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Broader Impacts 

Arguably, the most important piece of personal protective equipment (PPE) a firefighter 

wears is the fire helmet. Fire helmets protect firefighters’ heads from falling debris, heat, and 

other environmental hazards they face when they enter structure fires.  

Most modern fire helmets are made from a plastic because plastic is impact resistant, 

durable, and affordable. However, plastic softens and deforms at temperatures between 100-

200℃. While this makes plastic a less than ideal material for fire helmets, there are no other 

materials currently available that can rival the impact resistance and affordability that plastic 

provides. This is why plastic fire helmets are still being made and used today. 

Unless the helmet incurs obvious damage, fire helmets can be used for up to ten years 

without replacement. However, this figure may not be representative of the true lifespan of the 

fire helmet. Surely, years of prolonged exposure to high temperatures must have an effect on the 

fire helmet, even if the effects occur on the molecular level.  

One way to study the damage incurred by fire helmets and other materials is a technique 

called single-sided nuclear magnetic resonance (NMR). Single-sided NMR uses magnets and 

radio waves to capture information about the physical properties of materials on the molecular 

level. As a technique, single-sided NMR is also non-destructive, which lends itself nicely to 

long-term studies.  

Information about plastic and how plastic changes as a result of heat exposure, even at 

the molecular level, will go extraordinary lengths in the fire and rescue service. This additional 

information may help fire helmet manufacturers engineer better products and, more importantly, 

influence new policies that can better protect firefighters in the line of duty. 
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Abstract 
 

Many commonly used polymers are inherently flammable. Manufacturers have been able 
to make polymers more flame-resistant by incorporating additives in polymer matrices. Current 
testing methods of these materials are destructive. As a result, there is a lack of data that can 
characterize the long-term effects of thermal exposure on these materials. This study presents 
single-sided NMR as an alternative technique to characterize the physical properties of these 
materials before and after thermal exposure. From single-sided NMR, this study finds that it is 
possible to characterize the molecular behavior of flame-resistant polymers and that additives 
cause no significant physical change to the polymer matrix. This study also finds that single-
sided NMR data can detect changes in the molecular behavior of these materials. This research 
emphasizes the use of single-sided NMR to study flame-resistant polymers and may prompt 
further study in fields such as firefighter health and safety.  
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1.  Introduction 

 Firefighter personal protective equipment (PPE) refers to the clothing and equipment that 

firefighters wear to protect themselves from hazards they face in the line of duty. [1] Most 

modern fire helmets are made of thermoplastic or fiberglass. Thermoplastic fire helmets are 

typically made of polycarbonate. Other thermoplastics may also be used, but manufacturer 

guidelines do not outline which ones are used in place of polycarbonate. Polycarbonate fire 

helmets are popular due to their high impact resistance. However, polycarbonate and other 

thermoplastics are weak against thermal and chemical exposure. Polycarbonate, for instance, 

softens at 150℃ and deforms at 200℃. The thermal capacity of fire helmets is increased by 

increasing the thermoplastic shell thickness. [2, 3] The thicker the plastic shell, the heavier the 

helmet becomes. The heaviness of the helmet has caused firefighters to complain of neck pain 

after prolonged wear. [4] 

The National Fire Protection Association (NFPA) develops and maintains codes and 

standards for usage and adoption by federal, state, county, and municipal governments in the 

United States. NFPA 1851 is the current standard that is used to outline the selection, care, and 

maintenance of firefighter PPE. According to the most recent edition of NFPA 1851, all PPE—

turnout coats, turnout pants, protective hoods, gloves, fire boots, and helmets—must be retired 

ten years after manufacture. [5] The service life timeline of firefighter PPE is dictated by the 

weathering of the textile products, with almost no consideration for the life span other materials. 

[6] While all PPE is tested for heat resistance and degradation, all testing is only done at high 

temperatures, where obvious deformity can be seen. There is no data that describes the properties 

of these materials after exposures at intermediate temperatures or when other invisible damage is 

incurred. [1] All current testing methods are also destructive and are not conducive for long-term 
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studies. [6, 7] Heat resistance and degradation of PPE materials are also only rigorously tested 

during the initial testing phase that determines if the PPE meets the NFPA guidelines. PPE is not 

closely regulated or monitored after initial testing. [8] 

Due to a lack of current data on polymers used for fire helmets and a maintenance 

standard that does not account for to the material life spans of these polymers, PPE replacements 

are seen as arbitrary and unnecessarily pushed by manufacturers, even though the true 

performance capabilities of the PPE are still unknown. [1] 

In addition to protecting the health and safety of firefighters, it is important to understand 

not only the material life spans of polymers, but the physical properties of these materials due to 

their prevalence in modern life. Polymers are used in a variety of industries for a number of 

applications and as a result are constantly being improved through research and development 

activities.  

One popular area of research in polymer science is flame-resistance. Most commonly-

used polymers are inherently combustible due to their chemical composition. Since the 

nineteenth century, reducing material flammability has been an area of interest with the 

discoveries and uses of nitrocellulose and celluloid in photography. However, it has only been in 

recent decades that flame-resistant polymers have been formulated to not only reduce 

flammability but to also reduce the risks of producing smoke and toxic fumes. While intrinsically 

flame-resistant polymers can be synthesized, flame-resistant polymers are more commonly made 

flame-resistant by mixing in flame-resistant additives with a base polymer during manufacturing. 

These additives are engineered to reduce polymer flammability by interfering with the chemical 

and physical mechanisms aspects of material combustion. [9] 
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Across all industries, current methods to test the efficacy of flame-resistant polymers 

require flame tests. [9] From flame tests, characteristics such as ignition resistance, flame spread, 

duration of afterflame and afterglow, burn patterns, and smoke and toxic gas output can be 

determined. These results determine whether or not the polymer is safe for manufacture and 

mass consumption. [7, 10] Quantitative and qualitative studies of these polymers tend to also 

employ thermo-analytical methods such as thermogravimetric analysis (TGA) and temperature 

program pyrolysis (TPPy) paired with detection methods such as gas chromatography and mass 

spectrometry, which are all destructive analytical techniques. [11] While the data collected using 

these methods are valuable, these testing methods are not compatible with for use with long-term 

studies, as reflected by the limited data on the effects of thermal exposure on these polymers 

over time. 

Nuclear magnetic resonance spectroscopy (NMR) is an analytical technique that has the 

capability to identify and characterize molecules by measuring the energy difference between 

nuclear spin states. In contrast to other analytical techniques, NMR is non-destructive, making 

the technique suitable for long-term studies. However, the types of samples that can be studied 

using NMR are drastically limited and sample preparation for NMR studies can also be invasive 

and destructive to source material. [12] 

Single-sided NMR is an alternative method that can overcome some of the drawbacks of 

traditional NMR. By using permanent magnets instead of superconducting magnets, single-sided 

NMR has an open geometry that allows the study of large and irregularly shaped samples. [12] 

Like traditional NMR, single-sided NMR is also a non-destructive technique, making single-

sided NMR conducive to long-term studies. Though the ability to collect detailed information 

such as chemical shift data is lost due to the inhomogeneous magnetic field that results from the 
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use of a permanent magnet, other information such as transverse relaxation (T2 relaxation) can 

still be measured with single-sided NMR by using the Carr-Purcell-Meiboom-Gill (CPMG) pulse 

sequence. T2 relaxation times can characterize the physical properties of materials such as cross-

linking and rigidity. [13] 

In this study, single-sided NMR is used to characterize the physical properties of flame-

resistant polymers before and after thermal exposure. This will help supplement existing data on 

flame-resistant materials. In addition, this study will demonstrate how single-sided NMR is a 

good candidate for analyzing not only flame-resistant polymers, but other flame-resistant 

materials, especially for analyzing these materials over time. 
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2. Polymer Chemistry 

2.1 Fire Cycle and Suppression 

 The fire cycle begins when a material is ignited. Ignition can occur either in the presence 

of an external heat source or automatically if the material has reached a sufficient temperature to 

overcome the activation energy of the combustion reaction. Once ignited, the material will 

decompose into flammable products—flammable gases and liquids and tar—and non-flammable 

products—non-flammable gases, smoke, and solids. As the flammable products are produced, 

they interact with atmospheric oxygen, setting off a chain of reactions allow the flame to become 

self-sustaining. [9] 

As the flame burns, it releases heat and causes the temperature of the material and 

surroundings to climb. If the flame is left to grow for long enough, the surroundings are liable to 

flashover or spontaneously ignite. At the peak temperature and heat release rate, a fire is 

considered fully developed. Eventually, the fire will start to decay once all combustible materials 

have been consumed. Consequently, the temperature and heat release rate of the fire will fall, 

leaving the non-flammable products to smolder and the fire to eventually self-extinguish. [9] 

 The fire cycle can be disrupted by the following mechanisms: directly inhibiting the 

chemical reactions occuring in the flame, cooling the material, and preventing material 

decomposition. Flame-resistant additives are designed to employ one or more of these 

mechanisms. This results in three different types of commercially available flame-resistant 

additives: radical, char-forming, and endothermic. [9] 
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2.2 Flame-resistant Additives 

 Radical additives are typically halogenated compounds that release halogen free radical 

scavengers when heated. These free radical scavengers are meant to target the free radicals that 

are produced by flames, such as hydrogen and hydroxyl radicals. When the scavengers bind with 

their targets they form non-flammable compounds, ultimately inhibiting material combustion. 

For decades, radical additives like tetrabromobisphenol-A (TBBPA) were the most commonly 

used in flame-resistant polymer formulations because they were affordable, easy to produce, and 

versatile. However, due to their persistence in the environment due to bioaccumulation and their 

known contributions to adverse health effects, radical additive production and use in polymer 

formulations have become regulated and have fallen out of favor with the general public. [9, 14] 

Char-forming additives are typically nanocomposites or phosphorus-containing 

compounds like ammonium polyphosphate (APP). Upon heating, char-forming additives will 

promote the material to char. When a material chars, a thick and glossy carbon layer is formed 

on a material surface. The layer of carbon insulates the material and provides protection between 

the flame and the material. This prevents further thermal degradation of the material. [9] 

Endothermic additives are typically metal hydroxides, nitrogen-containing compounds, or 

carbonates. These additives have become increasingly popular in flame-resistant polymer 

formulations because they are non-toxic, non-corrosive, and affordable. Upon heating, 

endothermic additives will generate gases like water vapor, nitrogen, and carbon dioxide. Unlike 

many other gases, the gases that are generated by these additives have high heat capacities. With 

the release of these gases, heat that is being generated during combustion will be absorbed, 

lowering the temperature of the material and the surroundings. Also, due to their non-flammable 

nature, these gases will not undergo combustion reactions. Material combustion, as a result, is 
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slowed as the activation energy barrier for combustion reactions becomes harder for the system 

to overcome. Flames will then burn at a slower rate and eventually, flames will be able to self-

extinguish. In addition to absorbing heat, the release of these gases prevents combustion 

reactions from occuring by diluting the flammable gases being produced by the flame and 

decreasing the likelihood of these flammable gases from reacting with atmospheric oxygen. [9] 

2.3 Acrylonitrile Butadiene Styrene (ABS) 

Acrylonitrile butadiene styrene (ABS) is another widely used thermoplastic due to its 

strength against chemicals and good impact resistance. The chemical structure of ABS is 

provided in Figure 1.  

ABS, however, is also inherently flammable. [15] Traditionally, ABS was made more 

flame-resistant by incorporating halogenated additives in its formulations. More recent flame-

resistant formulations of ABS employ phosphate-containing additives like triphenyl phosphate 

(TPhP). TPhP and its analogues, however, are not ideal alternatives to use in large-scale 

manufacturing because they are liquids and evaporate and decompose at too low of a temperature 

to be incorporated in ABS resins. Researchers are still developing novel additives that not only 

increase the flame-resistance of ABS but are also compatible for use in large-scale 

manufacturing. [16] 

ABS was used as the base polymer in this study as a more affordable alternative to 

polycarbonate. ABS was also chosen over other high impact resistant thermoplastics due to its 

ease in casting. 
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Figure 1: Chemical structure of acetonitrile butadiene styrene (ABS). l, m, and n refer to the 
variable lengths of the monomer units that make up the ABS polymer strand. 
 
2.4 Magnesium Hydroxide 

Magnesium hydroxide, also known as magnesium dihydroxide (MDH), has become 

increasingly popular in flame-resistant polymer formulations because it is non-toxic, non-

corrosive, and affordable. Magnesium hydroxide is an endothermic additive, as it produces water 

vapor and magnesium oxide when it thermally decomposes, as shown below: 

Mg(OH)2 (s) →  MgO (s) + H2O (g) 

In addition to its ability to absorb heat, water vapor also acts as a smoke suppressant. 

While the mechanism is still not known, water vapor has also been shown to reduce the amount 

of carbon monoxide produced from polymer combustion. [9] 

Magnesium hydroxide was used as the flame-resistant additive in this study due to its 

potential as a flame-resistant additive and smoke suppressant for large-scale manufacturing and 

its affordability.  
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3. NMR Theory 

3.1 Quantum Mechanics 

NMR observes resonance, a physical phenomenon that characterizes the behavior of 

atomic nuclei when they are placed in an applied magnetic field and perturbed with 

electromagnetic radiation, typically at radio frequency. All nuclei have an intrinsic nuclear spin. 

However, only nuclei with a non-zero spin quantum number can be probed with NMR, as only 

nuclei with non-zero spin quantum numbers will have a net nuclear spin angular momentum and 

magnetic moment when placed in an applied magnetic field, which is referred to as precession. 

The nuclei precess at the Larmor or resonance frequency, which is proportional to the applied 

magnetic field as shown in the Larmor frequency equation below:  

𝜔 = 𝛾𝐵0 

where ω is the Larmor frequency in radians, γ is the gyromagnetic ratio of the nucleus of interest, 

and B0 is the magnitude of the applied magnetic field. The most common nuclei that are probed 

using NMR are 1H and 13C, which both have a spin quantum number of ±½. [17] 

When nuclei are placed in an applied magnetic field, the spins will also align either 

parallel or antiparallel to the magnetic field. The rearrangement of spins into parallel and 

antiparallel populations creates an energy gap. This is in accordance to the Boltzmann 

distribution, given below:  

𝑝𝑎𝑛𝑡𝑖𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑜 𝐵0

𝑝𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑜 𝐵0

= 𝑒−𝛥𝐸/𝑘𝑇 

where k is the Boltzmann constant, T is the temperature in Kelvin, and ΔE is the energy gap.  

While the population difference between the nuclei is small, there are still more nuclei 

that are parallel to the applied magnetic field than antiparallel, as it is slightly more energetically 

favorable for spins to be in line with the magnetic field. This results in a bulk magnetization 
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vector that is parallel to the applied magnetic field. The bulk magnetization vector is designated 

along the z-axis. The differences in energy between the two populations is what gives rise to 

NMR signal. The stronger the applied magnetic field is, the greater the difference is between the 

parallel and antiparallel population, resulting in stronger and more intense NMR signal. [17] 

Traditional NMR experiments are conducted using superconducting electromagnets, 

which create a strong, homogenous applied magnetic field. This allows for the collection of 

detailed structural information such as chemical shift data, which can later aid in tasks like 

structure elucidation. While valuable, traditional NMR instruments are expensive and high- 

maintenance, requiring the use of liquid nitrogen and helium in order to keep the 

superconducting electromagnets functional. This results in a bulky, stationary instrument. The 

size and shape of the sample holder for these magnets restrict the types of samples that can be 

measured with traditional NMR. The placement of the sample holder in the bore of the magnet 

also makes the sample inaccessible during measurements. [12] 

3.2 Single-sided NMR Theory 

 Single-sided NMR was developed as an alternative that overcomes some of the 

drawbacks posed by traditional NMR instrumentation. In place of superconducting 

electromagnets configured in a cylindrical shape, single-sided NMR instruments uses permanent 

magnets that are kept planar. The open geometry that single-sided NMR offers makes it an ideal 

candidate to measure large and irregularly shaped samples. The open geometry also eliminates 

the need for potentially invasive and damaging sample preparation methods. Also, because it is a 

non-destructive analytical technique, single-sided NMR has successfully been used to analyze 

cultural heritage objects, buildings, and food. [12] 
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 Simplifying the instrumentation, however, comes with a cost. The use of permanent 

magnets results in a weaker, inhomogeneous magnetic field. The inhomogeneities in the field 

eliminates the ability to gather detailed structural information. [12] However, parameters that can 

be obtained using traditional NMR can still be obtained using single-sided NMR, for example 

transverse relaxation.  

3.3 T2 Relaxation 

Transverse relaxation (T2 relaxation) is a parameter that describes the amount of time it 

takes for nuclear spins in the transverse plane (x, y-plane) to dephase. [17] On single-sided NMR 

instruments, T2 relaxation is measured using the Carr-Purcell-Meiboom-Gill (CPMG) pulse 

sequence. [13] 

When measuring T2 relaxation times using the CPMG pulse sequence, the nuclei that are 

parallel to the magnetic field, along the z-axis, are knocked into the x, y-plane with a 𝜋/2 pulse. 

Once in the x, y-plane, the nuclei will induce a current, known as the free induction decay (FID). 

This current can then be detected by a detector coil in a spectrometer. The nuclei in the x, y-

plane will then be struck by iterative refocusing 𝜋 pulses. The iterative refocusing pulses will 

create a series of echoes that will appear spaced out at regular time intervals. Over time, the 

echoes will decrease in signal amplitude due to spin decoherence. Measuring the signal decay of 

the echo train will then be used to determine the T2 relaxation. [12] 
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Figure 2: Schematic of the CPMG pulse sequence. The π/2 pulse places all of the nuclei that 
were along the z-axis into the x, y-plane. The iterative π refocusing pulses generate detectable 
echoes. The echoes over time decay. The echo decay train is then used to determine the T2  
relaxation. 
 

The smaller the T2 relaxation time, the less molecular motion is present in the sample. 

[13] In the context of polymers, a smaller T2 relaxation time for a polymer sample corresponds to 

a sample that has less molecular motion. The more that spins interact with each other, the faster 

spin decoherence occurs. Physically, this translates into a more rigid polymer and shows 

evidence of greater crosslinking and residual dipolar coupling present in the sample. As the 

polymer network becomes more disrupted, there should be evidence of greater molecular motion 

and, therefore, larger corresponding T2 relaxation times. 
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4. Methodology 

4.1 Instrumentation 

All NMR measurements were done on the PM5, a single-sided NMR magnet with a field 

strength of about 0.4 T and a field gradient of 23.5 T/m, connected to a Kea2 spectrometer. Both 

the PM5 and the Kea2 spectrometer are produced by Magritek.  

The sensitive region of the magnet, which is directly above the radio frequency coil, can 

measure sample areas up to 25 mm by 25 mm. The maximum depth within a sample that the 

sensitive region can probe is 5 mm. The maximum depth can be altered with the insertion of up 

to two, 2 mm spacers in the magnet. While adding spacers decreases the maximum depth, the 

amount of signal that can be detected by the magnet increases. Adding in the spacers also 

shortens the pulse length and minimum echo times that can be used during CPMG experiments.   

The magnet is also attached to a mechanised lift that can move the magnet up or down by 

10 or 50 μm increments. The lift allows for the user to optimize the magnet’s position to ensure 

that the region of the sample with the greatest signal density is being probed. 

The magnet, spectrometer, and lift are all connected to a laptop that runs software called 

Prospa, which is also produced by Magritek. In Prospa, the signal output generated by 

experiments is recorded. 
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Figure 3: The PM5 in the mechanical lift and the Kea2 spectrometer with an ABS sample atop 
the sensitive region on the magnet. For deformed samples, glass slides were used to stabilize the 
sample, keeping the sample flush with the sensitive region for the duration of the T2 experiment. 
 
4.2 Sample Preparation 

 Four types of samples were studied: 3D printed ABS filament, ABS cast from acetone, 

ABS with 3% magnesium hydroxide by weight, ABS with 9% magnesium hydroxide by weight, 

and ABS with 15% magnesium hydroxide by weight. 

 The 3D printed ABS samples were printed from a nozzle temperature of 235℃ at 100% 

fill. The samples were printed at 0.3 mm thickness with an area of 25 mm by 25 mm.  

 ABS samples cast from acetone were prepared first by mixing ABS and acetone in a 10 

to 1 ratio of acetone to ABS by weight in an Erlenmeyer flask.  The resultant slurry was then 

heated at 35℃ on a hot plate with the mouth of the Erlenmeyer flask topped with a watch glass.  

As it was heating, the slurry was stirred constantly using a magnetic stir bar. The slurry was 
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heated and stirred until all of the ABS dissolved in the acetone. The ABS slurry was cast out into 

preweighed aluminum weigh boats. The samples were then left to dry at ambient temperature 

and pressure until the masses of the samples stabilized, indicating that the maximum amount of 

acetone had evaporated from the samples. 

 ABS with magnesium hydroxide samples were prepared by mixing ABS, magnesium 

hydroxide of weight equal to 3, 9, or 15% of ABS, and acetone in a 10 to 1 ratio of acetone to the 

total weight of ABS and magnesium hydroxide in an Erlenmeyer flask. Sulfuric acid was then 

added dropwise to the slurry using a Pasteur pipette (less than 1% of the total volume of acetone 

used) to homogenize the ABS slurry and the magnesium hydroxide. The resultant slurry was 

then heated at 35℃ on a hot plate with the mouth of the Erlenmeyer flask topped with a watch 

glass. As it was heating, the slurry was stirred constantly using a magnetic stir bar. The slurry 

was heated and stirred until all of the ABS dissolved in the acetone and all of the magnesium 

hydroxide remained suspended in the slurry once the stir bar was turned off. The ABS slurry was 

cast out into preweighed aluminum weigh boats.  The samples were then left to dry at ambient 

temperature and pressure until the masses of the samples stabilized, indicating that the maximum 

amount of acetone had evaporated from the samples. 
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Figure 4: ABS samples studied. From left to right: 3D printed ABS filament, ABS cast from 
acetone, ABS with 3% Mg(OH)2 by weight, ABS with 9% Mg(OH)2 by weight, ABS with 15% 
Mg(OH)2 by weight. 
 
4.3 Experimentation 

 All T2 measurements were determined by CPMG experiments that were performed on the 

PM5. All CPMG experiments were measured with a pulse length of 2.75 μs for the 90° and 180° 

pulses, pulse amplitudes of -4 for the 180° pulse and -10 for the 90° pulse, and an echo time of 

40 μs. During the 40 μs echo time, 512 echoes were collected. A total of 512 acquisition scans 

were used, yielding a total T2 measurement time of 8 minutes and 30 seconds. All of the 

experimental parameters for the CPMG sequence are outlined in Appendix B.  

 Each sample was measured by a set of three CPMG experiments. The set of CPMG 

experiments were measured using a script that was developed in-house to run experiments in 

succession. The experimental parameters were preloaded and saved in the script before it was 

run through the debugger in Prospa. The debugger script is provided in Appendix B.  

All flame tests were performed with a Bunsen burner. The burner flame was adjusted to 

match the flame specifications outlined in the test methods section of NFPA 1971. The resultant 

flame was approximately 1200℃. The ABS samples were placed against the inner cone of the 
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flame for 1, 3, or 5 seconds before being removed from the flame. If the sample caught fire, the 

sample was left to burn until the flame self-extinguished. The time until the the flame self-

extinguished was also recorded.  

Flame test data for all samples can be found in Tables 1-5 in Appendix A. 

 

Figure 5: Bunsen burner flame set up as outlined in the test methods section of NFPA 1971.1 The 
inner cone is about 25 mm in height and the outer cone is approximately 50 mm in height. The 
resultant flame is approximately 1200℃. 
 
 
 
 

                                                 
1 NFPA 1971 (2018) states the following in Chapter 8 (Test Methods) on pp 51: “The flame of the Bunsen burner 
shall be adjusted to produce a 50 mm ± 1.5 mm (2 in. ± 1/16 in.) blue flame with an inner cone of 25 mm ± 1.5 mm 
(1 in. ± 1/16 in.).” 
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Figure 6: Flame tested 3D printed ABS filament samples. From left to right: 1 second of thermal 
exposure, 3 seconds of thermal exposure, and 5 seconds of thermal exposure. 
 

 
 
Figure 7: Flame tested ABS samples cast from acetone. From left to right: 1 second of thermal 
exposure, 3 seconds of thermal exposure, and 5 seconds of thermal exposure. 
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Figure 8: Flame tested ABS samples with 3% Mg(OH)2 by weight. From left to right: 1 second 
of thermal exposure, 3 seconds of thermal exposure, and 5 seconds of thermal exposure.  
 

 
 
Figure 9: Flame tested ABS samples with 9% Mg(OH)2 by weight. From left to right: 1 second 
of thermal exposure, 3 seconds of thermal exposure, and 5 seconds of thermal exposure.  
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Figure 10: Flame tested ABS samples with 15% Mg(OH)2 by weight. From left to right: 1 
second of thermal exposure, 3 seconds of thermal exposure, and 5 seconds of thermal exposure.  
 
4.4 Data Processing 

 All single-sided NMR data was processed in MATLAB using a script that was developed 

in-house.  

The processing script integrates the area under each echo in the full echo train, 

calculating the sum of the signal intensity for each echo. The resultant signal intensities for each 

echo are then plotted and fitted to a monoexponential, biexponential, and triexponential decay 

curves of the form: 

𝑆(𝑡)  =  𝐴𝑒−𝑡/𝑇2 

𝑆(𝑡) = 𝐴𝑒−𝑡/𝑇21 + (1 − 𝐴)𝑒−𝑡/𝑇22 

𝑆(𝑡) = 𝐴1𝑒−𝑡/𝑇21 + 𝐴2𝑒−𝑡/𝑇22 + (1 − 𝐴1 − 𝐴2)𝑒−𝑡/𝑇23 

where S is the signal intensity and t is the time in seconds. T2(1), T2(2), and T2(3) are the unique 

T2 values observed. In the monoexponential decay curve, A is the signal intensity attributed to 

T2. In the biexponential decay curve, A is the signal intensity attributed to T2(1) and (1-A) is the 

signal intensity corresponding to T2(2). In the triexponential decay curve, A1 is the signal 
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intensity attributed to T2(1), A2 is the signal intensity attributed to T2(2), and (1-A1-A2) is the 

signal intensity attributed to T2(3).  

 Fit residuals for each exponential decay curve were also plotted against time in seconds. 

The decay curve with the fit residuals most random about zero was determined to be the best fit 

for the data set. 

The processing script is provided in Appendix C.  

 

Figure 11: Single-sided NMR data of an ABS sample cast from acetone before thermal exposure. 
The data were fit to a monoexponential, biexponential, and triexponential decay curves with fit 
residual plots for each curve. The fit residuals are most random about zero when the data are fit 
to the triexponential curve. This indicates that the triexponential decay curve is the best fit for the 
data set. This also indicates that there are three T2 relaxation times that characterize the 
molecular motion of the material. 
 



 22 

 

Figure 12: Single-sided NMR data of an ABS sample cast from acetone after thermal exposure. 
The data were fit to a monoexponential, biexponential, and triexponential decay curves with fit 
residual plots for each curve. The fit residuals are most random about zero when the data are fit 
to the biexponential curve. This indicates that the biexponential decay curve is the best fit for the 
data set. This also indicates that there are two T2 relaxation times that characterize the molecular 
motion of the material. 
 
  



 23 

5. Results and Discussion 

 All single-sided NMR data for the 3D printed ABS tiles were biexponential in nature, 

meaning two unique T2 relaxation times were detected. Figure 13 shows the boxplots of the 

normalized signal amplitudes and T2 relaxation values for the 3D printed ABS samples. The 

median values for both of the large and small T2 relaxation times remained consistent, both 

before and after thermal exposure, though the range of T2 values does broaden after flame 

testing. This indicates that while visually, the samples appear to have changed, there is no 

evidence that the ABS sample has changed at the molecular level. While it is unknown why this 

trend occurred, most likely it is due to the fact that these samples were extruded rather than cast 

from solvent. The 3D printed ABS strands probably annealed and differently than the ABS 

strands that were cast from acetone. 
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Figure 13: Normalized signal amplitudes (arbitrary units) and T2 relaxation times (ms) for 3D 
printed ABS filament samples before and after thermal exposure. 19 samples total (10 samples 
flame tested, 9 samples untested). 

 

All single-sided NMR data for the ABS samples originally cast from acetone—regardless 

of the amount of Mg(OH)2 present—were triexponential in nature before thermal exposure, 

meaning three unique T2 relaxation times were detected. Most likely, the appearance of the third 

T2 component and its corresponding signal amplitude in these samples is due to residual acetone 

trapped in the ABS polymer network. The residual acetone solvates the subunits along the ABS 

polymer strands and promotes additional rotational motion about the strands and translational 

motion between the strands, which then appear in the single-sided NMR data.  Figures 14-17 

show the boxplots of the normalized signal amplitudes and T2 relaxation values for these samples 

before thermal exposure. 
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Figure 14: Normalized signal amplitudes (arbitrary units) and T2 relaxation times (ms) for ABS 
samples cast from acetone with no Mg(OH)2 before thermal exposure. 20 samples total. 

 

 

 

Figure 15: Normalized signal amplitudes (arbitrary units) and T2 relaxation times (ms) for ABS 
samples with 3% Mg(OH)2 by weight before thermal exposure. 16 samples total. 
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Figure 16: Normalized signal amplitudes (arbitrary units) and T2 relaxation times (ms) for ABS 
samples with 9% Mg(OH)2 by weight before thermal exposure. 19 samples total. 
 

 

 
 
Figure 17: Normalized signal amplitudes (arbitrary units) and T2 relaxation times (ms) for ABS 
samples with 15% Mg(OH)2 by weight before thermal exposure. 20 samples total. 
 

All single-sided NMR data for the ABS samples originally cast from acetone, regardless 

of the amount of Mg(OH)2 present, were biexponential in nature after thermal exposure. Most 

likely, the disappearance of the third T2 component and its corresponding signal amplitude is due 

to the residual acetone burning off during the flame tests. The solvent effects of the acetone in 

the ABS polymer network are lost, and therefore, the additional types of motion that were once 

present in these samples no longer appear in the single-sided NMR data. Figures 18-21 show the 

boxplots of the normalized signal amplitudes and T2 relaxation values for these samples after 
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thermal exposure. Based off of the median T2 relaxation times for theses samples before thermal 

exposure, there is no evidence to suggest that the presence of Mg(OH)2 disrupts the overall ABS 

polymer network. The median T2 relaxation times for these samples can be found in Table 6 in 

Appendix A. 

Figure 18 shows the boxplots of the normalized signal amplitudes and T2 relaxation 

values for the ABS samples that were cast from acetone with no Mg(OH)2 present. The median 

values for the small T2 relaxation times decreased after 1 second of thermal exposure and 

decreased further after 3 seconds of thermal exposure. The median value for the small T2 

relaxation time after 5 seconds of thermal exposure is consistent with the median value for the 

shot T2 relaxation time observed after 3 seconds of thermal exposure. The decrease in T2 

relaxation values is indicative of more brittleness and rigidity in the ABS polymer network at the 

molecular level. However, the consistency between the median T2 relaxation values after 3 

seconds of thermal exposure and 5 seconds of thermal exposure suggests that after a certain point 

of thermal exposure, the ABS polymer has been chemically altered to the point where increased 

thermal exposure will not have further effects on the polymer network. The median values for 

the large T2 relaxation times, remain consistent before and after thermal exposure. The 

differences in the median T2 values before and after thermal exposure for these samples can be 

found in Table 6 in Appendix A.  
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Figure 18: Normalized signal amplitudes (arbitrary units) and T2 relaxation times (ms) for ABS 
samples cast from acetone with no Mg(OH)2 after thermal exposure. 20 samples total (10 flame 
tested, 10 untested). 
 
 Figure 19 shows the boxplots of the normalized signal amplitudes and T2 relaxation 

values for the ABS samples with 3% Mg(OH)2 by weight. The median values for the small T2 

relaxation times decrease after thermal exposure, which again indicates an increase in brittleness 

and rigidity in the ABS polymer network. However, the amount of thermal exposure appears to 

be independent of the changes observed in the small T2 relaxation times before and after thermal 

exposure. This suggests that the presence of Mg(OH)2 in the polymer network helps shield the 

ABS polymer network from thermal decomposition. The median values for the large T2 

relaxation times remained consistent before and after thermal exposure. The differences in the 

median T2 values before and after thermal exposure for these samples can be found in Table 6 in 

Appendix A.  
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Figure 19: Normalized signal amplitudes (arbitrary units) and T2 relaxation times (ms) for ABS 
samples with 3% Mg(OH)2 by weight after thermal exposure. 16 samples total (10 samples flame 
tested, 6 untested) 
 

Figures 20 and 21 show the boxplots of the normalized signal amplitudes and T2 

relaxation values for the ABS samples with 9% Mg(OH)2 by weight and ABS samples with 15% 

Mg(OH)2, respectively. The median values of both the large and small T2  relaxation times 

remain consistent before and after thermal exposure, further suggesting that the presence of 

Mg(OH)2 in the polymer network helps shield the ABS polymer network from thermal 

degradation. The differences in the median T2 values before and after thermal exposure for these 

samples can be found in Table 6 in Appendix A.  
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Figure 20: Normalized signal amplitudes (arbitrary units) and T2 relaxation times (ms) for ABS 
samples with 9% Mg(OH)2 by weight after thermal exposure. 19 samples total (10 flame tested, 
9 untested). 
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Figure 21: Normalized signal amplitudes (arbitrary units) and T2 relaxation times (ms) for ABS 
samples with 15% Mg(OH)2 by weight after thermal exposure. 20 samples total (10 flame tested, 
10 untested). 
 
 For the samples with T2 relaxation times that were responsive to thermal exposure, the 

smaller T2 component was the only one that showed change. The larger T2 component remained 

consistent, regardless of thermal exposure. While it is unknown what kinds of molecular motion 

the two T2 components characterize in the ABS samples, most likely the smaller T2 component 

describes the intermolecular motion in the network and the larger T2 component describes the 

intramolecular motion in the network.  

Thermally degraded ABS is brittle and rigid. This means that more ABS strands in the 

network have annealed, changing the intermolecular motion in the network. As more strands 

anneal in the network, the amount of residual dipolar coupling in the sample increases. Increased 
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residual dipolar coupling in the sample corresponds to faster spin decoherence in a sample. 

Faster spin decoherence in a sample corresponds to smaller T2 relaxation values.  

Most likely, the intramolecular motion of the ABS polymer strands remained consistent, 

regardless of thermal exposure, because there was not enough thermal energy present to alter 

individual strands to the point where change would be detectable with single-sided NMR. 
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6. Conclusions 

 Single-sided NMR can be used to characterize the physical properties of ABS, both with 

and without the presence of Mg(OH)2 in the polymer network, as seen in the consistent T2 

relaxation times for all unheated ABS and Mg(OH)2 samples. Single-sided NMR can also be 

used to characterize changes in the ABS polymer network before and after heat exposure, in 

addition to the protective effects Mg(OH)2 has as a flame-resistant additive, as seen in the 

changes reflected in the T2 relaxation times.  

 Future studies should include a more in-depth analysis of the ABS polymer network and 

its thermal decomposition in order to better contextualize the types of molecular motion that are 

observed with the two unique T2 relaxation times present in all ABS samples. This type of study 

could also be supplemented with data from other analytical techniques such as 

thermogravimetric analysis (TGA), thermogravimetric analysis-mass spectrometry (TGA-MS), 

and Fourier-transform infrared spectroscopy (FTIR). It may also be interesting to study the 

effects of sample thickness on the flame-resistance of thermoplastics, to better characterize the 

flame-resistance that is achieved from making the thermoplastic shells of fire helmets thicker. 

Also, single-sided NMR can be used to study solvent effects, UV degradation, and other 

stressors on the physical properties of thermoplastics, to better characterize and understand the 

material lifespans of thermoplastics. 
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Appendix A: Tables 

Sample Length of thermal 
exposure (s) 

Caught fire (Y/N) Time until flame self-
extinguished (s) 

Tile 1 1 N - 

Tile 2 1 N - 

Tile 3 1 N - 

Tile 4 3 Y 8 

Tile 5 3 Y 19 

Tile 6 3 Y 8 

Tile 7 3 Y 12 

Tile 8 5 Y 3 

Tile 9 5 Y 9 

Tile 10 5 Y 4 

 
Table 1: Flame test data for 3D printed ABS filament samples. 
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Sample Length of thermal 
exposure (s) 

Caught fire (Y/N) Time until flame self-
extinguished (s) 

Cast 1 1 N - 

Cast 2 1 N - 

Cast 3 1 N - 

Cast 4 3 Y 157 

Cast 5 3 Y 126 

Cast 6 3 Y 187 

Cast 7 3 Y 7 

Cast 8 5 Y 7 

Cast 9 5 Y 116 

Cast 10 5 Y 4 

 
Table 2: Flame test data for ABS samples cast from acetone. 
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Sample Length of thermal 
exposure (s) 

Caught fire (Y/N) Time until flame self-
extinguished (s) 

ABS + 3%, 1 1 N - 

ABS + 3%, 2 1 N - 

ABS + 3%, 3 1 N - 

ABS + 3%, 4 3 N - 

ABS + 3%, 5 3 N - 

ABS + 3%, 6 3 N - 

ABS + 3%, 7 3 N - 

ABS + 3%, 8 5 N - 

ABS + 3%, 9 5 Y 82 

ABS + 3%, 10 5 Y 70 

 
Table 3: Flame test data for ABS samples with 3% Mg(OH)2 by weight. 
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Sample Length of thermal 
exposure (s) 

Caught fire (Y/N) Time until flame self-
extinguished (s) 

ABS + 9%, 1 1 Y 2 

ABS + 9%, 2 1 N - 

ABS + 9%, 3 1 N - 

ABS + 9%, 4 3 Y 4 

ABS + 9%, 5 3 Y 3 

ABS + 9%, 6 3 N - 

ABS + 9%, 7 3 N - 

ABS + 9%, 8 5 Y 88 

ABS + 9%, 9 5 Y 19 

ABS + 9%, 10 5 Y 166 

 
Table 4: Flame test data for ABS samples with 9% Mg(OH)2 by weight. 
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Sample Length of thermal 
exposure (s) 

Caught fire (Y/N) Time until flame self-
extinguished (s) 

ABS + 15%, 1 1 N - 

ABS + 15%, 2 1 N - 

ABS + 15%, 3 1 N - 

ABS + 15%, 4 3 N - 

ABS + 15%, 5 3 Y 107 

ABS + 15%, 6 3 N - 

ABS + 15%, 7 3 N - 

ABS + 15%, 8 5 Y 86 

ABS + 15%, 9 5 N - 

ABS + 15%, 10 5 Y 2 

 
Table 5: Flame test data for ABS samples with 15% Mg(OH)2 by weight. 
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Sample Median T2(1) 
(ms) 

Median T2(2) 
(ms) 

|ΔT2(1)| (after 
flame testing - 
before flame 
testing) (ms) 

|ΔT2(2)| (after 
flame testing - 
before flame 
testing) (ms) 

Tile, before 0.17 7.13 - - 

Tile, 1 second 0.17 8.04 0 0.91 

Tile, 3 seconds 0.17 6.66 0 0.47 

Tile, 5 seconds 0.18 6.84 0.01 0.29 

Cast, before 0.24 6.56 - - 

Cast, 1 second 0.20 6.24 0.04 0.32 

Cast, 3 seconds 0.18 6.19 0.06 0.37 

Cast, 5 seconds 0.18 6.31 0.06 0.25 

3%, before 0.23 7.04 - - 

3%, 1 second 0.20 6.44 0.03 0.60 

3%, 3 seconds 0.18 6.51 0.05 0.53 

3%, 5 seconds 0.19 6.04 0.04 0.40 

9%, before 0.22 6.45 - - 

9%, 1 second 0.20 6.37 0.02 0.08 

9%, 3 seconds 0.20 6.52 0.02 0.07 

9%, 5 seconds 0.18 6.30 0.04 0.15 

15%, before 0.21 6.46 - - 

15%, 1 second 0.19 6.03 0.02 0.43 

15%, 3 seconds 0.20 6.39 0.01 0.07 

15%, 5 seconds 0.20 5.96 0.01 0.50 

 
Table 6: Median T2 values of all ABS samples and the absolute value of the differences between 
median T2 values before and after flame testing. 
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Appendix B: Experimentation 

CPMG (Kea2 Spectrometer):  
 
B1 Frequency (MHz)  
90° Pulse Amplitude (dB) 
180° Pulse Amplitude (dB) 
Pulse Length (μs) 
Repetition Time (ms)  
Number of Scans 
Number of Echoes 
Number of Complex Points 
Dwell Time (μs) 
Echo Time (μs) 
T1 Relaxation (ms) 

19.3  
-10 
-4 
2.75 
1000 
512 
512 
16 
0.5 
40 
40±2 
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Debugger Script: 
 
procedure(CPMGBD) 
  
# Cache macros 
   cd("$appdir$\\Macros\\Kea-NMR") 
   cachemacro("CPMG.mac","local") 
   cd("$appdir$\\Macros\\Kea-Core") 
   cachemacro("keaCtrl.mac","local") 
   cachemacro("keaRun.mac","local") 
   cachemacro("keaPlot.mac","local") 
   cachemacro("keaFiles.mac","local") 
   cd("$appdir$\\Macros\\NMR-MOUSE") 
   cachemacro("Service2.mac","local") 
   cacheproc("true") 
  
# Set up gui par 
  
   guipar = ["90Amplitude = -10", 
          "180Amplitude = -4", 
          "accumulate = \"yes\"", 
          "acqTime = 0.008", 
          "alpha = 1.5e8", 
          "autoPhase = \"yes\"", 
          "b1Freq = 19.3", 
          "bandwidth = 2000", 
          "dataDirectory = \"Z:\Data\AST\ABS\"", 
          "dummies = 0", 
          "dummyEchoes = 0", 
          "dwellTime = 0.5", 
          "echoShift = 0", 
          "echoTime = 40", 
          "expName = \"Sample187_Mar30_Flame_5sec\"", 
          "expNr = 0", 
          "filter = \"no\"", 
          "filterType = \"sinebellsquared\"", 
          "fitType = \"exp\"", 
          "flatFilter = \"no\"", 
          "incExpNr = \"yes\"", 
          "normalize = \"yes\"", 
          "nrEchoes = 512", 
          "nrPnts = 16", 
          "nrScans = 512", 
          "pulseLength = 2.75", 
          "repTime = 1000", 
          "rxGain = 31", 
          "rxPhase = 247", 
          "saveData = \"true\"", 
          "sumEchoes = \"no\"", 
          "timeMag = \"no\"", 
          "usePhaseCycle = \"yes\"", 
          "x_maximum = 100", 
          "x_minimum = 0.2"] 
  
  
# Run the macro via the backdoor 
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for(t = 1 to 3) 
   guipar = setlistvalue(guipar,"expNr","\"$t$\"") 
   CPMG:backdoor(guipar) 
   pause(3) 
next(t) 
  
endproc() 
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Appendix C: Data Processing 

MATLAB Processing Script:  

quickKeaT2.m 

clear 
clc 
close all 
  
filename = 'data.2d'; 
filedir = 'Z:\Data\AST\ABS\Sample187_Mar30_Flame_5sec\3\'; 
nExp = 2; 
  
omitEchoes = 0; %front-end echoes to omit 
% END USER-DEFINED PARAMETERS 
  
  
fileloc = strcat(filedir,filename); 
parloc  = strcat(filedir,'acqu.par'); 
  
[ap,spec] = readKea4d(fileloc); 
tEcho = readpar_Kea(parloc,'echoTime'); %s 
nEchoes = ap.yDim; 
nPts = ap.xDim; 
acqTime = readpar_Kea(parloc,'acqTime')*1e-3; %1e-3 does conversion to s 
  
nPtsBlank = 0; %don't touch 
  
% nExp = 1; %1 for mono, 2 for bi 
  
echoVector = (tEcho:tEcho:nEchoes*tEcho)*1e-6; 
  
data = reshape(spec,nPts,nEchoes); 
data = data(1:(nPts-nPtsBlank),:); 
data = autophase(data',1); 
  
%% 
dataInt = sum(data',1); 
  
  
dataIntRe = real(dataInt); 
dataIntIm = imag(dataInt); 
  
dataOut = dataIntRe'./dataIntRe(1); 
echoOut = echoVector'; 
  
if nExp == 1 
 guess = [1 15e-6];% 0.6 6e-03]; 
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 [beta,R,J,CovB] = nlinfit(echoVector,dataIntRe./max(dataIntRe), 
@t2monofit_simple, guess); 
 beta_err = sqrt(diag(CovB)); 
 ypred = t2monofit_simple(beta,echoVector); 
  
 sprintf('T2 = %f ± %f [us]',1e6*beta(2), 1e6*beta_err(2)) 
 sprintf('A = %f ± %f [arb]',beta(1), beta_err(1)) 
  
  
 fileID = fopen(strcat(filedir,'T2fit.txt'),'w'); 
 fprintf(fileID,'Monoexponential Fit\nT2 = %.2f ± %.1g ms\n A = %.2f 
± %.1g [arb]',1000*beta(2), 1000*beta_err(2),beta(1), beta_err(1)); 
 fprintf(fileID,'\ntE = %i us',tEcho); 
 fclose(fileID); 
  
elseif nExp == 2 
 guess = [0.5 0.23e-3 10e-3 0.03]; 
 [beta,R,J,CovB] = nlinfit(echoVector,dataIntRe./max(dataIntRe), 
@t2bifit_ampSumFixed_offset, guess); 
 beta_err = sqrt(diag(CovB)); 
 ypred = t2bifit_ampSumFixed_offset(beta,echoVector); 
  
 sprintf('A1 = %.2f ± %.1g; A2 = %.2f ± %.1g [arb]',beta(1), 
beta_err(1), 1-beta(1), beta_err(1)) 
 sprintf('T21 = %.2f ± %.1g; T22 = %.2f ± %.1g [ms]',1000*beta(2), 
1000*beta_err(2), 1000*beta(3), 1000*beta_err(3)) 
  
 fileID = fopen(strcat(filedir,'T2fit.txt'),'w'); 
 fprintf(fileID,'Biexponential Fit\n'); 
 fprintf(fileID,'T2(1) = %.2f ± %.1g [ms]\n',1000*beta(2), 
1000*beta_err(2)); 
 fprintf(fileID,' A(1) = %.2f ± %.1g [arb]\n',beta(1), beta_err(1)); 
 fprintf(fileID,'T2(2) = %.2f ± %.1g [ms]\n',1000*beta(3), 
1000*beta_err(3)); 
 fprintf(fileID,' A(2) = %.2f ± %.1g [arb]\n',1-beta(1), beta_err(1)); 
 fprintf(fileID,'\ntE = %i us',tEcho); 
 fclose(fileID); 
elseif nExp == 3 
 guess = [0.4  0.1  0.6  0.07   .004    .0022 0]; 
 [beta,~,~,CovB] = nlinfit(echoVector,dataIntRe./max(dataIntRe), 
@t2trifit_y0, guess); 
 beta_err = sqrt(diag(CovB)); 
 ypred = t2trifit_y0(beta,echoVector); 
 output = [beta(1:3)'./sum(beta(1:3)); beta(4:numel(guess))'; 
beta_err(1:3)./sum(beta(1:3)); beta_err(4:numel(guess))]; 
 output = reshape(output,numel(guess),2); 
 output(4:6,:) = output(4:6,:)*1000; 
 output(:,3) = output(:,2)./output(:,1); 
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 fileID = fopen(strcat(filedir,'T2fit.txt'),'w'); 
 fprintf(fileID,'Triexponential Fit\n'); 
 fprintf(fileID,'T2(1) = %.2f ± %.1g [ms]\n',output(4,1), output(4,2)); 
 fprintf(fileID,' A(1) = %.2f ± %.1g [arb]\n',output(1,1), output(1,2)); 
 fprintf(fileID,'T2(2) = %.2f ± %.1g [ms]\n',output(5,1), output(5,2)); 
 fprintf(fileID,' A(2) = %.2f ± %.1g [arb]\n',output(2,1), output(2,2)); 
 fprintf(fileID,'T2(3) = %.2f ± %.1g [ms]\n',output(6,1), output(6,2)); 
 fprintf(fileID,' A(3) = %.2f ± %.1g [arb]\n',output(3,1), output(3,2)); 
 fprintf(fileID,'\ntE = %i us',tEcho); 
 fclose(fileID); 
end 
  
close all 
hh = figure(2); 
set(gcf,'Position',[48   80   910   580]) 
hold on 
plot(1000*echoVector,dataIntRe./max(dataIntRe)); 
plot(1000*echoVector,dataIntIm./max(dataIntRe)); 
plot(1000*echoVector,ypred,'-k'); 
xlabel('time [ms]'); 
ylabel('intensity'); 
xlim([0 1000*max(echoVector)]) 
set(gca, 'Fontsize',18,'linewidth',2); 
title({'CPMG',strcat(filedir,filename)}, 'Interpreter', 'none') 
legend('Real','Imag','Fit') 
legend('boxoff') 
pubgraph(hh,14,1,'w','Arial'); 
print(strcat(filedir,filename,'.jpg'),'-djpeg'); 
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Appendix D: Abbreviations 

ABS   
CPMG 
Mg(OH)2 
NFPA 
NMR 
PPE 

Acrylonitrile butadiene styrene 
Carr-Purcell-Meiboom-Gill Sequence 
Magnesium hydroxide 
National Fire Protection Association 
Nuclear magnetic resonance (spectroscopy) 
Personal protective equipment 
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