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Abstract

This thesis describes the design, adaptations and characterizations neces-
sary to partially turn an Auger Electron Spectroscopy Instrument (AES) into
an Auger Electron Microscope (AEM). The completed AEM will be able to
scan and characterize materials over an area, unlike the AES which only took
data from a single point. However, due to time constraints, this thesis only par-
tially describes the creation of an AEM. We were able to show proof-of-concept,
though, we were unable to run AEM on a material. We have also increased the
theoretical accuracy of the instrument by replacing decades-old electronics with
modern alternatives. Again, due to time constraints, we are currently unable to
certify this, as we are limited by certain reoccurring errors in our data. Auger
Microscopes are powerful tools in surface and deposition characterization. We
intend to use the AEM to analyze deposition processes used in the creation of
thin film solid state batteries and determine possible defects in the deposition
process. To characterize the abilities of our instrument, we first replicated and
compared our instrument against the spectrometer’s current capabilities. Then
we scanned the electron beam across a surface to show that we can create a
one dimensional map of our Cylindrical Mirror analyzer’s focal point. While we
have not successfully shown Auger Microscopy with this instrument, we have
left this project with the necessary tools to do so.

1 Introduction

Electron spectroscopy has become a common form of chemical and surface anal-

ysis. In general, there are two main types of electron spectroscopy; Auger Electron

Spectroscopy(AES), in which Auger electrons are produced via an electron beam and

energy analyzed [1], and X-ray Photoelectron Spectroscopy (XPS), in which pho-

toelectrons are produced via an X-ray beam and are energy analyzed [1]. These

techniques are often combined into a single instrument, known as a Combined XPS

and AES Spectrometer [3].

This honors thesis describes efforts towards converting an Auger Spectrome-

ter, which only allows for AES analysis at a single point, to an Auger Microscope,

which allows for AES analysis over an area. This required the replacement of legacy

electronics and software with modern alternatives. We accomplished this task in two
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parts. First, we rebuilt the Spectrometer with modern hardware and software and

improved on the signal to noise ratio of the instrument, when compared to the legacy

components. Next, we created the Auger Microscope by scanning the electron beam

over an area. Unfortunately, due to time constraints, we were unable to complete

the Auger Microscope. However, this thesis does leave the overarching project in a

prime position to complete the Microscope. This thesis will refer to the legacy equip-

ment as the Legacy Electronics system(LE system) and the modern alternative as the

Microprocessor Controlled system(MPC system).

With regards to a larger project, the Auger Microscope will be used in the

characterization of material deposition techniques used in the creation of solid-state

batteries. We will typically run the MPC system using a 2 keV electron beam,

allowing us to analyze only the first atomic layer, since Auger electrons scatter quickly

within materials. Thus, the only useful signal comes from the top layer of atoms. More

information on this process will be provided later in this paper. Moreover, we can

estimate how small of an object we will be able to image based on a secondary surface

microscopy option provided on the LE system called Stage Current Microscopy. Using

this option, we raster the electron beam and measure the current collected by the stage

from the electron beam. We then feed the collected stage current into a CRT TV,

producing an image of a portion of the stage. Objects placed on the stage will change

the amount of collected stage current, producing images on the TV. This technique

allows us to image objects on the order of 100 µm. Therefore, we estimate that we

will be able to use AEM to image objects on a similar scale.
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2 Theory and the AES Instrument

2.1 Auger Electron Spectroscopy

2.1.1 X-Ray Notation

In Auger Electron Spectroscopy, we primarily use X-ray notation to denote the

electron transitions occurring during AES. X-ray notation defines electron orbitals

with a letter and a subscript numeral. The letter, starting with K and proceeding

upwards, represents the electron shell, or n quantum number. A K shell electron

would therefore be in the first, or n = 1, shell and an M shell electron is located

in the third, or n = 3, shell. The subscript numeral represents the location of the

electron within the shell based on the subshell and absolute value of the total angular

momentum quantum number, j. Therefore, since a 1s2 electron can only have j =

±1/2, it is denoted by a I. The p subshell, on the other hand, can have angular

momentum j = ±1/2, ±3/2 and is therefore represented by the subscript values II

and III. Note that the subscript values increase with both the subshell and the value

of j. Combining the letter and subscript notations in an example, the x-ray notation

of a valence oxygen electron (1s2 2s2 2p4) with j = ±1/2 would therefore be LII in

x-ray notation.

2.1.2 Creating Auger Electrons

In order to characterize a material, Auger Spectroscopy requires the capture

and energy analysis of Auger electrons. To produce these electrons, we first bombard

the sample with a high energy electron beam. When an incoming electron collides

with a core electron, and exceeds its binding energy, the core electron may be ejected,

leaving the atom in an ionized, excited state. Two of the remaining electrons collide,

sending one to fill the lower shell, while the other is ejected from the atom with the

remaining energy. The ejected electron is called the Auger electron. Its kinetic energy
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is characteristic of the parent atom and, occasionally, its chemical environment. This

allows for elemental identification based on the energy of the Auger electron [1]. A

diagram of this process is shown in Figure 1

Figure 1: An energy level diagram for the KLI LIII and KLIII LIII Auger transitions.
Note that these transitions occur after the oxygen atom has entered a doubly excited,
ionized state. One of the excited electrons drops to a lower energy state (represented
by the dashed lines) and forces a different electron out of the atom. This electron has
an energy represented by the KLI LIII and KLIII LIII arrows shown in this diagram.

We denote which transitions occur by using X-ray notation. We use three letters

in series to denote the initially emitted electron, the relaxing electron, and the Auger

electron, respectively. Thus, if a K shell electron is initially ionized, an LI electron

relaxes, and an LII electron is emitted as the Auger electron, we denote this process

as KLILII. Auger electrons emitted from this process would have energy equal to

EAuger = EK − ELI
− ELII

− φ (1)

Where EK , ELI , and ELII
are the binding energies of their respective electrons

and φ is the work function of the material. This equation can be generalized to apply
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to any three part Auger process. Values for the various energy levels can be found

in compendiums online, or in Auger spectroscopy books such as The Handbook of

Auger Electron Spectroscopy, which we used in this thesis. A transition diagram of

the process is shown in Figure 2.

Figure 2: Transition diagram of a KLI LII Auger transition. Black circles represent
electrons and white circles represent holes left by transitioning electrons

2.1.3 Analysis of Auger Electrons

The result of the creation of Auger electrons is a notable increase in the number

of detected electrons as we scan our energy analyzer near an Auger energy, EAuger.

This spike in electrons is known as an Auger peak, examples of which can be seen

in Figure 3. Historically, we would take the derivative of the spectrum to show

the Auger peaks more clearly and to remove background noise. However, in this

thesis, we generally use the Auger spectrum for analysis. These plots are known

as the Auger spectrum and the derivative spectrum, respectively. Most elements

allow for multiple electron transition, which produce Auger electrons with a variety
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(a) Auger Spectrum (b) Derivative Spectrum

Figure 3: An Example of an Auger spectrum,left, and its corresponding derivative
spectrum, right. Adapted from PW Palmberg (1974), Combined ESCA and Auger
Spectrometer. Journal of Vacuum Science and Technology, Vol 12, No. 1. Pg. 379.[3]

of energies. Therefore, we see multiple peaks per element, each with its own unique

electron transition series and Auger energy. For example, iron has three major Auger

peaks between 500 eV and 750 eV . These three peaks can be seen in Figure 3.

2.2 The Auger Electron Instrument

The first step in an AES instrument is the production of the Auger electrons

themselves. Both the LE and the MPC systems use a 2 keV electron beam to produce

Auger electrons. We have the option to increase or decrease the electron energy, how-

ever, we use 2 keV as a comparable energy to the maximum detectable energy of our

Cylindrical Mirror Analyzer(CMA), as discussed in the next paragraph. Increasing

the electron beam energy would allow us to access higher energy Auger transitions

necessary to remove the core electrons from heavier elements. However, the energy

of these Auger electrons may exceed the maximum measurable energy of our current

CMA. Without the need to access Auger transitions above 2 keV , we have decided

to keep the electron beam energy at 2 keV .
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For our AES instrument to function, it needs to energy-analyze the Auger elec-

tron. To do this, our instrument employs a Cylindrical Mirror Analyzer. The CMA

energy selects Auger electrons scattered into a solid angle of 42.3± 6◦, as determined

by the CMA [3]. The electrons which enter this solid angle are deflected by a cylin-

drical voltage grid and pass through an aperture to reduce the bandwidth of the

selected energy. They are deflected a second time by the same voltage grid and pass

into the electron multiplier, which amplifies the signal so that it can be read. Thus,

the number of detected electrons withing a certain energy bandwidth corresponds to

the voltage output of the electron multiplier. The inner cylinder of the CMA is held

at 0V . A diagram of this process is show in Figure 4.

The maximum detectable energy of our CMA is constrained by the high voltage

used to power the voltage grids. For both the LE and the MCP systems, we use 2 kV

high voltage, which limits the detectable Auger electron energy to 2 keV . We could

increase this value by replacing the high voltage power supply, however, for this

project, we have decided to leave the high voltage supply unchanged. The resolution

of our CMA is calculated as R = ∆E
E

= 0.6% [3]. Palmberg et. al. estimates this

value based on the size of the aperture located in the center of the CMA, which has

a radius of about 2 mm.

To read the voltage provided by the CMA, the LE system uses a Voltage to Fre-

quency converter(VFC), which has a maximum frequency of 1 MHz and a minimum

frequency of 2 kHz. This results in a dynamic range of 1 MHz
2 kHz

= 500. The VFC reads

the voltage output of the CMA with respect to a 2kV ground while also shielding

the output from the high voltage to a maximum of 5 kV . The frequency output of

the VFC is linearly proportional to the voltage input, with a bandwidth of 150 Hz.

Thus, the maximum theoretical precision of the LE system is 150 Hz
1 MHz

= .00015 or
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Figure 4: An example of an Auger instrument using a CMA. Adapted from PW
Palmberg (1974), Combined ESCA and Auger Spectrometer. Journal of Vacuum
Science and Technology, Vol 12, No. 1. Pg. 379. [3]

about a part in 7, 000. This frequency passes through a transformer, which insulates

the high voltage, and into a frequency counter. This information is then transferred

to a computer and plotted, creating an Auger spectrum of electron intensity as a

function of electron energy[2].

At the beginning of this project, the LE AES instrument functioned as described

above. It also contained several other functions, such as X-ray spectroscopy, but these

functions are not the main subject of this thesis and will not be commented on. While

the instrument functioned properly, there were several areas where we believed we

could improve on the instrument.

2.3 Motivation

Primarily, we wanted to adapt the instrument to scan over an area rather than

at a single point. The adaptation of the instrument to include scanning, known

as microscopy, would allow for material characterization over an area, making the

instrument far more useful. Secondly, we believed that we could improve the accuracy
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of the instrument. Many parts of the instrument, both hardware and software, were

well over a two decades old. By replacing these with newer, more accurate electronic

chips, we believed we could improve the accuracy of the instrument. In addition

to this, much of the LE system’s software was inaccessible. This prevented us from

properly understanding the analytic techniques the software was using. By writing

our own analytic software, we are able to completely understand the techniques used,

as well as allowing for the possibility of improvement and customization in the future.

3 Constructing The Auger Electron Microscope

To create the Auger Electron Microscope, we split our project into two parts.

First, we would replicate the AES instrument using modern electronics and new

software. Second, we would create the Microscope by scanning the electron beam

across a surface to create a real-time map of the sample.

3.1 Recreating the AES Instrument

The first step in recreating the AES instrument was to replace the Voltage to

Frequency Converter. We did this in multiple steps. First, we needed to read a

voltage with respect to a variable ground. To do this, we used a ADS1115 16 bit

Analogue to Digital Converter(ADC) connected to an MBed microcontroller using

an I2C communications line. The ADS1115 has a theoretical accuracy of a part in

216, or about 65,000 and a theoretical data collection rate of about 1 kHz. Compared

to the VFC from the LE system, this is a improvement on the dynamic range by a

factor of about 10. By averaging over many data points, we are able to collect more

accurate data and provide a standard deviation of the average. The LE system does

not provide either of these two data sets. We chose the Mbed microcontroller as we

had already learned how to connect the Mbed to MatLab during a previous project
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and planned to create a similar connection to create plots and run data analytics.

Next, we needed to be able to read voltages with respect to a 2 kV ground.

At such high voltages, we needed to insulate our ADC from our Mbed. We used a

CPC5902 opto-isolator to insulate the I2C lines and a REM1-3.33.3S DC-DC con-

verter to insulate the 3.3 V line used to power the ADS1115. We also included a

1 MΩ resistor and dual diodes to protect the delicate ADS1115 from possible voltage

surges.

We decided to set the data rate of the ADS1115 to its maximum in order to

obtain as much raw data as possible. To aid in the integration of the signal, we

included a 2 µF capacitor in parallel with our 1 MΩ resistor. This allowed us to

integrate the signal over a time period while gathering as much raw data as possible.

To avoid retaining too much of the previous measurement, or conversion, we chose

a capacitor which, in parallel with a 1 MΩ resistor, results in a low pass filter with

3dB point of 1 ms. Thus, the majority of the previous conversion will have dissipated

by the time a new conversion is completed. In this way, we are able to integrate our

signal over a time period while also gathering copious amounts of raw data.

Thus, we were able to read voltages with respect to a 2 kV ground and pass

them to an Mbed without damaging it. The complete diagram of this circuit is shown

in Figure 5. On the top left of this diagram, we can see dual diodes along with a

2 µF capacitor in parallel with a 1 MΩ resistor. Along the edge of this corner, we

have the signal input, the high voltage input and the high voltage output, protected

by a 220 kΩ resistor. All of these connections link to MHV wires, which run to the

electron multiplier(signal in and HV out) or the high voltage power supply (HV in).

In the bottom left corner of the diagram is the ADS1115. We have connected the
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2 kV ground to the A0 pin and the signal input to the A1 pin. The I2C lines (SDA

and SCL) connect to the optoisolator, and the VCC and ground lines connect to the

DC-DC converter. In the top right of the box is the DC-DC converter, which accepts

5 V on the right and outputs 3.3 V with respect to the 2 kV ground on the left.

Below the DC-DC converter is the optoisolator. This isolates the high voltage I2C

lines from the low voltage I2C lines, allowing us to communicate with a serial port

using I2C. Finally, on the right of the diagram is the low voltage output, which runs

through a PS2 wire to the Mbed.

Figure 5: The circuit diagram of the ADC. High voltage electronics appear on the
left of the figure, and insulating electronics appear on the right. The wire colors in
the figure match the colors used in the physical circuit.

3.2 Software

The creation of the software needed to run the ADC was fairly straight forward.

The ASD1115 comes with multiple features and modes, which allows for flexibility

in usage. For our purposes, we use continuous conversion mode, which automatically

begins integrating the voltage input as soon as the previous conversion has been
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completed. The ADS1115 completes conversions at a rate equal to the data rate,

which, using our settings, was 860 samples per second, or one conversion every 1.2 ms.

The completed conversions are then placed in the conversion register, until they are

read or overwritten by the next conversion. We poll the ADS1115 every 1.4 ms,

which recalls the last completed conversion. Although we do occasionally miss a

conversion, this occur infrequently enough that we consider it insubstantial. Using the

programmable gain amplifier built into the ADS1115, we set the maximum measurable

voltage to ±.256 V , increasing the precision of the ADS1115 at low voltages. This is

ideal for our purposes as the voltages we are measuring are less than ±.256 V .

For each data point, we average over 142 conversions, or once every 200 ms. To

do this, we collect 142 conversions and store them in a vector on the Mbed. Then, we

export the conversions to MatLab and take the average and the standard deviation

of the data set. Next, we plot mean and the standard deviation while preserving

the raw conversion data in a separate matrix. All of these values are user-defined

through MatLab using Remote Procedural Commands (RPCs). Thus, if the user

wants to average over 100 conversions rather than 142, they only have to change one

variable in the MatLab script. This allows for complete customization according to

the user’s needs.

3.3 Replacing the Voltage to Frequency Converter

Now that we had a working ADC, we integrated it into the AES instrument.

By simply replacing the Voltage to Frequency Converter with the new ADC, we

were able to partially bypass the LE system’s data collection software. Now, the LE

system’s software stepped the CMA voltage as the MPC system measured the voltage

out of the electron multiplier. Since the VFC is physically separate from the AES

Instrument, we were able to switch between the new ADC and the VFC at will. This
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has proved useful in the characterization of the new ADC.

Figure 6: Representative data, taken January 15th, 2019 of the Auger Oxygen peak.
There are clearly two oxygen peaks present, and the standard deviation is low, except
for the occasional glitch. Note that the x-axis is measured by data point number.
This is because, when this data was taken, we had not yet included the conversion
to voltage. In this graph, the selected Auger electron energies range from 450 eV to
550 eV .

3.4 Replacing the CMA Voltage Stepper

Once we were able to successfully collect data using the ADC, we wanted to

replace the Digital to Analogue(DAC) converter used to step the voltage on the CMA.

This would allow us to consolidate the data collection system onto a single computer.

We decided to use a AD5761 16-bit DAC set to provide a 0− 10V range. The output

of the AD5761 is fed into an amplifier with a gain of 200 and into the outer cylinder
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of the CMA, while the inner cylinder is held at 0V . This allows us to control which

electron energies are selected by the CMA. Finally, we connected the AD5761 to our

Mbed using an SPI serial interface, and adapted our Mbed and MatLab codes to step

the DAC voltage while taking data on the ADC.

Using this system, we were able to optimize the electron beam position and power,

and the CMA high voltage. Thus, we were able to start collecting data of the Auger

spectrum. A representative plot of this is shown in Figure 6. Note that the standard

deviation of the data set is very low, apart from occasional glitches, which will be

discussed in the next section.

4 Characterizing the Auger Spectrometer

The next step in our process was to understand how well our spectrometer

worked and to identify any sources of error and eliminate them. We especially wanted

to prove that the signal to noise ratio (SNR) of our new system outmatched the old

system.

4.1 Signal to Noise Ratio

In order to directly compare the LE system to the MPC system, we calculated

the signal to noise ratio. To do this, we set the CMA to scan for the elastically

scattered electrons, and collected data for 7.5 minutes on each of the two systems.

Then, we took the average and standard deviation of each data set. The SNR is

calculated as SNR = average
standard deviation

. Thus, we found the SNR of the LE system to

be 371.9 and the SNR of the MPC system to be 4246.3. We have, therefore, improved

on the SNR of the LE system by about a factor of 10.
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Figure 7: A signal to noise ratio test showing the elastically scattered electrons.
Note that the ADC has randomly distributed data points, while the VFC has a clear
structure. This suggests that the ADC has less systematic offsets than the ADC.

4.2 Errors in the System

We have noticed two types of glitches that appear in our data. First, we see

occasional, but dramatic, jumps in the signal size for a single data point. An example

of this is shown in Figure 8. Upon further inspection, we discovered that, within

the set of conversions averaged to create these data points, only a single conversion

would have an erroneous value. Figure 9 shows this for the point error occurring in

Figure 8. Thus, we conclude that these are not real errors, but are errors occurring

during the transfer process from the ADC to the Mbed, or from the Mbed to MatLab.

Theoretically, we could write a Matlab script to filter out these errors, although we
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have not done so yet as these errors are obvious and easy to fix manually.

Figure 8: An example of a point error, taken February 20th, 2019 of the Auger carbon
peak. Note that this error results from a single point within the mean suddenly having
a large or small value. This phenomenon is shown again in Figure 9

The second type of error we have noticed occurs when an entire section of data

either jumps or falls dramatically, while keeping the same general trend. An example

of this is shown in Figure 10. Following the same process we used for the point errors,

we plotted the set of conversions over which we saw a jump error. An example of this

is shown in Figure 11. While investigating this error, we measured the electron beam

current(by measuring the stage current), the voltage on the x-y deflection grids, and

the high voltage running to the electron multiplier. We did not find any conclusive

evidence that any of these variables were the source of the jump errors.
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Figure 9: A plot of the conversions averaged to create point 254 eV in Figure 8. Note
that the majority of the error is caused by a single conversion within the mean. We
believe this is due to an error occurring during data transfer.

Finally, while attempting to determine the cause of these errors, we measured

the signal size while alternating the energies selected by the CMA to either be on

or above the elastically scattered electron peak. This would give us signals on the

order of 20,000 counts or near 0 counts depending on whether we are on or above

the elastic electron peak, respectively. This allowed us to measure the response time

of our system, which we found to be 15 conversions, or 20 ms. The resultant plot

is shown in Figure 12. Compared to the response time of the jump error, which we

measured to be 17 conversions, or 24 ms, we have determined that this is the same

response time. Thus, these error are real and are due to problems in our electronics.

Although we were unable to correct these errors physically, we did discover that

we could remove them digitally. By subtracting the jump height off of the affected

section of data, we could produce a single, continuous plot of our data. Figure 13

shows the data from Figure 10 with the jump errors removed in this manner. Note

that the standard deviation of the corrected data has not changed. This is because we

have only added or subtracted a constant as necessary. Thus, the standard deviation
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Figure 10: An example of a jump error, taken February 14th, 2019 of the full Auger
Scan. Note that the jump errors appear as though a section of the code suddenly
shifted either upwards or downwards

is unaffected.

This is not, however, a permanent fix. While investigating these jump errors,

we noticed that they also started occurring with the LE system, where they had

previously been undetected. Thus, we concluded that these error are real, although

we are still unsure of the source. The jump errors are the major limiting factor of

this project. Finding and correcting these errors will be the first improvement of this

system after this thesis has been complete. However, we decided to move on to Auger

Microscopy with the theory that AEM would provide more tools with which we could

investigate the jump errors.
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Figure 11: An example of a jump error occurring within the data set of point 152eV
on Figure 10. This set shows how the signal size can suddenly jump in values. In
a normal conversion set, this plot would be relatively constant, with a standard
deviation of 10 to 20 counts.

Figure 12: An example of the response time of the MPC system found by alternating
between measuring energies on the elastic peak, and off of the elastic peak. Note that
the response time is large compared to the jump error data set.

5 Auger Microscopy

With the spectrometer mostly working, we moved on to Auger Microscopy. This

would require some hardware and software adaptations. Unfortunately, due to time

constraints, we were unable to complete this conversion. First, we began with one
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Figure 13: An example of the removal of jump errors. This plot shows Figure 10
with the two major jump errors removed. Note that the standard deviation of the
data does not change. This is because we have only added or subtracted values as
necessary, leaving the standard deviation unaffected.

dimensional Auger Microscopy as a proof of concept.

5.1 One Dimensional Auger Microscopy

The LE system is capable of steering the electron beam using a set of four voltage

grids(two in x, two in y), which deflected the beam based on two dial settings on the

electron beam control box. Each set of grids applies an equal an opposite voltage

to the electron beam, in order to keep the mean voltage at 0 V , preventing the

acceleration or deceleration of the electron beam. Thus, if 10 V are supplied to the

top y-axis deflection grid, the bottom y-axis deflection grid would receive −10 V . We
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used these grids to sweep the electron beam for AEM. To test this, we believed that

we could deflect the electron beam in and out of the CMA’s focal point, which would

result in a change in signal size. To prove this concept, we set the CMA to scan for

the elastically scattered electrons, which provides a relatively constant signal. Then,

using the deflection dials, we scanned the electron beam in and out of the CMA’s

focal point. As expected, the signal size dropped noticeably outside of the focal point.

Next, we needed to take control of the deflection grids and replicate the previous

result. Using the deflection dials, we determined that y-axis deflection would provide

the greatest change in signal, about 2%, within the ±10 V range of a second AD5761

DAC. Next, we connected our DAC to the y-axis deflection grids by removing the

lead connecting the deflection control box to the AES instrument, and inserting our

own lines into the appropriate ports. We grounded the x -axis grid control lines to

each other. Finally, using newly written code, we set the CMA to look for elastically

scattered electrons while scanning in and out of the CMA focal point. This test proved

successful, showing the signal strength of the elastically scattered electrons falling as

we moved in and out of the CMA focal point. An example of one of these scans

is shown in Figure 14, where the y-deflection grid steps its voltage by 0.1 V every

200 ms. The deflection grid runs between 0 V , represented by the peaks, and 10 V

represented by the troughs. Note that there are reoccurring spikes in the standard

deviation about halfway through each individual scan. This is due to the signal size

changing quickly, as seen at the corresponding points on the ”Counts vs Voltage”

plot. We could remove these spikes by reducing the size of the voltage step size or by

increase the time over which we average our conversions.
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Figure 14: An example of a one dimensional Auger Microscopy scan, taken March
23rd, 2019 of the elastically scatter electrons while scanning the electron beam in and
out of the CMA’s focal point. Note that the spikes in the standard deviation are
caused by quick changes in the signal size, as seen on the ”Counts vs Voltage” plot.

6 Conclusion

Auger Electron Microscopy will prove to be a powerful tool in the characteri-

zation of the deposition processes we use in the creation of solid state batteries. In

this thesis, we have created a useful proof-of-concept machine. Due to the time lost

investigating the jump errors, we were unable to prove that the MPC system is ca-

pable of Auger Electron Microscopy. However, we have gathered all of the necessary

components for a Auger Microscope. First, we have shown that we can successfully

conduct Auger Electron Spectroscopy, although we have to filter out the occasional

error. Second, we have shown that we are able to raster the electron beam across
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a surface by taking control of the x-y deflection grids within the instrument. Thus,

although we have not successfully completed an AEM scan, we have left this project

with the necessary tools to do so.

The future of this project after this thesis lies in two areas. First, we need

complete the Auger Microscope using the MPC system. Thanks to the work of this

thesis, finishing the Auger Microscope should be a relatively simple task. Secondly,

we need to further investigate the jump errors and determine their cause and how to

fix them. This will likely require a detailed investigation into the electron multiplier

and the CMA as these are currently the strongest suspects for the cause of these

errors.
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