences in expression for stages 20 and 40 were 

most apparent in the anterior sections of the embryo (Figure 7A-B; 6N).  

Expression of tubb2b in histological sections was also consistent with whole mount 

images (Figure 8). At NF stage 20 tubb2b expression was more intense in the injected side 

throughout the neural crest along the entire anterior posterior axis (Figure 8A-F). At NF stage 

30, hatching stages, tubb2b expression appeared darker in the non-injected side, which was 

more apparent in anterior sections in the neural crest (Figure 8G,H). However, expression in the 

Representative images of tubb2b expression in embryos unilaterally injected with 1.15ng TTYH1 
gRNA and 2.6ng Cas9. (A-C) NF stage 20 same embryo with views of dorsal (A) lateral injected side (B) 
and lateral non-injected side (C), (D-F) NF stage 30 same embryo with views of dorsal (D) lateral 
injected side (E) and lateral non-injected side (F). (G-I) NF stage 40 same embryo with views of dorsal 
(G) lateral injected side (H) and lateral non-injected side (I). (A, D, G) Dorsal view. Injected side is the 
lower half of the embryo in all three panels. Scale bar is 1mm in all images. N = 8 for all condition 
Abbreviations: I/M intermediate/medial longitudinal stripes of primary neurogenesis; FB, forebrain; 
E, eye; MB, midbrain; HB, hindbrain; SC, spinal cord.    
 

Figure 6. Expression of tubb2b in unilaterally injected embryos 
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prosencephalon appeared more intense in the injected side (Figure 8G). At stage 40, tubb2b 

expression appeared darker in the non-injected side, which was more apparent in anterior 

sections in the prosencephalon, mesencephalon, eye regions, and otic vesicle (Figure 8 M-O).  

Quantitate Polymerase Chain Reaction Gene Expression   

 Expression analysis of Sox2 is summarized in Table1 and Figure 9. The only significant 

difference in expression was between the two concentrations of CRISPR/Ca9 injected where 

Representative images of embryos injected unilaterally with 1.15ng TTYH1 gRNA and 2.6ng Cas9. (A-
F) NF stage 20 embryo sections anterior to posterior. (G-L) NF stage 20 embryo sections anterior to 
posterior. (M-R) NF stage 40 embryo sections anterior to posterior. N = 2 for all conditions Filled in 
arrows, expression on the injected side; hollow arrows, expression on the un-injected side. Injected 
side is on the left in all panels. D, deuterencephalon. EA, eye anlage. NT, neural tube. E, eye vesicle. 
M, mesencephalon. NC, neural crest. R, rhombencephalon. MY, Myotome. SP, Spinal Chord Scale bar 
is 0.5mm. 
   

Figure 7. Expression of Sox2 in histological sections of unilaterally injected embryos 
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FULL embryos had significantly higher expression of Sox2 as compared to HALF embryos (p = 

0.04) (Table 1). At stage 30, difference in expression between HALF embryos and and non-

injected controls was just above significance (p = 0.07). Linear regression analysis between 

mutation efficiency and Sox2 expression revealed no significant correlation for either stage 20, 

30, or both stages combined (Figure 9B, D, F).  

RT-qPCR expression analysis for tubb2b is summarized in Table 2 and Figure 10. There 

was a significant difference in Tubb2b expression at stage 30 between HALF and non-injected 

control embryos (p = 0.02) at stage 30. There was no other significant difference for tubb2b 

Representative images of embryos injected unilaterally with 1.15ng TTYH1 gRNA and 2.6ng Cas9. (A-
F) NF stage 20 embryo sections anterior to posterior. (G-L) NF stage 20 embryo sections anterior to 
posterior. (M-R) NF stage 40 embryo sections anterior to posterior. N = 2 for all conditions Filled in 
arrows, expression on the injected side; hollow arrows, expression on the un-injected side. Injected 
side is on the left in all panels. (NC, neural crest; P, prosencephalon. E, eye. SP, Spinal Cord. M, 
mesencephalon. R, rhombencephalon OT, otic vesicle. OC, otocycst). Scale bar is 0.5mm.  
 

Figure 8. Expression of tubb2b in histological sections of unilaterally injected embryos 
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expression, although the difference between non-injected controls and FULL (p = 0.12) and 

FLDX (p = 0.09) were just over the cut off for significance. There was no significant correlation 

between mutation efficiency and Tubb2b expression at either stage 20 or 30 combined or 

separately,  (Figure 10 B, D, F). The correlation between mutation efficiency and tubb2b 

expression at stage 30 was just over the cut off for significance (R2 = 0.14, p = 0.10, n = 20) 

(Figure 10F). 

FULL (2.3ng gRNA , 5.2ng Cas9); HALF (1.15ng gRNA, 2.6ng Cas9); FLDX (5% Fluoresceinated lysine-
fixable dextran); Control (non-injected controls) (*= p ≤ 0.05, ** = p ≤ 0.01; *** = p ≤ 0.001)   

Table 1. Summary of Sox2 qPCR Expression. 
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Expression of Sox2 via RT-qPCR. (A) Fold Change of FULL (n =16), HALF (n = 2), FLDX (n =4), and Con (n 
=10) stages 20 and 30 combined. (B) Fold change compared to TIDE analysis mutation efficiency in 
FULL and HALF (n = 15) embryos of stages 20 and 30, R

2
 of linear regression analysis and p-value of 

fit. (C) Fold Change of FULL (n = 4) and Con (n =3) at stage 20. (D) Fold change compared to TIDE 
analysis mutation efficiency in FULL and HALF (n = 3) at stage 30 and R

2
 of linear regression analysis 

and p-value of fit. (E) Fold Change of FULL (n =12), HALF (n = 2), FLDX (n = 3), and Con (n = 7) at stage 
30. (F) Fold change compared to TIDE analysis mutation  
efficiency in FULL and HALF (n = 12) R

2
 of linear regression analysis and p-value of fit (* = p ≤ 0.05; ** 

= p ≤ 0.01; *** = p ≤ 0.001), error bars indicate 1 standard deviation.  
 

Figure 9. Sox2 Expression in Ttyh1 Knockouts. 
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 The summary of Notch1 expression can be found in Table 3 and Figure 11. There was a 

significant difference between the non-injected controls and the FLDX injected controls (p = 

0.03). There was no significant difference between any of the other experimental conditions, 

however the difference between non-injected controls and HALF fell just under significant (p = 

0.08) at stage 30 and both conditions combined, as did the difference between FULL and HALF 

FULL (2.3ng gRNA , 5.2ng Cas9); HALF (1.15ng gRNA, 2.6ng Cas9); FLDX (5% Fluoresceinated lysine-
fixable dextran); Control (non-injected controls) (*= p ≤ 0.05, ** = p ≤ 0.01; *** = p ≤ 0.001)   

Table 2.  Summary of Tubb2b qPCR Expression 
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Expression of Tubb2b via RT-qPCR. (A) Fold Change of FULL (n =29), HALF (n = 9), FLDX (n =6), and Con (n 
=15) stages 20 and 30 combined. (B) Fold change compared to TIDE analysis mutation efficiency in FULL 
and HALF (n = 23) embryos of stages 20 and 30, R

2
 of linear regression analysis and p-value of fit. (C) Fold 

Change of FULL (n = 10), HALF (n = 3), FLDX (n =2) and Con (n =6) at stage 20. (D) Fold change compared to 
TIDE analysis mutation efficiency in FULL and HALF (n = 7) at stage 30 and R

2
 of linear regression analysis 

and p-value of fit. (E) Fold Change of FULL (n =19), HALF (n = 6), FLDX (n = 4), and Con (n = 7) at stage 30. 
(F) Fold change compared to TIDE analysis mutation efficiency in FULL and HALF (n = 21) R

2
 of linear 

regression analysis and p-value of fit (* = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001), error bars indicate 1 
standard deviation.  

Figure 10. Tubb2b Expression in Ttyh1 Knockouts. 
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  at stage 30 (p = 0.06).  There was no significant relationship between Notch1 expression and 

mutation efficiency for either stage separately, or for the two stages combined (Figure 11B, D, 

F).  

 Expression analysis for Ttyh2 is summarized in Table 4 and Figure 12. There was no 

significant relationship between any of the experimental conditions at any stage separately or  

FULL (2.3ng gRNA , 5.2ng Cas9); HALF (1.15ng gRNA, 2.6ng Cas9); FLDX (5% Fluoresceinated lysine-
fixable dextran); Control (non-injected controls) (*= p ≤ 0.05, ** = p ≤ 0.01; *** = p ≤ 0.001)   
 

Table 3. Summary of Notch1 qPCR Expression. 
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Expression of Sox2 via RT-qPCR. (A) Fold Change of FULL (n =28), HALF (n = 8), FLDX (n = 5), and Con 
(n = 15) stages 20 and 30 combined. (B) Fold change compared to TIDE analysis mutation efficiency in 
FULL and HALF (n = 27) embryos of stages 20 and 30, R

2
 of linear regression analysis and p-value of 

fit. (C) Fold Change of FULL (n = 10), HALF (n = 3) and Con (n =6) at stage 20. (D) Fold change 
compared to TIDE analysis mutation efficiency in FULL and HALF (n = 7) at stage 30 and R

2
 of linear 

regression analysis and p-value of fit. (E) Fold Change of FULL (n = 18), HALF (n = 5), FLDX (n = 4), and 
Con (n = 9) at stage 30. (F) Fold change compared to TIDE analysis mutation efficiency in FULL and 
HALF (n = 20) R

2
 of linear regression analysis and p-value of fit (* = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 

0.001), error bars indicate 1 standard deviation.  

Figure 11. Notch1 Expression in Ttyh1 Knockouts. 
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combined. There was also no correlation between mutation efficiency and Ttyh2 expression for 

either stage combined or separately (Figure 12B, D, F).   

 Expression analysis for Ttyh3 is summarized in Table 5 and Figure 13. There was a 

significant difference between FULL embryos and FLDX at stage 30 (P = 0.01) and at both stage 

combined (p = 0.01).  There was a significant difference between FLDX and the non-injected 

control embryos at stage 30 (p = 0.02) and at both stages combined (p = 0.03). In addition,  

FULL (2.3ng gRNA , 5.2ng Cas9); HALF (1.15ng gRNA, 2.6ng Cas9); FLDX (5% Fluoresceinated lysine-
fixable dextran); Control (non-injected controls) (*= p ≤ 0.05, ** = p ≤ 0.01; *** = p ≤ 0.001)   

Table 4. Summary of Ttyh2 qPCR Expression. 
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Expression of Ttyh2 via RT-qPCR. (A) Fold Change of FULL (n =28), HALF (n = 8), FLDX (n = 5), and Con 
(n = 15) stages 20 and 30 combined. (B) Fold change compared to TIDE analysis mutation efficiency in 
FULL and HALF (n = 27) embryos of stages 20 and 30, R

2
 of linear regression analysis and p-value of 

fit. (C) Fold Change of FULL (n = 10), HALF (n = 3) and Con (n =6) at stage 20. (D) Fold change 
compared to TIDE analysis mutation efficiency in FULL and HALF (n = 7) at stage 30 and R

2
 of linear 

regression analysis and p-value of fit. (E) Fold Change of FULL (n = 18), HALF (n = 5), FLDX (n = 4), and 
Con (n = 9) at stage 30. (F) Fold change compared to TIDE analysis mutation efficiency in FULL and 
HALF (n = 20) R

2
 of linear regression analysis and p-value of fit (* = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 

0.001), error bars indicate 1 standard deviation.  

Figure 12. Ttyh2 Expression in Ttyh1 Knockouts. 
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there was significant differenced between FULL and HALF embryos at stage 30 (p = 0.04). There 

was   no correlation between Ttyh3 expression and mutation efficiency for any stage separately 

or combined (Figure13B, D, F).   

 

 

FULL (2.3ng gRNA, 5.2ng Cas9); HALF (1.15ng gRNA, 2.6ng Cas9); FLDX (5% Fluoresceinated lysine-
fixable dextran); Control (non-injected controls) (*= p ≤ 0.05, ** = p ≤ 0.01; *** = p ≤ 0.001)   

Table 5. Summary of Ttyh3 qPCR Expression. 
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Expression of Ttyh3 via RT-qPCR. (A) Fold Change of FULL (n =25), HALF (n = 8), FLDX (n = 4), and Con 
(n = 13) stages 20 and 30 combined. (B) Fold change compared to TIDE analysis mutation efficiency in 
FULL and HALF (n = 25) embryos of stages 20 and 30, R

2
 of linear regression analysis and p-value of 

fit. (C) Fold Change of FULL (n = 9),  HALF (n = 3) and Con (n =5) at stage 20. (D) Fold change 
compared to TIDE analysis mutation efficiency in FULL and HALF (n = 6) at stage 30 and R

2
 of linear 

regression analysis and p-value of fit. (E) Fold Change of FULL (n = 16), HALF (n = 5), FLDX (n = 3), and 
Con (n = 8) at stage 30. (F) Fold change compared to TIDE analysis mutation efficiency in FULL and 
HALF (n = 19) R

2
 of linear regression analysis and p-value of fit (* = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 

0.001), error bars indicate 1 standard deviation.  

Figure 13. Ttyh3 Expression in Ttyh1 Knockouts. 
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Discussion  
 Analysis of mutation efficiency via TIDE showed that injection of gene specific gRNA and 

Cas9 bilaterally at the 2-cell stage is able to induce an insertion or deletion (INDEL) mutation in 

Xenopus laevis embryos with an average mutation efficiency of 41.4%.  In addition, injection of 

the higher concentration was able to induce a higher mutation efficiency although there was a 

large variation in both HALF and FULL embryos. This is comparable to other CRISPR/Cas9 indel 

frequencies ranging from an average of 17.7% to 83.3% in Xenopus laevis and X. tropicalis, a 

closely related species (Gagon et al., 2014; Banach et al., 2016; Guo et al., 2014; Wang et al., 

2015). 

Variation in the mutation efficiency could be due to unsuccessful delivery of the 

construct, or degradation before the construct is able to induce a mutation. To increase the 

mutation efficiency, future experiments could inject higher concentrations of gRNA and Cas9 or 

investigate modified delivery methods to protect the construct from degradation (Feehan et al., 

2017; Guo et al., 2014). Low efficiencies and high variation could also be due to the purity of 

gDNA used for TIDE analysis. The TIDE program utilizes the chromatogram that accompanies 

Sanger sequencing, which normally is an indication of sequence purity, to analyze the variation 

in the control and test sequence (Brinkman et al., 2014). To extract gDNA and mRNA from the 

same sample simultaneously Fisher TRI reagent was used. TRI reagent provided good purity and 

subsequent reverse transcription of mRNA, but resulted in poor quality and low yield of gDNA 

making subsequent PCR and sequencing more challenging. Implementation of another reagent 

for mRNA and gDNA extractions may increase the purity and yield of gDNA. Thus, increasing the 

purity of the gDNA may help to reduce noise and improve accuracy of the calculated mutation 
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efficiency. Another approach to increasing mutation efficiency would be to utilize CRISPR/Cas9 

knockin technology to insert a stop codon in the gene of interest to assure the induced 

mutation results in a non-functional protein (Gagnon et al., 2014).  

Consistent with the literature mutation efficiency increased as the embryo developed, 

although the degree of difference was not statistically significant (Bhattacharya et al., 2015). 

Analysis of mutation efficiency at a later stage may help to verify this trend.  

Investigation of mortality resulted in increased mortality for all injected experimental 

conditions as compared to the control. This would imply that the increased mortality is due to 

the injection procedure as opposed to knockout ofTtyh1. This is in contrast with Kumada et al., 

2010, who provided evidence that double knockout ofTtyh1 in mice was embryonically lethal 

during neural development. This is consistent with earlier findings that partial removal of ttyh1, 

the Drosophila homeolog, along with flightless was not lethal (Campbell et al., 1993). One 

possible explanation for the lack of lethality is that Xenopus laevis is a pseudo-tetraploid 

organism and the gRNA was designed to have a higher affinity for the “long” copy of Ttyh1. In 

addition, the primers were designed for the “long” copy so PCR and subsequent sequencing 

analysis likely did not include the “short” copy in determination of mutation efficiency. Thus, it 

is possible that the short copy provides some protective compensation that maintains viability. 

Future investigations with both homeolog specific gRNA may induce higher mortality and a 

more severe phenotype. There was also a high degree of variability in the survival percentage 

of FULL and FLDX embryos and additional mortality experiments should be conducted to 

potentially reduce the variation observed between replicates. In addition, increasing mutation 

efficiencies could also lead to a more severe phenotype.  
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 Sox2 expression was more intense inTtyh1 knockouts in whole mount embryos and 

histology most evidently at stage 30, which is whenTtyh1 peaks in expression in Xenopus laevis 

(Sessions et al., 2016. By stage 40 there was still a slight difference between bilaterally injected 

embryos and control embryos, however differences were less noticeable in unilaterally injected 

stage 40 embryos.  RT-qPCR indicated a significant difference between FULL and HALF at stage 

30, while all other comparisons between different experimental conditions did not reveal 

significant differences. In addition, there was not a significant correlation between mutation 

efficiency and Sox2 expression. However, out of all the genes tested via qPCR, Sox2 had the 

lowest n and the most difficulty with the probe. To confirm qPCR data, further examination of 

Sox2 should be done with a new probe to assess whether the inability to detect is due to a 

faulty probe or low expression of Sox2. If further investigation is consistent with in situ data this 

would suggest that knockout of Ttyh1 reduces expression of Sox2. As Sox2 encodes a 

transcription factor that maintains neural progenitor identity and acts as a marker for neural 

progenitor cells, this decreased expression could be due to either a reduction in cell number or 

increased differentiation (Graham et al., 2003). DAPI staining and cell counts on histological 

sections of unilaterally injected embryos could be done to determine if Ttyh1 knockouts affects 

cell count. However, as Ttyh1 overexpression has been implicated in maintenance of stem cell 

capacity, confirmed reduction of Sox2 expression in Ttyh1 knockouts would suggest that Ttyh1 

plays a role in maintenance of neural progenitor cells (Kim et al., 2018).   

 Analysis of tubb2b expression revealed a higher expression in the injected side of 

unilateral Ttyh1 knockout embryos at stage 20, while stage 30 and 40 had lower expression on 

the injected side.  RT-qPCR expression analysis resulted in significantly higher expression of 



44 
 

Tubb2b HALF embryos compared to controls at stage 30. However, there was no correlation 

between mutation efficiency and Tubb2b expression. The lack of significant results for qPCR 

expression analysis could be due to differences in expression requiring greater spatial 

resolution. For example, in unilaterally injected embryos at stage 30 there was clear difference 

in the neural crest, but expression was more similar in the eye regions, and more intense in the 

prosencephalon of the injected side. To gain more quantitative analysis of in situ expression, 

image analysis of histological sections could be performed. In addition, to increase the accuracy 

of the RT-qPCR analysis, it may help to isolate the neural tissue to as the genes of interest are 

localized to the nervous system.  

If further investigation is able to determine that Ttyh1 knockout increases tubb2b 

expression and reduces Sox2 expression this would support that Ttyh1 has a role in the 

maintenance of neural progenitor cells and that lack of Ttyh1 promotes neural differentiation. 

Alternatively, tubb2b is a neural specific tubulin and Ttyh1 is known to interact with 

cytoskeletal proteins such as actin filaments in filopodia and tumor microtubes, as well as 

promote neurite-like projections (Mathews et al., 2007; Jung et al., 2017; Stefaniuk et al., 

2010a). Thus, to confirm whether Ttyh1 knockouts are affecting neural differentiation or 

cytoskeletal and axonal development via tubb2b, future studies should corroborate the 

increase of differentiated neurons using another neural cell marker. If Ttyh1 is more specifically 

affecting the cytoskeleton components, investigations into cellular morphology of Ttyh1 

knockouts, such as other tubulin genes would be beneficial. 

Notch1 expression analysis resulted in no significant difference between experimental 

conditions at either of the analyzed stages. There was also no correlation between Notch1 
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expression and mutation efficiency. This is consistent within the literature that Ttyh1 

overexpression does not affect expression of Notch on the mRNA or protein level but rather 

changes the amount of ICD in the cell (Kim et al., 2018). To confirm this, future investigations 

should investigate how Ttyh1 knockout affect the levels of endogenous ICD and other 

downstream genes of the Notch signaling pathway.  

Analysis of Ttyh2  in Ttyh1 knockouts did not display any significant difference in either 

stage or any of the experimental conditions. Nor was there a correlation between expression 

and mutation efficiency. Thus, it is unlikely that Ttyh2 is acting in a compensatory manner. This 

is in accordance with the literature, as Ttyh2 differs in expression patterns from Ttyh1, coming 

on later at hatching stages, 34-35, as opposed to early blastula stages, 19-20 (Halleran et al., 

2015). In addition, Ttyh2 is known to be Calcium dependent, whereas Ttyh1 has a calcium 

binding site, but is volume activated (Suzuki et al., 2004).   

Ttyh3 expression did show significant increase in expression in FULL Ttyh1 knockout 

embryos as compared to FLDX and HALF embryos at stage 30. Ttyh1 and Ttyh3 both begin to be 

detected at neurula stages with strong localization to the anterior nervous system (Halleran et 

al., 2015). However, by swimming tadpole stages, 35-37, their expression becomes mutually 

exclusive with Ttyh1 localizing to ventricular mitotic zones, whereas Ttyh3 localized to post-

mitotic zones (Halleran et al., 2015). In addition, Ttyh3, as a calcium dependent channel, is 

known to have a greater homology to Ttyh2 (Suzuki et al., 2004). Thus, the increase of Ttyh3 in 

Ttyh1 knockouts may not be compensatory. The increased expression could be evidence of an 

increase in post-mitotic neurons, supporting the notion Ttyh1 plays a role in the maintenance 

of mitotic neurons. To confirm this, spatial gene expression analysis of Ttyh3 should be 
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conducted to determine if Ttyh1 knockout results in differential spatial expression of Ttyh3. 

Spatial analysis may reveal that Ttyh3 encroaches on mitotic regions in the absence of Ttyh1. In 

addition, to confirm that such encroachment is due to a decrease in mitotic cell population, 

expression analysis of mitotic and post-mitotic cell markers should be conducted in Ttyh1 

knockouts.  

One limitation of the qPCR data is that RNA was extracted from whole embryos. All of 

the genes investigated in this study have high localization to the nervous system and perhaps 

inclusion of other tissues decreased the ability of the probes to detect the gene of interest and 

may have contributed to the high degree of variation observed in many of the samples. To 

correct for this, neural tissues could be isolated prior to RNA extraction and analysis. In 

addition, qPCR was only performed on stage 20 and 30 embryos, expanding analysis to stage 40 

may also provide further insight into the effects of Ttyh1 knockout, as expression of Ttyh1 is 

relatively stable by late tailbud stages (Session et al., 2016; Halleran et al., 2015) 

 

Conclusion 
 In summary CRISPR/Cas9 was able to successfully induce knockouts of Ttyh1 in Xenopus 

laevis. Knockout of Ttyh1 did not have significant effects on embryo survival as compared to 

FLDX injected controls. In situ hybridization of Ttyh1 knockout embryos revealed differential 

expression of Sox2 and tubb2b. Sox2 expression was lower in Ttyh1 knockouts at stages 30, 

hatching stages, and stage 40, tailbud stages. Tubb2b expression was higher at stage 20, 

neurula stages, but lower at stage 30, hatching stages, and stage 40, tailbud stages. qPCR 

analysis of Sox2 expression was significantly higher in FULL compared to HALF embryos at stage 
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30, but was not significant between any other condition. There was no correlation between 

mutation efficiency and Sox2 expression. Tubb2b qPCR expression was significantly higher in 

HALF embryos as compared to non-injected controls. There was no significant difference in 

tubb2b expression at any other stage, nor was there a correlation between mutation efficiency 

and tubb2b expression. qPCR analysis resulted in a significant increase of Notch1 expression of 

non-injected controls as compared to FLDX embryos. There was no significant relationship 

between Notch1 expression and Ttyh1 mutation efficiency. Analysis of Ttyh2 expression 

revealed no significant difference between and of the experimental conditions, nor was there a 

correlation between mutation efficiency and Ttyh2 expression. Ttyh3 qPCR analysis revealed a 

significant increase in Ttyh3 expression in FULL embryos as compared to HALF embryos and 

FLDX injected controls. There was also a significant decrease in Ttyh3 expression in FLDX as 

compared to non-injected controls. There was no correlation between mutation efficiency and 

Ttyh3 expression. These results suggest that the Ttyh1 gene may play a role in maintenance of 

neural progenitor cells but does not do so through the expression of Notch1. In addition, Ttyh2 

does not appear to compensate for knockout of Ttyh1. Ttyh3 expression may expand due to 

knockout of Ttyh1, but it is unclear if it is acting in a compensatory manner. Thus, we concluded 

that that Ttyh1 has a role in neurodevelopment, but further investigation is required to 

determine its specific effect.  
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